Curso Completo de Electrónica Digital
|
|
|
- María Mercedes Vicenta Rodríguez Padilla
- hace 8 años
- Vistas:
Transcripción
1 CURSO Curso Completo de Electrónica Digital Departamento de Electronica y Comunicaciones Universidad Pontifica de Salamanca en Madrid Prof. Juan González Gómez 4.5. Análisis de circuitos combinacionales Por análisis entendemos lo contrario de diseño. Al diseñar partimos de unas especificaciones, obtenemos una tabla de verdad o una función booleana, la simplificamos y la implementamos con puertas lógicas. En el análisis partimos de un circuito y tendremos que obtener bien la tabla de verdad, bien la expresión booleana, lo que nos permitirá analizar si el circuito era el más óptimo o nos permitirá hacer una re-implementación de dicho circuito utilizando otra tecnología. Si el circuito tiene pocas entradas, cuatro o menos, lo mejor es hacer la tabla de verdad. Para realizarla tomaremos puntos intermedios en el circuito, que incluiremos también en la propia tabla. Iremos rellenando el valor de estos puntos intermedios hasta obtener el valor de la función. Y como siempre, lo mejor es ver ejemplos. Ejemplo 1: Obtener la tabla de verdad del siguiente circuito:
2 El problema se puede hacer de varias maneras. Y ese suele ser uno de los problemas. Qué camino escojo para obtener la tabla de verdad?. Por un lado podemos obtener la expresión de F, pasando las puertas lógicas a operandos del Algebra de Boole y luego obtener la tabla de verdad.o podemos obtener directamente la tabla de verdad. Sea cual sea el camino elegido, lo primero que haremos será tomar puntos intermedios: seleccionamos las salidas de las puertas lógicas y les asignamos una variable booleana: En este circuito hemos tomado dos puntos intermedios, el a y el b. Si decidimos obtener F usando el Algebra de Boole, la expresión que obtenemos es: Y ahora la representaríamos en una tabla de verdad. Sin embargo, suele ser más sencillo obtener la tabla de verdad directamente del diseño y luego aplicar karnaugh para obtener la expresión más simplificada de F, si fuese necesario. En la tabla de verdad dibujaremos nuevas columnas en las que aparecen los puntos intermedios, que nos permitirán ir anotando los cálculos intermedios para obtener F más fácilmente. La tabla de verdad sin rellenar es:
3 Y ahora vamos columna por columna, rellenando la información. Comenzaremos por la columna a. Hay que hacer la NAND de B y C. Para no confundirnos, nos dibujamos la tabla NAND para dos variables: y nos fijamos en que sólo vale 0 cuando ambas variables son 1. Recorremos las filas de B y C buscando el caso en el que B=1 y C=1, y anotamos un 0. Para el resto de casos a= 1. Nos queda lo siguiente: Se ha marcado con negrita los dos casos en los que B=1 y C=1. Para el resto de casos no hemos tenido que pensar, se puede rellenar de forma directa. Este método nos permite obtener las tablas de verdad de una manera muy rápida y cometiendo muy pocos errores. Continuemos con la siguiente columna. En este caso hay que rellenar una columna con el producto entre B y A. Nuevamente nos fijamos en la tabla de la operación AND y vemos que el resultado sólo vale 1 cuando B=1 y A=1. Para el resto de casos se tendrá 0 :
4 Y por último ya podemos obtener el valor de F, aplicando una operación OR a la columna a con la b. Por la definición de la operación OR (mirando su tabla), sabemos que sólo vale 0 cuando ambos operandos son 0. Buscamos ese caso en la tabla y en el resto de filas ponemos un 1. La tabla final es: Aunque no los pide el enunciado del ejercicio, vamos a obtener la expresión más simplificada de F, usando Karnagh, y la vamos a comparar con la expresión F que antes obtuvimos. El diagrama de Karnaugh es muy sencillo de obtener a partir de la tabla de verdad, puesto que sólo un 0. Pintamos este 0 en su casilla correspondiente (A=0, B=1 y C=1) y el resto de casillas valdrán 1 :
5 Podemos hacer los siguientes grupos: De los que obtenemos la expresión más simplificada de F: Vemos que está más simplificada que la expresión inicial que obtuvimos aplicando el Algebra de Boole Resumen Todo circuito digital está constituido en su interior por circuitos combinacionales y/o circuitos secuenciales. Estos últimos son capaces de almacenar información. En este capítulo hemos trabajado con circuitos combinaciones, en los que sus salidas dependen directamente de las entradas, y no son capaces de almacenar información ni recordar cuáles fueron las entradas anteriores. Para la construcción de los circuitos combinacionales, se emplean las puertas lógicas, que permiten realizar electrónicamente las operaciones del Algebra de Boole. Las puertas lógicas básicas con AND, OR y NOT, pero también existen otras puertas lógicas que se usan mucho: NAND, NOR y XOR. Cualquier circuito combinacional se puede construir a partir de las puertas básicas, combinándolas adecuadamente. Sin embargo, también es posible implementar circuitos utilizando sólo puertas NAND, o sólo puertas NOR. Las puertas lógicas se encuentran encapsuladas en un circuito integrado. Esto se denomina tecnología TTL. También es posible utilizar otras tecnologías para la construcción de circuitos digitales, como son los dispositivos lógicos programables o las FPGA s. El diseño de un circuito combinacional es sencillo. A partir de unas especificaciones se obtiene la tabla de verdad de las salidas del circuito, y utilizando el método de simplificación de Karnaugh obtendremos la función más simplificada. Las funciones así obtenidas se podrán implementar de diversas maneras, entre las que hemos visto, su implementación usando puertas básicas, sólo puertas NAND, o sólo puertas NOR.
