Teoremas del valor medio
|
|
|
- David Silva Maestre
- hace 7 años
- Vistas:
Transcripción
1
2 Teoremas del valor medio Teorema de Rolle Teorema de Cauchy Teorema de Lagrange
3 Teorema de Rolle Sea f x una función contínua en a; b, derivable en a; b y f a = f(b) entonces existe al menos un cε a; b tal que f c = 0 Interpretación geométrica: Este teorema asegura al menos la existencia de un punto en el intervalo cuya recta tangente es horizontal, con esas hipótesis [ ]
4 Teorema de Lagrange (o del valor medio) Sea f x una función contínua en a; b, derivable en a; b entonces existe al menos un cε a; b tal que f c = f b f(a) b a Interpretación geométrica: Este teorema garantiza la existencia de un valor cε a; b en el cual la recta tangente a f x resulta paralela la recta que une los puntos a; f(a), b; f(b)
5 Teorema de Cauchy Si f x y g x son funciones tales que son contínuas en a; b, derivables en a; b ; g x 0 xε a; b entonces existe al menos un cε a; b tal que f (c) g c = f b f(a) g(b) g(a)
6 Interpretación geométrica del Teorema de Cauchy Este teorema tiene el mismo significado geométrico que el de Lagrange si se consideran las funciones f x y g x como las ecuaciones paramétricas de la curva: x = g(t) y = f(t) tε a; b Si t = a A: g a ; f a Si t = b B: g b ; f b Derivando en paramétricas: y = f (t) g (t) Entonces si t = c f (c) g (c) = f b f(a) g b g(a)
7 Regla de l Hôpital Caso 0 0 Guillaume François Antoine, marqués de l'hôpital ( ) TEOREMA Sean f x y g x dos funciones que satisfacen el teorema de Cauchy en a; b, con f x y g x continuas, que se reducen a cero en x = 0 es decir f a = g a = 0 entonces si existe f (x) lim x a g (x) existirá también lim x a f(x) g(x) f(x) lim x a g(x) = lim f (x) x a g (x) y se verifica que
8 Observaciones La regla es válida también para aquellas funciones f x y g(x) que no estén definidas para x = a pero lim f x = 0 o x a g x = 0 lim x a La regla se cumple f x y g (x) consideradas como funciones que también cumplen las condiciones del teorema de Cauchy, luego: f(x) lim = lim x a g(x) x a f (x) g (x) = lim x a f (x) g (x) =.. La regla también se puede aplicar al caso lim f x = 0 o x lim g x = 0 haciendo x = 1 x t f(x) lim x g(x) = lim f( 1 t ) 1 f t. ( 1 t t 0 g( 1 = lim 2) f (x) t ) t 0 1 g t. ( 1 = lim x t 2) g (x)
9 Regla de l Hôpital Caso Guillaume François Antoine, marqués de l'hôpital ( ) Sean f x y g x dos funciones continuas y derivables en un entorno reducido de a (x a) y g x 0 x de dicho entorno y limf x = y limg x = x a x a f (x) f(x) entonces si existe lim existirá también lim y x a g (x) x a g(x) se verifica que f(x) lim x a f (x) = lim g(x) x a (También es aplicable para x ) g (x)
10 Nota La regla de l Hopital se puede aplicar únicamente para las indeterminaciones: 0 0 o Por lo que otra indeterminación: debe transformarse en alguna de ellas para aplicar dicha regla.
11 Aproximación de funciones Los polinomios son funciones derivables en las que intervienen operaciones algebraicas básicas. No es así en funciones como las trigonométricas o logarítmicas, por ejemplo. Es por esto que es muy conveniente aproximar dichas funciones mediante un polinomio Veremos dos ejemplos gráficos f x = senx P 1 = x P 3 = x x3 6
12 Polinomio de aproximación P n un polinomio de grado n en potencias de (x-a). P n = P n a + P n a 1! x a + P n a 2! x a 2 + P n a 3! x a 3 + Pn n a n! x a n Polinomio de Taylor Dada y = f(x) derivable hasta el orden n+1 en el entorno de un punto x=a, existe un polinomio P n (x) de grado menor o igual que n que es: P n = f a + f a 1! x a + f a 2! x a 2 + f a 3! x a 3 + fn a n! x a n Fórmula del polinomio de Taylor f(x) P n (x)
13 Observaciones El polinomio de Taylor existe y es único. Cuantas más derivadas se calculen mejor será la aproximación en un entorno de x = a El único caso en el que no se comete error en la aproximación es cuando se aproxima un polinomio
14 Definición Se llama E n (x) a la diferencia entre los valores de la función y los del polinomio de aproximación: E n x = f x P n x f x = P n x + E n (x) Fórmula del polinomio de Taylor Donde E n x = fn+1 δ.(x a) n+1 n+1! δε(a; b) es el término complementario Polinomio de Mc. Laurin Caso particular del polinomio de Taylor para a=0 P n = f f 0 1! x + f 0 2! x 2 + f 0 3! x 3 + fn 0 n! x n El polinomio queda expresado en potencias de x
15 Estudio de funciones Función creciente Una función definida en un intervalo I es CRECIENTE sii f x 1 < f(x 2 ) siempre que x 1 < x 2, para todo x 1, x 2 pertenecientes al intervalo I. f x 2 f x 1 Observación Si f x es creciente en un intervalo, el ángulo que forman las rectas tangentes con el eje x es agudo, en consecuencia las pendientes de esas rectas son positivas. x 1 x 2 f x agudo tgα > 0 f x > 0 x I
16 Estudio de funciones Función decreciente Una función definida en un intervalo I es DECRECIENTE sii f x 1 > f(x 2 ) siempre que x 1 > x 2, para todo x 1, x 2 pertenecientes al intervalo I. Observación f x 1 f x 2 β Si f x es decreciente en un intervalo, el ángulo que forman las rectas tangentes con el eje x es obtuso, en consecuencia las pendientes de esas rectas son negativas x 1 x 2 obtuso tgα < 0 f x < 0 x I
17 TEOREMA 1 Sea f x derivable en el intervalo a; b entonces: Si f x = y es creciente en a; b entonces f x 0 x a; b Si f x = y es decreciente en a; b entonces f x 0 x a; b TEOREMA 2 Sea f x continua en el intervalo a; b y derivable en el intervalo a; b entonces: Sif x > 0 x a; b f x es creciente en a; b Sif x < 0 x a; b f x es decreciente en a; b Sif x = 0 x a; b f x es constante en a; b Llamaremos: INTERVALO DE CRECIMIENTO de f: INTERVALO DE DECRECIMIENTO de f: x Dom f / f (x)>0 x Dom f / f (x)<0
18 f (x 2 ) f (x 1 ) f (x 3 ) = 0 x 1 x 2 x 3 PUNTO CRÍTICO Sea f x definida en x 0 x 0 Dom f. Se dice que x 0 es punto crítico de f x si f x 0 = 0 o f (x 0 )
19 MÁXIMOS Y MÍNIMOS RELATIVOS Una función f x tiene un valor máximo relativo en x = x 1 si f x 1 + x < f(x 1 ) para todo x suficientemente pequeño (positivo o negativo) en valor absoluto. Es decir será un máximo relativo si existe un entorno de x 1 tal que f x < f(x 1 ) para todo x perteneciente al entorno Una función f x tiene un valor mínimo relativo en x = x 1 si f x 1 + x > f(x 1 ) para todo x suficientemente pequeño (positivo o negativo) en valor absoluto. Es decir será un mínimo relativo si existe un entorno de x 1 tal que f x 1 < f x para todo x perteneciente al entorno f(x 1 ) f(x 1 ) ( ( x 1 x 1 ) )
20 f (x 1 ) = 0 f (x 1 ) x 1 f (x 1 ) = 0 x 1 x 1 x 3 x 2 f (x 2 ) = 0 f (x 3 ) = 0 f (x 1 ) = 0 f (x 2 ) x 1 f (x 1 ) = 0 x 1 x 2
21 Condición necesaria para la existencia de extremo relativo Si f x está definida en el intervalo a; b y tiene un valor extremo (máximo o mínimo) en x = x 1, con a < x 1 < b, y además f x 1 existe, entonces f x 1 = 0 OBSERVACIONES: La recíproca no es cierta: una función puede no tener ni máximo ni mínimo en el punto en que la derivada se anula
22 En los puntos donde no existe la derivada puede haber máximo o mínimo o ninguno de los dos. f 0 No hay ni máximo ni mínimo f (0) Hay mínimo en (0;f(0)) Una función puede tener extremos en aquellos puntos en los cuales: f (x) o f x = 0. (Puntos críticos)
23 Condiciones suficientes para la existencia de extremos relativos 1) Análisis del signo de la derivada primera Si f x es una función continua en un intervalo abierto al cual pertenece el punto crítico x 1 y f x derivable en todos los puntos del intervalo, excepto posiblemente en x 1. Entonces si al pasar por dicho punto de izquierda a derecha: a) f x cambia de positiva a negativa entonces la función admite máximo en x = x 1 x 1
24 b) f x cambia de negativa a positiva entonces la función admite mínimo en x = x 1 x 1 x 1 c)f x no cambia de signo entonces no hay extremo en relativo en x = x 1
25 2) Análisis del signo de la derivada segunda Sea x 1 un valor crítico de f x tal que f x 1 = 0 y además f x existe para todos los valores de x en el intervalo abierto que contiene a x 1 entonces: I. Si f x 1 < 0 f(x) tiene máximo en x 1 II. Si f x 1 > 0 f(x) tiene mínimo en x 1 III. Si f x 1 = 0 el criterio no decide.