6 Como ejemplo práctico, hemos diseñado un circuito combinacional que actúa de cerebro de un Microbot, controlándolo de manera que siga una línea negra sobre un fondo blanco. Finalmente hemos visto cómo se analizan los circuitos, obteniendo sus tablas de verdad o ecuaciones booleanas a partir de las puertas lógicas Ejercicios Ejercicio 1: Obtener las expresiones booleanas de las salidas de los siguientes circuitos (no hay que simplificar ni operar estas expresiones): Circuito 1: Circuito 2: Circuito 3:
7 Ejercicio 2: Implementar las siguientes función, utilizando cualquier tipo de puertas lógicas, sabiendo que todas las funciones están simplificadas al máximo. Ejercicio 3: Implementar sólo con puertas NAND Ejercicio 4: Implementar sólo con puertas NOR Ejercicio 5: 1. Implementar con cualquier tipo de puertas lógicas 2. Implementar sólo con puertas NAND 3. Implementar sólo con puertas NOR 4. Aplicar la propiedad distributiva e implementar con cualquier tipo de puertas lógicas 5. En qué circuito se utilizan el menor número de puertas? Capítulo 5 Circuitos MSI (1): Multiplexores y demultiplexores 5.1. Introducción Los circutios MSI son los que están constituidos por un número de puertas lógicas comprendidos entre 12 y 100 (ver apartado 4.2.4). En este capítulo veremos una serie de circuitos combinaciones que se utilizan mucho en electrónica digital y que son la base para la creación de diseños más complejos. Aunque se pueden diseñar a partir de puertas lógicas, estos circuitos se pueden tratar como componentes, asignándoles un símbolo, o utilizando una cierta nomenclatura.
8 Los circuitos que veremos son los siguientes: Multiplexores y demultiplexores Codificadores y decodificadores Comparadores Lo más importante es comprender para qué sirven, cómo funcionan y que bits de entrada y salida utilizan. Estos circuitos los podríamos diseñar perfectamente nosotros, puesto que se trata de circuitos combinacionales y por lo tanto podemos aplicar todo lo aprendido en el capítulo 4. Figura 5.1: Simitud entre un multiplexor y un sistema de agua de una granja Conceptos Un Multiplexor es un circuito combinacional al que entran varios canales de datos, y sólo uno de ellos, el que hallamos seleccionado, es el que aparece por la salida. Es decir, que es un circuito que nos permite SELECCIONAR que datos pasan a través de dicho componente. Vamos a ver un ejemplo NO electrónico. Imaginemos que hay dos tuberías (canales de datos) por el que circulan distintos fluidos (datos). Una transporta agua para regar y la otra agua potable. Estas tuberías llegan a una granja, en la cual hay una única manguera por la que va a salir el agua (bien potable o bien para regar), según lo que seleccione el granjero posicionando la llave de paso en una u otra posición. En la figura 5.1 se muestra un esquema. Las posiciones son la 0 para el agua potable y 1 para el agua de regar. Moviendo la llave de paso, el granjero puede seleccionar si lo que quiere que salga por la manguera es agua potable, para dar de beber al ganado, o agua para regar los cultivos. Según cómo se posicione esta llave de paso, en la posición 0 ó en la 1, seleccionamos una tubería u otra.