26 CONCAVIDAD Se dice que una función f x es concava hacia abajo en a; b si todos los puntos de la misma están por debajo de cualquier recta tangente a la curva en ese intervalo ( a ) b Se dice que una función f x es concava hacia arriba en a; b si todos los puntos de la misma están por arriba de cualquier recta tangente a la curva en ese intervalo ) ( a b
27 Otra definición de concavidad Si f x es una función derivable en un intervalo abierto, diremos que la gráfica de f x es cóncava hacia arriba si f x es creciente en ese intervalo y cóncava hacia abajo si f x es decreciente en ese intervalo Entonces para poder determinar la concavidad usaremos la segunda derivada para saber donde crece o decrece la f x (de la misma forma que usamos f x para saber donde crece o decrece f x ) f (x) = f x > 0 f x crece f x c. arriba f (x) = f x < 0 f x decrece f x c. abajo
28 Criterio de concavidad Sea f x una función cuya derivada segunda existe en un intervalo abierto a; b y f x > 0 xε a; b f x es cóncava arriba en a; b f x < 0 xε a; b f x es cóncava abajo en a; b f x = 0 xε a; b f x es lineal
29 PUNTO DE INFLEXIÓN DEFINICIÓN: Si la gráfica de una fución continua posee recta tangente en un punto donde la concavidad cambia de sentido, llamaremos a ese punto PUNTO DE INFLEXIÓN I GEOMÉTRICAMENTE Si existe ese PUNTO DE INFLEXIÓN la recta tangente atraviesa la curva, de modo que a un lado del punto la curva está por debajo de la recta tangente y al otro lado está por encima. I
30 x 0 f (x 0 ) -no hay recta tangente -no hay punto de inflexión -cambia la concavidad def f (x 0 ) -hay recta tangente vertical -hay punto de inflexión -cambia la concavidad def x 0
31 TEOREMA Si x = x 1 es un punto de inflexión de la gráfica de f x entonces f x 1 = 0 o f x 1 ; x 1 Dom(f)
32 f x = x3 3x 3 Gráficas de f (x) = x 2 1 f(x) f (x) y f x = 2x f (x)
33 Comparación de las gráficas de f(x), f (x) y f (x) f x = x3 3x 3 f (x) = x 2 1 f x = 2x
TEMA 5. FUNCIONES DERIVABLES. TEOREMA DE TAYLOR
TEMA 5. FUNCIONES DERIVABLES. TEOREMA DE TAYLOR 5.1 DERIVADA DE UNA FUNCIÓN 5.1.1 Definición de derivada Definición: Sea I in intervalo abierto, f : I y a I. Diremos que f es derivable en a si existe y
Tema 1. Cálculo diferencial
Tema 1. Cálculo diferencial 1 / 57 Una función es una herramienta mediante la que expresamos la relación entre una causa (variable independiente) y un efecto (variable dependiente). Las funciones nos permiten
Una función f, definida en un intervalo dterminado, es creciente en este intervalo, si para todo x
Apuntes de Matemáticas II. CBP_ ITSA APLICACIONES DE LA DERIVADA.- CRECIMIENTO Y DECRECIMIENTO DE UNA FUNCIÓN En una función se puede analizar su crecimiento o decrecimiento al mirar la variación que experimentan
Derivadas 1 1. FUNCIÓN DERIVABLE EN UN PUNTO, DERIVADA DE UNA FUNCIÓN EN UN PUNTO. CONCEPTO DE FUNCIÓN DERIVADA, DERIVADA SEGUNDA DE UNA FUNCIÓN.
Derivadas. FUNCIÓN DERIVABLE EN UN PUNTO, DERIVADA DE UNA FUNCIÓN EN UN PUNTO. CONCEPTO DE FUNCIÓN DERIVADA, DERIVADA SEGUNDA DE UNA FUNCIÓN.. Función derivable en un punto, derivada de una función en
Unidad V. 5.1 Recta tangente y recta normal a una curva en un punto. Curvas ortogonales.
Unidad V Aplicaciones de la derivada 5.1 Recta tangente y recta normal a una curva en un punto. Curvas ortogonales. Una tangente a una curva es una recta que toca la curva en un solo punto y tiene la misma
Expliquemos con exactitud qué queremos decir con valores máximos y mínimos.
Introducción: Ahora que conocemos las reglas de derivación nos encontramos en mejor posición para continuar con las aplicaciones de la derivada. Veremos cómo afectan las derivadas la forma de la gráfica
REPRESENTACIÓN GRÁFICA DE UNA FUNCIÓN.. Se pide: x
1 REPRESENTACIÓN GRÁFICA DE UNA FUNCIÓN IBJ05 1. Se considera la función f ( ). Se pide: a) Encontrar los intervalos donde esta función es creciente y donde es decreciente. ( puntos) b) Calcular las asíntotas.
BLOQUE 4. CÁLCULO DIFERENCIAL DE FUNCIONES REALES DE UNA VARIABLE. ESTUDIO DE LA GRÁFICA DE UNA FUNCIÓN
BLOQUE 4. CÁLCULO DIFERENCIAL DE FUNCIONES REALES DE UNA VARIABLE. ESTUDIO DE LA GRÁFICA DE UNA FUNCIÓN Crecimiento y decrecimiento. Extremos absolutos y relativos. Concavidad y convexidad. Asíntotas.
Semana 2 [1/24] Derivadas. August 16, Derivadas
Semana 2 [1/24] August 16, 2007 Máximos y mínimos: la regla de Fermat Semana 2 [2/24] Máximos y mínimos locales Mínimo local x es un mínimo local de la función f si existe ε > 0 tal que f( x) f(x) x (
CONTINUIDAD DE FUNCIONES. SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos.
CAPÍTULO IV. CONTINUIDAD DE FUNCIONES SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos. 121 A. DEFINICIÓN DE FUNCIÓN CONTINUA. Una función
DERIVADAS. Para hallar la pendiente de una curva en algún punto hacemos uso de la recta tangente de una curva en un punto.
DERIVADAS Tema: La derivada como pendiente de una curva Para hallar la pendiente de una curva en algún punto hacemos uso de la recta tangente de una curva en un punto. La pendiente de la curva en el punto
CONCAVIDAD. Supongamos que tenemos la siguiente información, referente a una curva derivable: Cómo la graficaríamos?
CAPÍTULO 14 CONCAVIDAD Supongamos que tenemos la siguiente información, referente a una curva derivable: Intervalo Signo de f F (-00,3) + Creciente (3,8) - Decreciente (8, + ) + Creciente Cómo la graficaríamos?
Funciones reales de variable real
Tema Funciones reales de variable real Introducción El objetivo fundamental de este tema es recordar conceptos ya conocidos acerca de las funciones reales de variable real.. Conceptos Generales Definición.
PLAN DE ESTUDIOS DE MS
PLAN DE ESTUDIOS DE MS Temario para desarrollar a lo largo de las clases 11 y 12. CLASE 11: I. ELEMENTOS DE ÁLGEBRA LINEAL. a) Revisión de conceptos Estructura de espacio vectorial. Propiedades de los
Grado en Química Bloque 1 Funciones de una variable
Grado en Química Bloque Funciones de una variable Sección.5: Aplicaciones de la derivada. Máximos y mínimos (absolutos) de una función. Sea f una función definida en un conjunto I que contiene un punto
Colegio Portocarrero. Curso Departamento de matemáticas. Análisis. (Límites/Asíntotas/Continuidad/Derivadas/Aplicaciones de las derivadas)
Análisis (Límites/Asíntotas/Continuidad/Derivadas/Aplicaciones de las derivadas) Problema 1: Sea la función Determina: a) El dominio de definición. b) Las asíntotas si existen. c) El o los intervalos de
TEMA 4: DERIVADAS. En símbolos, la pendiente de la curva en P = lim Q P (pendiente de P Q).
TEMA 4: DERIVADAS 1. La derivada de una función. Reglas de derivación 1.1. La pendiente de una curva. La pendiente de una curva en un punto P es una medida de la inclinación de la curva en ese punto. Si
Herramientas digitales de auto-aprendizaje para Matemáticas
Herramientas digitales de auto-aprendizaje para Matemáticas, Grupo de Innovación Didáctica Departamento de Matemáticas Universidad de Extremadura Índice la cadena Tabla de Dada una función f : D R R,
«La derivada de una función en un punto representa geométricamente la pendiente de la recta tangente a la función en dicho punto»
TEMA 10 DERIVADA DE UNA FUNCIÓN EN UN PUNTO f (a): Consideremos una función f(x) y un punto P de su gráfica (ver figura), de abscisa x=a. Supongamos que damos a la variable independiente x un pequeño incremento
Aplicando el teorema de los incrementos finitos a la función f(x) = x 2 + 4x - 2 en los extremos [-1, 3] hallar x o
DERIVADAS Y TEOREMAS DE DERIVABILIDAD Aplicando el teorema de los incrementos finitos a la función f(x) = x 2 + 4x - 2 en los extremos [-1, 3] hallar x o El teorema de Lagrange dice que: f(3) - f(-1) =
1.- Encontrar los intervalos de crecimiento y decrecimiento de las funciones:
F. EJERCICIOS PROPUESTOS. 1.- Encontrar los intervalos de crecimiento y decrecimiento de las funciones: (a) f(x) =x 3 /3+3x 2 /2 10x. Resp.: Crece en (, 5) y en (2, ); decrece en ( 5, 2). (b) f(x) =x 3
CONTENIDO PRÓLOGO LAS FUNCIONES... 5
CONTENIDO PRÓLOGO... 1 1. LAS FUNCIONES... 5 1.1 FORMAS DE REPRESENTACIÓN... 5 1.1.1 Representación de funciones... 6 1.1.2 Funciones definidas a trozos... 7 1.1.3 Simetría... 8 1.1.4 Funciones crecientes
MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES
MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 5 Curso preparatorio de la prueba de acceso a la universidad para mayores de 25 años curso 2010/11 Nuria Torrado Robles Departamento de Estadística Universidad
Si se pueden obtener las imágenes de x por simple sustitución.
TEMA 0: REPASO DE FUNCIONES FUNCIONES: TIPOS DE FUNCIONES Funciones algebraicas En las funciones algebraicas las operaciones que hay que efectuar con la variable independiente son: la adición, sustracción,
Autor: Antonio Rivero Cuesta, Tutor C.A. Palma de Mallorca
Ejercicio: 4. 4. El intervalo abierto (,) es el conjunto de los números reales que verifican: a). b) < . - Intervalo abierto (a,b) al conjunto de los números reales, a < < b. 4. El intervalo
Estudio de funciones mediante límites y derivadas
Estudio de funciones mediante límites y derivadas CVS0. El precio del billete de una línea de autobús se obtiene sumando dos cantidades, una fija y otra proporcional a los kilómetros recorridos. Por un
TEMA 7 INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES 7.1 CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO
TEMA 7 DERIVADAS Y APLICACIONES MATEMÁTICAS CCSSI º Bac TEMA 7 INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES 7. CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO TASA DE VARIACIÓN MEDIA Definición : Se llama
(A) Primer parcial. si 1 x 1; x 3 si x>1. (B) Segundo parcial
CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN GLOBAL E700 1) x 5 > 1. A) Primer parcial ) Sean las funciones ft) t +,gy) y 4&hw) w. Encontrar f/h, g f, f g y sus dominios. ) Graficar la función x + six
No es otra cosa, que la representación de los resultados de una función sobre el plano carteciano.