9 Pero por qué sólo dos tuberías?. Porque es un ejemplo. A la granja podrían llegar 4 tuberías. En este caso el granjero tendría una llave de paso con 4 posiciones, como se muestra en la figura 5.2. Esta llave se podría poner en 4 posiciones distintas para dar paso a la tubería 0, 1, 2 ó 3. Obsérvese que sólo pasa una de las tuberías en cada momento, y sólo una!. Hasta que el granjero no vuelva a cambiar la llave de paso no se seleccionará otra tubería. Con este ejemplo es muy fácil entender la idea de multiplexor. Es como una llave de paso, que sólo conecta uno de los canales de datos de entrada con el canal de datos de salida. Ahora en vez de en tuberías, podemos pensar en canales de datos, y tener un esquema como el que se muestra en la figura 5.3, en la que hay 4 canales de datos, y sólo uno de ellos es seleccionado por el multiplexor para llegar a la salida. En general, en un multiplexor tenemos dos tipos de entradas: Figura 5.2: Sistema de agua de 4 tuberías Figura 5.3: Un multiplexor que selecciona entre 4 canales de datos
10 Figura 5.4: Dos multiplexores de 4 canales de entrada Entradas de datos: (Las tuberías en el ejemplo). Entrada de selección: Indica cuál de las entradas se ha seleccionado (posición de la Llave de paso). Continuará... Nota de Radacción: El lector puede descargar este capítulo y capítulos anteriores del curso desde la sección Artículos Técnicos en el sitio web de EduDevices ( )
Curso Completo de Electrónica Digital
CURSO Curso Completo de Electrónica Digital Departamento de Electronica y Comunicaciones Universidad Pontifica de Salamanca en Madrid Prof. Juan González Gómez Capítulo 5 Circuitos MSI (1): Multiplexores
circuitos digitales números binario.
CIRCUITOS DIGITALES Vamos a volver a los circuitos digitales. Recordemos que son circuitos electrónicos que trabajan con números, y que con la tecnología con la que están realizados, estos números están
Curso Completo de Electrónica Digital
CURSO Curso Completo de Electrónica Digital Departamento de Electronica y Comunicaciones Universidad Pontifica de Salamanca en Madrid Prof. Juan González Gómez 4.3. Diseño de circuitos combinacionales
ALGEBRA DE BOOLE. Curso Completo de Electrónica Digital. Capítulo La operación CURSO
CURSO Curso Completo de Electrónica Digital Departamento de Electronica y Comunicaciones Universidad Pontifica de Salamanca en Madrid Prof. Juan González Gómez Capítulo 3 ALGEBRA DE BOOLE Continuación...
Curso Completo de Electrónica Digital
CURSO Curso Completo de Electrónica Digital Departamento de Electronica y Comunicaciones Universidad Pontifica de Salamanca en Madrid Prof. Juan González Gómez Capítulo 3 ALGEBRA DE BOOLE Continuación...
Codificadores, Decodificadores y Comparadores...
CURSO Curso Completo de Electrónica Digital Departamento de Electrónica y Comunicaciones Universidad Pontifica de Salamanca en Madrid Prof. Juan González Gómez Capítulo 6 Codificadores, Decodificadores
Curso Completo de Electrónica Digital
CURSO Curso Completo de Electrónica Digital Departamento de Electronica y Comunicaciones Universidad Pontifica de Salamanca en Madrid Prof. Juan González Gómez Capítulo 4 CIRCUITOS COMBINACIONALES 4.1.
CIRCUITOS MULTIPLEXORES Y DEMULTIPLEXORES
Oscar Ignacio Botero Henao. CIRCUITOS MULTIPLEXORES Y DEMULTIPLEXORES MULTIPLEXOR (MUX) Un Multiplexor (MUX) es un circuito combinacional al que entran varios canales de datos, y sólo salen los datos del
Curso Completo de Electrónica Digital. 3.7. Simplificación de funciones booleanas
CURSO Curso Completo de Electrónica Digital Departamento de Electronica y Comunicaciones Universidad Pontifica de Salamanca en Madrid Prof. Juan González Gómez Capítulo 3 ALGEBRA DE BOOLE Continuación...
TEMA 3 BLOQUES COMBINACIONALES.
TEMA 3 BLOQUES COMBINACIONALES. Objetivos. Describir la diferencia entre circuitos combinacionales y secuenciales. Interpretar la función de un multiplexor, un demultiplexor, un codificador y un decodificador.