FUNCIONES GRAFICAS No es otra cosa, que la representación de los resultados de una función sobre el plano carteciano. INTÉRVALOS Un intervalo es el conjunto de todos los números reales entre dos números
GIMNASIO VIRTUAL SAN FRANCISCO JAVIER Valores y Tecnología para la Formación Integral del Ser Humano UNIDAD I FUNCIONES
UNIDAD I FUNCIONES Una función es una correspondencia entre dos conjuntos, que asocia a cada elemento del primer conjunto exactamente un elemento del otro conjunto. Una función f definida entre dos conjuntos
Aplicaciones de la derivada Ecuación de la recta tangente
Aplicaciones de la derivada Ecuación de la recta tangente La pendiente de la recta tangente a una curva en un punto es la derivada de la función en dicho punto. La recta tangente a una curva en un punto
REPRESENTACIÓN GRÁFICA DE FUNCIONES
REPRESENTACIÓN GRÁFICA DE FUNCIONES a. Dominio de definición: D = Dom f() = { R eiste f()} b. Puntos de corte con los ejes: Con el eje OX (abscisas): f() = 0 : (,0). Ninguno, uno o más puntos. Con el eje
UNIDAD 2: LÍMITES DE FUNCIONES.CONTINUIDAD = 3 2
UNIDAD 2: LÍMITES DE FUNCIONES.CONTINUIDAD 1.- Límites en el Infinito: lim x + f(x) = L Se dice que el límite de f (x) cuando x tiende a + es L ϵ Ɽ, si podemos hacer que f(x) se aproxime a L tanto como
CURSO PREPARATORIO DE INGENIERÍA (CPI) PROGRAMA DE ASIGNATURA
CURSO PREPARATORIO DE INGENIERÍA (CPI) PROGRAMA DE ASIGNATURA CÁLCULO DIFERENCIAL AÑO 2016 I. FUNDAMENTACIÓN El curso de Cálculo Diferencial proporciona las herramientas fundamentales para entender la
La variable independiente x es aquella cuyo valor se fija previamente. La variable dependiente y es aquella cuyo valor se deduce a partir de x.
Bloque 8. FUNCIONES. (En el libro Temas 10, 11 y 12, páginas 179, 197 y 211) 1. Definiciones: función, variables, ecuación, tabla y gráfica. 2. Características o propiedades de una función: 2.1. Dominio
4. ANÁLISIS DE FUNCIONES DE UNA VARIABLE
Análisis de funciones de una variable 49 4. ANÁLISIS DE FUNCIONES DE UNA VARIABLE En esta sección realizaremos algunos ejercicios sobre el estudio de funciones de una variable: En la parte final hay ejercicios
FUNCIONES CONTINUAS EN UN INTERVALO. El Tª de Bolzano es útil para determinar en algunas ocasiones si una ecuación tiene soluciones reales:
FUNCIONES CONTINUAS EN UN INTERVALO Teoremas de continuidad y derivabilidad Teorema de Bolzano Sea una función que verifica las siguientes hipótesis:. Es continua en el intervalo cerrado [, ]. Las imágenes
TEORMAS DE WEIERSTRASS, BOLZANO, ROLLE Y LAGRANGE
TEORMAS DE WEIERSTRASS, BOLZANO, ROLLE Y LAGRANGE PROBLEMAS RESUELTOS + Dada F() =, escriba la ecuación de la secante a F que une los puntos (, F( )) y 4 (, F()). Eiste un punto c en el intervalo [, ]
CBC. Matemática (51) universoexacto.com 1
CBC Matemática (51) universoexacto.com 1 PROGRAMA ANALÍTICO 1 :: UNIDAD 1 Números Reales y Coordenadas Cartesianas Representación de los números reales en una recta. Intervalos de Distancia en la recta
Interpretación geométrica de la derivada
Interpretación geométrica de la derivada El matemático francés ierre de Fermat (60 665) al estudiar máimos mínimos de ciertas funciones observó que en aquellos puntos en los que la curva presenta un máimo
Guía 3 Del estudiante Modalidad a distancia. Modulo CÁLCULO UNIVARIADO INGENIERÍA DE SISTEMAS II SEMESTRE
Guía 3 Del estudiante Modalidad a distancia Modulo CÁLCULO UNIVARIADO INGENIERÍA DE SISTEMAS II SEMESTRE DATOS DE IDENTIFICACION TUTOR Luis Enrique Alvarado Vargas Teléfono 435 29 52 CEL. 310 768 90 67
Tema 7: Aplicaciones de la derivada, Representación de Funciones
Tema 7: Aplicaciones de la derivada, Representación de Funciones 0.- Introducción 1.- Crecimiento y Decrecimiento de una función. Monotonía..- Máimos y mínimos de una función.1.- Etremos relativos...-
b) Para encontrar los intervalos de crecimiento y decrecimiento, hay que derivar la función. Como que se trata de un cociente, aplicamos la fórmula:
1. Dada la función f(x) = : a) Encontrar el dominio, las AH y las AV. b) Intervalos de crecimiento, decrecimiento, máximos y mínimos relativos. c) Primitiva que cumpla que F(0) = 0. a) Para encontrar el
IES Fco Ayala de Granada Junio de 2012 (Común Modelo 4) Soluciones Germán-Jesús Rubio Luna
IES Fco Ayala de Granada Junio de 01 (Común Modelo 4) Soluciones Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo Junio 01 común Sea f : R R la función definida como f(x) = e x.(x ). [1 punto]
Funciones Racionales y Asíntotas
y Asíntotas Carlos A. Rivera-Morales Precálculo 2 y Asíntotas Tabla de Contenido 1 Asíntotas de :Asíntotas Asíntotas Verticales y Asíntotas Horizontales y Asíntotas Asíntotas de :Asíntotas Definición:
12.1 CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO
INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES. CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO TASA DE VARIACIÓN MEDIA Deinición Se llama tasa de variación media (T.V.M.) de una unción, y = () en un intervalo
Estudio de funciones mediante límites y derivadas
Estudio de funciones mediante límites y derivadas Observación: La mayoría de estos ejercicios se han propuesto en las pruebas de Selectividad, en los distintos distritos universitarios españoles El precio
DERIVADAS, LÍMITES Y TEOREMAS DE DERIVABILIDAD
DERIVADAS, LÍMITES Y TEOREMAS DE DERIVABILIDAD Aplicando el teorema de los incrementos finitos a la función f(x) = x 2 + 4x - 2 en los extremos [-1, 3] hallar x o El teorema de Lagrange dice que: f(3)
UNIVERSIDAD NACIONAL DE GENERAL SARMIENTO Matemática I Segundo Parcial (21/11/09) xe2x JUSTIFIQUE TODAS SUS RESPUESTAS
Segundo Parcial (21/11/09) 1. Sea f(x) = 1 +2 xe2x a) Hallar dominio, intervalos de crecimiento y decrecimiento y extremos locales de f. b) Hallar (si las hay) las asíntotas horizontales y verticales de
Tema 10 Aplicaciones de la derivada Matemáticas II 2º Bachillerato 1. ( x) 2x x. Hay dos puntos: (1, 2) y (1, 2)
Tema 0 Aplicaciones de la derivada Matemáticas II º Bachillerato TEMA 0 APLICACIONES DE LA DERIVADA RECTA TANGENTE Escribe e 0 EJERCICIO : la ecuación de la recta tangente a la curva f en 0. Ordenada del
Funciones Racionales y Asíntotas
Funciones Racionales y Carlos A. Rivera-Morales Precálculo II Funciones Racionales y Tabla de Contenido 1 2 3 Verticales y Horizontales Funciones Racionales y : Contenido Discutiremos: qué es una función
Tema 2 Resolución de EcuacionesNo Lineales
Tema 2 Resolución de Ecuaciones No Lineales E.T.S.I. Informática Indice Introducción 1 Introducción 2 Algoritmo del método de Bisección Análisis del 3 4 5 6 Algoritmo de los métodos iterativos Interpretación
FUNCIONES y = f(x) ESO3
Las correspondencias entre conjunto de valores o magnitudes se pueden expresar de varias formas: con un enunciado, con una tabla, con una gráfica, o con una fórmula o expresión algebraica o analítica.
ESTUDIO Y REPRESENTACIÓN GRÁFICA DE FUNCIONES
ESTUDIO Y REPRESENTACIÓN GRÁFICA DE FUNCIONES 1. Sea f : (0, + ) definida como f () = Ln a) Probar que la función derivada f es decreciente en todo su dominio. b) Determinar los intervalos de crecimiento
Cálculo en varias variables
Cálculo en varias variables Dpto. Matemática Aplicada Universidad de Málaga Resumen Límites y continuidad Funciones de varias variables Límites y continuidad en varias variables 1 Límites y continuidad
Teorema del valor medio
Práctica 6 - Parte 1 Teorema del valor medio El teorema del valor medio para derivadas (o teorema de Lagrange) es un resultado central en la teoría de funciones reales. Este teorema relaciona valores de
f( x) = ( x)2 + 11 x + 5 = 0 = x2 + 11 = 0 = No hay solución y = 0 + 11 0 + 5 = 11
1. y = x + 11 x + 5 a) ESTUDIO DE f: 1) Dominio: Como es un cociente del dominio habrá que excluir los valores que anulen el denominador. Por tanto: x + 5 = 0 x = 5 ) Simetría: A simple vista, como el
REPRESENTACIÓN DE FUNCIONES
8 REPRESENTACIÓN DE FUNCIONES Página 86 Descripción de una gráfica. Copia en tu cuaderno los datos encuadrados en rojo. A partir de ellos y sin mirar la gráfica que aparece al principio, representa esta
1. Dominio, simetría, puntos de corte y periodicidad
Estudio y representación de funciones 1. Dominio, simetría, puntos de corte y periodicidad 1.1. Dominio Al conjunto de valores de x para los cuales está definida la función se le denomina dominio. Se suele
FUNCIONES. Función. π k π +, k } (los puntos que quitamos anulan el coseno). 2. tg x: {x / x =
Función FUNCIONES Es una relación entre dos magnitudes variables, de tal manera que a cada valor de la primera, llamada independiente, le corresponde un único valor de la segunda, llamada dependiente.
Problemas Tema 1 Solución a problemas de Repaso de 1ºBachillerato - Hoja 02 - Todos resueltos
página /9 Problemas Tema Solución a problemas de Repaso de ºBachillerato - Hoja 02 - Todos resueltos Hoja 2. Problema. Sea f x )=a x 3 +b x 2 +c x+d un polinomio que cumple f )=0, f ' 0)=2, y tiene dos
1.- Entre todos los triángulos rectángulos de 5 metros de hipotenusa, determina los catetos del de área máxima. Solución:
RELACIÓN DE PROBLEMAS DE SELECTIVIDAD DE ANÁLISIS. I Departamento de Matemáticas 1.- Entre todos los triángulos rectángulos de 5 metros de hipotenusa, determina los catetos del de área máxima. Función
[email protected]!!91.501.36.88!!28007!madrid!
CONTINUIDAD Y DERIVABILIDAD. TEOREMAS Y APLICACIONES DE LAS DERIVADAS 1.- junio 1994 Se sabe que y = f (x) e y = g (x) son dos curvas crecientes en x = a. Analícese si la curva y = f(x) g(x) ha de ser,
Una función f es derivable en un punto a de su dominio si existe el límite. f(x) f(a) Si f y g son derivables en a, entonces fg es derivable en a y
4. Derivabilidad 1 Una función f es derivable en un punto a de su dominio si existe el límite f (a) = lím x a f(x) f(a) x a f(a + h) f(a) = lím, h 0 h y es un número real. El número f (a) se denomina derivada
Ejercicios Resueltos de Derivadas y sus aplicaciones:
Ejercicios Resueltos de Derivadas y sus aplicaciones: 1.- Sea la curva paramétrica definida por, con. a) Halle. b) Para qué valor(es) de, la curva tiene recta tangente vertical? 2.- Halle para : a) b)
Funciones 1. D = Dom ( f ) = x R / f(x) R. Recuerda como determinabas los dominios de algunas funciones: x x
Funciones. DEFINICIÓN Y TERMINOLOGÍA.. Definición de función real de variable real. "Es toda correspondencia, f, entre un subconjunto D de números reales y R (o una parte de R), con la condición de que
MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas
Universidad de Cádiz Departamento de Matemáticas MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Tema Representación gráfica de funciones reales de una variable real Elaborado
x 2 + 1, si x 0 1 x 2 si x < 0 e x, si x > 0 x si 0 x < 2 f(x) = x + 2 si 2 x < 3 2x 1 si 3 x < 4 tgx, 0 < x < π/4
CÁLCULO. Curso 2003-2004. Tema 7. Derivabilidad.. Estudiar la continuidad y la derivabilidad de las funciones: {, si 0 (a) e, si > 0 2 +, si > 0 (b), si = 0 2. Dada la función (c) 2 si < 0 e, si > 0 2
Resumen Tema 3: Derivadas. Concepto. Propiedades. Cálculo de derivadas. Aplicaciones.