Circuitos Combinatorios
UNIDAD 5 Circuitos Combinatorios Introducción a la unidad Los circuitos combinatorios o circuitos combinacionales transforman un conjunto de entradas en un conjunto de salidas de acuerdo con una o más
IMPLEMENTACIÓN DE CIRCUITOS COMBINACIONALES
IMPLEMENTACIÓN DE CIRCUITOS COMBINACIONALES SIMPLIFICACIÓN DE FUNCIONES LÓGICAS Para implementar mediante un circuito digital formado por puertas lógicas una función lógica el primer paso consiste en realizar
Tema 3. 2 Sistemas Combinacionales
Tema 3. 2 Sistemas Combinacionales Índice Circuitos combinacionales: concepto, análisis y síntesis. Métodos de simplificación de funciones lógicas. Estructuras combinacionales básicas Multiplexores Demultiplexores
TEMA 7 ELECTRÓNICA DIGITAL: LÓGICA COMBINACIONAL
TEMA 7 ELECTRÓNICA DIGITAL: LÓGICA COMBINACIONAL 11 1) Cuántas funciones de conmutación diferentes se pueden definir con 3 variables binarias? a) 8. b) 9. c) depende del problema en concreto. d) 256. 2)
UNIDAD EDUCATIVA FISCOMISIONAL DON BOSCO
UNIDAD EDUCATIVA FISCOMISIONAL DON BOSCO NOMBRE DEL/LA ESTUDIANTE: RESULTADO ASIGNATURA: ELECTRÓNICA DIGITAL GRADO / CURSO: 2do ET ACTIVIDAD Preparatorio y Guía de práctica TEMA: Sistema de vigilancia
Tema 9. SISTEMAS COMBINACIONALES PROGRAMABLES SISTEMAS COMBINACIONALES PROGRAMABLES NO UNIVERSALES
Fundamentos de Computadores. Sistemas Combinacionales Programables. T9-1 Tema 9. SISTEMAS COMBINACIONALES PROGRAMABLES INDICE: INTRODUCCIÓN CLASIFICACION DE LOS SCP SISTEMAS COMBINACIONALES PROGRAMABLES
Arquitectura de Computadoras 2015 Práctico 03. Práctico 3. Álgebra de Boole. Método de Karnaugh. Circuitos lógicos combinatorios.
Práctico 3 Álgebra de Boole. Método de Karnaugh. Circuitos lógicos combinatorios. Objetivo Conocer y entrenarse en las técnicas para la construcción de circuitos combinatorios de mediano porte. Conocer
Tabla 5.2 Compuertas básicas A B A B A B
Compuertas lógicas Un bloque lógico es una representación simbólica gráfica de una o más variables de entrada a un operador lógico, para obtener una señal determinada o resultado. Los símbolos varían de
LECCIÓN Nº 02 FUNCIONES DE LOGICA COMBINACIONAL (PARTE 1)
LECCIÓN Nº 02 FUNCIONES DE LOGICA COMBINACIONAL (PARTE 1) 1. CONVERSORES DE CODIGO La disponibilidad de una gran variedad de códigos para los mismos elementos discretos de información origina el uso de
TEMA 1. Sistemas Combinacionales.
TEMA. Sistemas Combinacionales.. Introducción a los sistemas digitales. Familias lógicas (2-20) 2. Definición de circuito combinacional (2-25) 3. Funciones combinacionales. Simplificación e implementación
Bloques funcionales combinacionales. Bloques para el encaminamiento y/o transferencia de datos
Bloques para el encaminamiento y/o transferencia de datos Multiplexor Demultiplexor Decodificador Codificador Bloques para el procesamiento de datos Comparador Bloques para la generación de funciones booleanas
Puertas Lógicas. Contenidos. 1. Puertas lógicas básicas. Introducción.
1. Puertas lógicas básicas. Introducción. Las puertas lógicas son circuitos electrónicos capaces de realizar operaciones lógicas básicas. Por ejemplo, para realizar la operación producto utilizamos un
Unidad 3: Circuitos digitales.
A-1 Appendix A - Digital Logic Unidad 3: Circuitos digitales. Diapositivas traducidas del libro Principles of Computer Architecture Miles Murdocca and Vincent Heuring Appendix A: Digital Logic A-2 Appendix
Circuitos combinacionales. Funciones integradas
Circuitos combinacionales. Funciones integradas Salvador Marcos González [email protected] Funciones integradas Introducción La introducción en el diseño de sistemas digitales de circuitos MSI (media
PROBLEMAS TECNOLOGÍA INDUSTRIAL II. CONTROL DIGITAL
PROBLEMAS TECNOLOGÍA INDUSTRIAL II. CONTROL DIGITAL 1. 2. 3. 4. 5. 6. a) Convierta el número (5B3) 16 al sistema decimal b) Convierta el número (3EA) 16 al sistema binario c) Convierta el número (235)
IES PALAS ATENEA. DEPARTAMENTO DE TECNOLOGÍA. 4º ESO ELECTRÓNICA DIGITAL
ELECTRÓNICA DIGITAL 1.- La Información Cuando una señal eléctrica (Tensión o Intensidad), varía de forma continua a lo largo del tiempo, y puede tomar cualquier valor en un instante determinado, se la
plicación de los circuitos SUMADOR DIBITAL S C
plicación de los circuitos ógicos A B SUMADOR DIBITAL S C Aplicaciones de los circuitos lógicos Algunas aplicaciones elementales como los circuitos aritméticos digitales y los codificadores y decodificadores,
FUNDAMENTOS DE COMPUTADORES INGENIERÍA TÉCNICA INFORMÁTICA DE GESTIÓN
FUNDAMENTOS DE COMPUTADORES INGENIERÍA TÉCNICA INFORMÁTICA DE GESTIÓN LISTADO DE PRÁCTICAS CURSO 2005/2006 Practicas de Fundamentos de Computadores (05/06) 2 Práctica 1 Construcción de Funciones Lógicas
Compuertas Lógicas, Algebra Booleana
Compuertas Lógicas, Algebra Booleana Representación de números negativos Herramientas para conversión y operaciones aritméticas Evaluación BIN DEC DEC Revisión Evaluación Compuertas lógicas Algebra Booleana
ELECTRÓNICA DIGITAL 1. INTRODUCCIÓN. SEÑALES ANALÓGICAS Y DIGITALES.