Resumen Tema 3: Derivadas. Concepto. Propiedades. Cálculo de derivadas. Aplicaciones. 0.. Concepto de derivada. Definición. Sea f : S R R, a (b, c) S. Decimos que f es derivable en a si existe: f(x) f(a)
Ejercicios para el Examen departamental
Departamento de Física Y Matemáticas Ejercicios para el Examen departamental 1ª Parte M. en I.C. J. Cristóbal Cárdenas O. 15/08/2011 Ejercicios para el examen departamental de Cálculo 1 primera parte A
REPRESENTACIÓN DE FUNCIONES
REPRESENTACIÓN DE FUNCIONES Página 5 REFLEXIONA Y RESUELVE Descripción de una gráfica Copia en tu cuaderno los datos encuadrados en rojo. A partir de ellos, y sin mirar la gráfica que aparece al principio,
FUNCIÓN REAL, LIMITES Y FUNCIONES CONTINUAS.
FUNCIÓN REAL, LIMITES Y FUNCIONES CONTINUAS. FUNCIÓN. Es toda aplicación entre dos conjuntos A y B formados ambos por números. f A --------> B Al conjunto A se le llama campo de existencia de la función
Matemáticas para estudiantes de Química
Matemáticas para estudiantes de Química PROYECTO EDITORIAL BIBLIOTECA DE QUÍMICAS Director: Carlos Seoane Prado Catedrático de Química Orgánica Universidad Complutense de Madrid Matemáticas para estudiantes
Aplicaciones de la derivada
CAPÍTULO 8 Aplicaciones de la derivada 8. Máimos mínimos locales Si f. 0 / f./ para cada cerca de 0, es decir, en un intervalo abierto que contenga a 0, diremos que f alcanza un máimo local o un máimo
TEMA 2: DERIVADA DE UNA FUNCIÓN
TEMA : DERIVADA DE UNA FUNCIÓN Tasa de variación Dada una función y = f(x), se define la tasa de variación en el intervalo [a, a +h] como: f(a + h) f(a) f(a+h) f(a) y se define la tasa de variación media
Para la oblicua hacemos lo mismo, calculamos el límite en el menos infinito : = lim. 1 ( ) = = lim
) Sea la función: f(x) = ln( x ): a) Dar su Dominio y encontrar sus asíntotas verticales, horizontales y oblicuas. b) Determinar los intervalos de crecimiento y decrecimiento, los máximos y mínimos, los
GUÍA DE LA UNIDAD FUNCIONES : DERIVADAS
Funciones Límites Derivadas Aplicaciones Gráficas C ontenidos Idea de Función. Elementos notables de la gráfica de una función. Funciones lineales. Función definida por intervalos. Función Valor Absoluto.
Polinomios de Taylor.
Tema 7 Polinomios de Taylor. 7.1 Polinomios de Taylor. Definición 7.1 Recibe el nombre de polinomio de Taylor de grado n para la función f en el punto a, denotado por P n,a, el polinomio: P n,a (x) = f(a)
MATEMÁTICAS 2º DE BACHILLERATO
MATRICES 1. Matrices y tipos de matrices 2. Operaciones con matrices 3. Producto de matrices 4. Matriz traspuesta 5. Matriz inversa 6. Rango de matrices DETERMINANTES 7. Determinantes de orden 2 y 3 8.