1 ELECTRÓNICA DIGITAL 1. INTRODUCCIÓN. SEÑALES ANALÓGICAS Y DIGITALES. Podemos dividir la electrónica en dos grandes campos: la electrónica analógica y la electrónica digital, según el tipo de señales
Organización de Computadoras
Organización de Computadoras SEMANA 1 UNIVERSIDAD NACIONAL DE QUILMES Qué vimos? Sistema Binario Interpretación Representación Aritmética Sistema Hexadecimal Hoy! Lógica proposicional Compuertas lógicas:
Circuitos Electrónicos Digitales E.T.S.I. Telecomunicación Universidad Politécnica de Madrid
Circuitos Electrónicos Digitales E.T.S.I. Telecomunicación Universidad Politécnica de Madrid Álgebra de conmutación y simplificación de funciones lógicas Álgebra Booleana. Análisis de circuitos combinacionales.
Organización del Computador 1 Lógica Digital 1: álgebra de Boole y
Introducción Circuitos Bloques Organización del Computador 1 Lógica Digital 1: álgebra de Boole y compuertas Departamento de Computación Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires
Circuitos Digitales Avanzados
Circuitos Digitales Avanzados M.C. Jorge E. Ibarra Esquer [email protected] Contenido Circuitos secuenciales con dispositivos MSI Redes iterativas Circuitos para operaciones aritméticas Dispositivos programables
Compuertas Lógicas. Sergio Stive Solano Sabié. Agosto de 2012 MATEMÁTICA. Sergio Solano. Compuertas lógicas NAND, NOR, XOR y XNOR
XOR y Lógicas Sergio Stive Solano Agosto de 2012 XOR y Lógicas Sergio Stive Solano Agosto de 2012 XOR y XOR y Con las puertas básicas podemos implementar cualquier función booleana. Sin embargo existen
Universidad Autónoma de Baja California
Universidad Autónoma de Baja California Facultad de Ingeniería, Arquitectura y Diseño Práctica de laboratorio Programa educativo Plan de estudio Clave asignatura Nombre de la asignatura Bioingeniería 2009-2
Organización del Computador 1 Lógica Digital 1: álgebra de Boole y compuertas
Organización del Computador 1 Lógica Digital 1: álgebra de Boole y compuertas Dr. Marcelo Risk Departamento de Computación Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires 2017 Lógica
Módulos combinacionales básicos. Tema 7
Módulos combinacionales básicos Tema 7 Qué sabrás al final del capítulo? Funcionamiento de los módulos combinacionales básicos: Codificadores Decodificadores Multiplexores Demultiplexores Implementación
Algebra de Boole: Teoremas
Teorema 1: A + A = A Teorema 2: A A = A Teorema 3: A + 0 = A Teorema 4: A 1 = A Teorema 5: A 0 = 0 Teorema 6: A + 1 = 1 Teorema 7: (A + B) = A B Teorema 8: (A B) = A + B Teorema 9: A + A B = A Teorema
Facultad de Ingeniería Eléctrica
Facultad de Ingeniería Eléctrica Laboratorio de Electrónica Ing. Luís García Reyes Práctica Número 10 Demultiplexores Materia: Laboratorio de Electrónica Digital I Objetivo: Comprobación del funcionamiento
FUNDAMENTOS DE COMPUTADORES Ejercicios U2: Circuitos Combinacionales
U_. Se desea transmitir las primeras cuatro letras del alfabeto de un ordenador ORD a otro ORD. En el primero las cuatro letras están codificadas en tres líneas X, X y X y en el segundo tan sólo en dos,
ELECTRÓNICA. Unidad 2: Circuitos combinacionales. Primera Parte
ELECTRÓNICA Unidad 2: Circuitos combinacionales Primera Parte Unidad 2: Circuitos combinacionales 1. Introducción a los circuitos combinacionales. 2. Codificadores y decodificadores. 2.1. Codificadores
Electrónica II. Carrera. Electromecánica EMM UBICACIÓN DE LA ASIGNATURA a) Relación con otras asignaturas del plan de estudios.
1. DATOS DE LA ASIGNATURA Nombre de la asignatura Carrera Clave de la asignatura Horas teoría-horas práctica-créditos Electrónica II Electromecánica EMM-0516 3-2-8 2. HISTORIA DEL PROGRAMA Lugar y fecha
4. Decodificadores. Aplicaciones
4. Decodificadores. Aplicaciones Objetivos: Diseñar e implementar un decodificador a partir de puertas lógicas. Estudiar los circuitos integrados que implementan sistemas digitales decodificadores. Utilizar
Operación de circuitos lógicos combinatorios.
Operación de circuitos lógicos combinatorios. 1.1 Analiza circuitos lógicos combinatorios, empleando sistemas y códigos numéricos. A. Identificación de las características de la electrónica digital. Orígenes
Asignaturas antecedentes y subsecuentes Diseño de Sistemas Digitales II
PROGRAMA DE ESTUDIOS Diseño de Sistemas Digitales I Área a la que pertenece: Área Sustantiva Profesional Horas teóricas: 3 Horas prácticas: 2 Créditos: 8 Clave: F0157 Asignaturas antecedentes y subsecuentes
TRAB.PRÁCTICO Nº 1: INTRODUCCIÓN A LAS TÉCNICAS DIGITALES
OBJETIVOS: A partir de los conocimientos adquiridos en las asignaturas previas ( Elementos de Informática y Elementos de Lógica y Matemática Discreta ) relacionados con el Álgebra de Boole y funciones
SIMPLIFICACION DE CIRCUITOS LOGICOS: DIAGRAMAS
SIMPLIFICACION DE CIRCUITOS LOGICOS: DIAGRAMAS Considerarla expresión booleana (AB +A B+ AB = y) Un diagrama lógico de esta expresión aparece en la Figura 5.1a. Observar que deben utilizarse seis puertas
ÍNDICE CAPÍTULO 1. CÓDIGOS DE NUMERACIÓN CAPÍTULO 2. ÁLGEBRA DE CONMUTACIÓN Y FUNCIONES LÓGICAS... 37
ÍNDICE LISTA DE FIGURAS... 7 LISTA DE TABLAS... 11 CAPÍTULO 1. CÓDIGOS DE NUMERACIÓN... 13 1.1. REPRESENTACIÓN DE LA INFORMACIÓN... 15 1.2. SISTEMAS DE NUMERACIÓN BINARIO NATURAL Y HEXADECIMAL... 18 1.3.
PRÁCTICA 1: SISTEMAS COMBINACIONALES
DEPARTAMENTO DE AUTOMÁTICA UAH GRADO EN INGENIERÍA INFORMÁTICA OBJETIVOS PRÁCTICA : SISTEMAS COMBINACIONALES ü ü Iniciar y familiarizar al alumno con su puesto de trabajo en el laboratorio y con el manejo
Octubre de Circuitos Logicos MARIA ALEJANDRA GUIO SAENZ ALEJANDRO SALAZAR ALEJANDRO BELTRAN CAMILO RIVERA SYGMA
Octubre de 2016 Circuitos Logicos MARIA ALEJANDRA GUIO SAENZ ALEJANDRO SALAZAR ALEJANDRO BELTRAN CAMILO RIVERA SYGMA CIRCUITOS LOGICOS 1) FUNCIONES DEL ÁLGEBRA BOOLEANA BINARIA Sea B = {0, 1} sea B n =
Fundamentos lógicos. Dpto. Ingeniería Eléctrica, Electrónica, Automática y Física Aplicada
Fundamentos lógicos Dpto. Ingeniería Eléctrica, Electrónica, Automática y Física Aplicada www.elai.upm.es Álgebra de Boole Buena parte de los automatismos responden a la lógica binaria Las variables binarias
TEMA 1 INTRODUCCIÓN A LOS SISTEMAS DIGITALES
TEMA 1 INTRODUCCIÓN A LOS SISTEMAS DIGITALES Exponer los conceptos básicos de los fundamentos de los Sistemas Digitales. Asimilar las diferencias básicas entre sistemas digitales y sistemas analógicos.