3.4 Concavidad y el criterio de la segunda derivada
90 CAPÍTULO 3 Aplicaciones de la derivada 3.4 Concavidad el criterio de la segunda derivada Determinar intervalos sobre los cuales una función es cóncava o cóncava. Encontrar cualesquiera puntos de infleión
Problemas Tema 4 Solución a problemas de Repaso y Ampliación 1ª Evaluación - Hoja 02 - Problemas 2, 4, 5, 6, 7, 8, 10
página 1/20 Problemas Tema 4 Solución a problemas de Repaso y Ampliación 1ª Evaluación - Hoja 02 - Problemas 2, 4, 5, 6, 7, 8, 10 Hoja 2. Problema 2 Resuelto por Carmen Jiménez Cejudo (diciembre 2014)
Guía de algunas Aplicaciones de la Derivada
Guía de algunas Aplicaciones de la Derivada 1.1. Definiciones Básicas. Recordemos que : 1. Recta Tangente y Normal La ecuación de la recta tangente a la curva y = en el punto P = (x 0, y 0 ) es de la forma:
x = 0, la recta tangente a la gráfica de f (x)
CÁLCULO DIFERENCIAL JUNIO 004 1. Sea la función e y = estúdiese su monotonía, etremos relativos y asíntotas. (Solución: Es derivable en todos los puntos ecepto en =0. Creciente si < 0. No tiene asíntotas
Profesorado de Nivel Medio y Superior en Biología Matemática - 1º Cuatrimestre Año 2013 FUNCIÓN CUADRÁTICA
Matemática - º Cuatrimestre Año 0 FUNCIÓN CUADRÁTICA Hemos definido anteriormente la función lineal como una función f: R R de la forma f()a+b con a R y b R, que se representa en el plano mediante una
( ) m normal. UNIDAD III. DERIVACIÓN Y APLICACIONES FÍSICAS Y GEOMÉTRICAS 3.8. Aplicaciones geométricas de la derivada
UNIDAD III. DERIVACIÓN Y APLICACIONES FÍSICAS Y GEOMÉTRICAS 3.8. Aplicaciones geométricas de la derivada Dirección de una curva Dado que la derivada de f (x) se define como la pendiente de la recta tangente
10. LIMITES DE FUNCIONES
10. LIMITES DE FUNCIONES Definición de límite La función no está definida en el punto x = 1 ya que se anula el denominador. Para valores próximos a x = 1 tenemos Taller matemático 1/12 Definición de límite
INDICE Prefacio 1 Preliminares del cálculo: funciones y limites teoremas escogidos con demostraciones formales
INDICE Prefacio XIII 1 Preliminares del cálculo: funciones y limites 1 1.1. Qué es el calculo? 3 1.1.1. el limite: la paradoja de Zenón 5 1.1.2. la derivada: el problema de la tangente 6 1.1.3. la integral:
26 Apuntes de Matemáticas II para preparar el examen de la PAU
6 Apuntes de Matemáticas II para preparar el examen de la PAU Unidad. Funciones.Continuidad TEMA FUNCIONES. CONTINUIDAD. 1. Definición de Continuidad. Tipos de discontinuidades 3. Continuidad de las funciones
TEMA 1: Cálculo Diferencial de una variable
TEMA 1: Cálculo Diferencial de una variable Cálculo para los Grados en Ingeniería EPIG - UNIOVI Curso 2010-2011 Los números Naturales I Los números Naturales N = f1, 2, 3, g I Principio de inducción Supongamos
5 Demostrar cada una de las siguientes afirmaciones empleando la definición de
Hallar el dominio de las siguientes funciones: x 3 a) x +ln(x ) b) ln x + 6 x + c) x x d) ln x x + e) cos x + ln(x 5π) + 8π x Graficar la función sen(x π ). Hallar para que valores de x es 3 Hallar las
UNIDAD 2: LÍMITES DE FUNCIONES.CONTINUIDAD = 3 2
UNIDAD 2: LÍMITES DE FUNCIONES.CONTINUIDAD 1.- Límites en el Infinito: lim x + f(x) = L Se dice que el límite de f (x) cuando x tiende a + es L ϵ Ɽ, si podemos hacer que f(x) se aproxime a L tanto como
f: D IR IR x f(x) v. indep. v. dependiente, imagen de x mediante f, y = f(x). A x se le llama antiimagen de y por f, y se denota por x = f -1 (y).
TEMA 8: FUNCIONES. 8. Función real de variable real. 8. Dominio de una función. 8.3 Características de una función: signo, monotonía, acotación, simetría y periodicidad. 8.4 Operaciones con funciones:
ANÁLISIS DE FUNCIONES RACIONALES
ANÁLISIS DE FUNCIONES RACIONALES ( x 9) Dada la función f( x) = x 4 DETERMINE: Dominio, asíntotas, intervalos de crecimiento, intervalos de concavidad, extremos relativos y puntos de inflexión, representar
TEMA 12 INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES 12.1 CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO
TEMA DERIVADAS Y APLICACIONES MATEMÁTICAS I º Bac TEMA INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES. CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO TASA DE VARIACIÓN MEDIA Deinición Se llama tasa de variación
Teórico: Semestre: I Práctico: Código: Créditos: 3. Horas Trabajo Estudiante: 128
PROGRAMAS DE:: CIIENCIIAS BÁSIICAS E IINGENIIERÍÍAS DEPARTAMENTO DE MATEMÁTIICAS Y ESTADÍÍSTIICA CONTENIIDOS PROGRAMÁTIICOS POR UNIIDADES DE APRENDIIZAJJE Curso: Cálculo I Teórico: Semestre: I Práctico:
4. Resolución de indeterminaciones: la regla de L Hôpital.
GRADO DE INGENIERÍA AEROESPACIAL. CURSO. Lección. Funciones y derivada. 4. Resolución de indeterminaciones: la regla de L Hôpital. Sean f y g dos funciones derivables en un intervalo abierto I R y sea
= 1. x = 3: Lím = Asíntota vertical en x = 3: = 0 ; No se anula nunca. Punto de corte con OY es (0, 3) 3 x
Modelo 4. Problema A.- (Calificación máima: puntos) 4 si Se considera la función real de variable real f ( ) si > a) Determínense las asíntotas de la función y los puntos de corte con los ejes. a. Asíntotas
Límites y continuidad de funciones reales de variable real
Límites y continuidad de funciones reales de variable real Álvarez S., Caballero M.V. y Sánchez M. a M. [email protected], [email protected], [email protected] Índice 1. Definiciones 3 2. Herramientas 10 2.1. Funciones
Práctica 4 Límites, continuidad y derivación
Práctica 4 Límites, continuidad y derivación En esta práctica utilizaremos el programa Mathematica para estudiar límites, continuidad y derivabilidad de funciones reales de variable real, así como algunas