2. CONTROL DE CIRCUITOS ELECTRÓNICOS COLEGIO MALVAR DPTO. CCNN Y TECNOLOGÍA 3º ESO
2. CONTROL DE CIRCUITO ELECTRÓNICO COLEGIO MALVAR DPTO. CCNN Y TECNOLOGÍA 3º EO INTRODUCCIÓN Las agujas de un reloj, que giran representando el avance del tiempo, lo hacen en forma aná- loga (análogo =
Electrónica digital ELECTRICIDAD / ELECTRÓNICA IES BELLAVISTA
Electrónica digital ELECTRICIDAD / ELECTRÓNICA Circuitos electrónicos digitales Son circuitos diseñados para poder distinguir (en sus entradas) y para poder producir (en sus salidas) señales eléctricas
Paez Trujillo, Emiliano
I. INFORMACIÓN GENERAL CURSO : Circuitos Lógicos Digitales CÓDIGO : EL169 CICLO : 201701 CUERPO ACADÉMICO : Barriga Hoyle, Javier Augusto Paez Trujillo, Emiliano CRÉDITOS : 4 SEMANAS : 16 HORAS : 1 H (Laboratorio)
Sistemas secuenciales síncronos: síntesis desde codificación mínima.
Sistemas secuenciales síncronos: síntesis desde codificación mínima. Apellidos, nombre Martí Campoy, Antonio ([email protected]) Departamento Centro Informàtica de Sistemes i Computadors Escola Tècnica
DISEÑO CURRICULAR ELECTRÓNICA DIGITAL
DISEÑO CURRICULAR ELECTRÓNICA DIGITAL FACULTAD (ES) CARRERA (S) Ingeniería Computación y Sistemas. CÓDIGO HORAS TEÓRICAS HORAS PRÁCTICAS UNIDADES DE CRÉDITO SEMESTRE 116243 02 02 03 VI PRE-REQUISITO ELABORADO
Clase Nº 2. Ing. Manuel Rivas DEPARTAMENTO DE ELECTRÓNICA. Trimestre Enero - Marzo 2006
EC2175 Ingeniería Electrónica 2 Clase Nº 2 Ing. Manuel Rivas DEPARTAMENTO DE ELECTRÓNICA Trimestre Enero - Marzo 2006 Objetivos de aprendizaje Conocer las operaciones lógicas básicas: AND, OR y NOT Estudiar
PROGRAMA PROFESIONAL DE INGENIERÍA MECÁNICA SÍLABO SISTEMAS DIGITALES
1. DATOS INFORMATIVOS PROGRAMA PROFESIONAL DE INGENIERÍA MECÁNICA SÍLABO SISTEMAS DIGITALES Asignatura : Sistemas Digitales Código : 430731 Carrera Profesional : Ingeniería Mecánica Semestre Académico
CIRCUITOS COMBINACIONALES Y SECUENCIALES
CIRCUITOS COMBINACIONALES Y SECUENCIALES 1 CIRCUITOS COMBINACIONALES Y SECUENCIALES Los circuitos digitales son circuitos electrónicos que trabajan con números y con la tecnología con la que está realizados,
Introducción al álgebra de Boole. Operaciones lógicas básicas. Propiedades del álgebra de Boole. a b a+b
Introducción al álgebra de Boole Muchos componentes utilizados en sistemas de control, como contactores y relés, presentan dos estados claramente diferenciados (abierto o cerrado, conduce o no conduce).
Electrónica Digital. Ing. Javier Soto Vargas Ph.D. ECI TDDA(M) - Javier Soto 1
Electrónica Digital Ing. Javier Soto Vargas Ph.D. [email protected] ECI TDDA(M) - Javier Soto 1 Sistema Digital Manejo de elementos discretos de información. Elementos discretos: Señales eléctricas.
Sistemas Digitales I
UNIVERSIDAD INDUSTRIAL DE SANTANDER Sistemas Digitales I Taller No1 Profesor: Carlos A. Fajardo Mayo de 2015 Temas: Representación digital de los Datos, Algebra de Boole, Funciones Lógicas, Introducción
FUNDAMENTOS DE COMPUTADORES EJERCICIOS U1: Álgebra de Boole y Diseño Lógico
U1_1. Realizar las siguientes operaciones (verificar las respuestas en decimal) a) onvertir a binario natural los números decimales 321, 1462, 205, 1023, 1024, 135, 45 y 967 b) onvertir a decimal los números
PRÁCTICA 1: SISTEMAS COMBINACIONALES
DEPARTAMENTO DE AUTOMÁTICA UAH GRADO fdsfdsdfsdfsdf EN INGENIERÍA INFORMÁTICA OBJETIVOS Iniciar y familiarizar al alumno con su puesto de trabajo en el laboratorio y con el manejo de la instrumentación
Álgebra de Boole. Tema 5
Álgebra de Boole Tema 5 Qué sabrás al final del capítulo? Leyes y propiedades del Algebra de Boole Simplificar funciones utilizando el Algebra de Boole Analizar circuitos mediante Algebra de Boole y simplificarlos
Taller No. 6 Final Electrónica digital (Multiplexores y demultiplexores)
Taller No. 6 Final Electrónica digital (Multiplexores y demultiplexores) CONCEPTOS PREVIOS MULTIPLEXORES: Los multiplexores son circuitos combinacionales con varias entradas y una salida de datos, y están
Electrónica Digital: Sistemas Numéricos y Algebra de Boole
Electrónica Digital: Sistemas Numéricos y Algebra de Boole Profesor: Ing. Andrés Felipe Suárez Sánchez Grupo de Investigación en Percepción y Sistemas Inteligentes. Email: [email protected]
NOT. Ejemplo: Circuito C1
Métodos de diseño de circuitos digitales Sistemas combinacionales En un circuito combinacional los valores de las salidas dependen únicamente de los valores que tienen las entradas en el presente. Se construen
Taller #1: Logisim PARTE 1:
Universidad Central de Venezuela Facultad de Ciencias Escuela de Computación Organización y Estructura del Computador II Taller #1: Logisim Logisim es una herramienta de libre distribución para diseñar
CONTADORES Y SECUENCIADORES
Todos los derechos de propiedad intelectual de esta obra pertenecen en exclusiva a la Universidad Europea de Madrid, S.L.U. Queda terminantemente prohibida la reproducción, puesta a disposición del público
Prácticas Presenciales
PRÁCTICAS PRESENCIALES ELECTRÓNICA DIGITAL Prácticas Presenciales Electrónica Digital Área: Electrónica LUGAR DE CELEBRACIÓN Instalaciones de Fundación San Valero, en c/ Violeta Parra 9 50015 Zaragoza
Unidad Didáctica 6 Electrónica Digital 4º ESO
Unidad Didáctica 6 Electrónica Digital 4º ESO ELECTRÓNICA DIGITAL SEÑALES ELECTRICAS LÓGICA BINARIA CIRCUITOS INTEGRADOS DIGITALES DISEÑO DE CTOS. COMBINACIONALES Y CTOS. IMPRESOS TIPOS SISTEMAS DE NUMERACIÓN
GUIA DIDACTICA DE ELECTRONICA N º12 1. IDENTIFICACION ASIGNATURA GRADO PERIODO I.H.S. TECNOLOGIA ONCE CUARTO 6
1. IDENTIFICACION ASIGNATURA GRADO PERIODO I.H.S. TECNOLOGIA ONCE CUARTO 6 DOCENTE(S) DEL AREA:NILSON YEZID VERA CHALA COMPETENCIA: USO Y APROPIACION DE LA TECNOLOGIA NIVEL DE COMPETENCIA: INTERPRETATIVA
CURSO TECNOLOGÍA TECNOLOGÍA 4º ESO TEMA 6: Puertas lógicas. Tecnología 4º ESO Tema 6: Puertas lógicas Página 1
Tecnología 4º ESO Tema 6: Puertas lógicas Página 1 4º ESO TEMA 6: Puertas lógicas Tecnología 4º ESO Tema 6: Puertas lógicas Página 2 Índice de contenido 1. Puertas lógicas básicas...3 1.1. Puerta AND...4
1ª evaluación: 1: INTRODUCCIÓN A LOS SISTEMAS DIGITALES SISTEMAS DE NUMERACIÓN BINARIO OCTAL Y HEXADECIMAL CAMBIOS DE BASE
Electrónica digital Página 1 1ª evaluación: 1: 2: 3: 4: INTRODUCCIÓN A LOS SISTEMAS DIGITALES SISTEMAS DE NUMERACIÓN BINARIO OCTAL Y HEXADECIMAL CAMBIOS DE BASE ALGEBRA DE BOOLE POSTULADOS Y TEOREMAS PUERTAS
Descripción en VHDL de arquitecturas para implementar el algoritmo CORDIC
Anexo B Funciones booleanas El álgebra de Boole provee las operaciones las reglas para trabajar con el conjunto {0, 1}. Los dispositivos electrónicos pueden estudiarse utilizando este conjunto las reglas
Sistemas Combinacionales
Sistemas Combinacionales Tipos de Sistemas Digitales Puertas Lógicas Bloques Combinacionales Multiplexores Decodificadores/demultiplexores Decodificadores BCD a 7 segmentos Codificadores Comparadores Sumadores
Organización del Computador 1 Lógica Digital 1: álgebra de Boole y
Introducción Circuitos Bloques Organización del Computador 1 Lógica Digital 1: álgebra de Boole y compuertas Departamento de Computación Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires
