Curso Completo de Electrónica Digital
|
|
|
- Adolfo Jiménez Díaz
- hace 7 años
- Vistas:
Transcripción
1 CURSO Curso Completo de Electrónica Digital Departamento de Electronica y Comunicaciones Universidad Pontifica de Salamanca en Madrid Prof. Juan González Gómez Capítulo 5 Circuitos MSI (1): Multiplexores y demultiplexores Multiplexores y bits Hemos visto cómo a un multiplexor le llegan números por distintas entradas y según el número que le llegue por la entrada de selección, lo manda por la salida o no. Números!! Recordemos que los circuitos digitales sólo trabajan con números. Pero estos números, vimos que siempre vendrán expresados en binario y por tanto se podrán expresar mediante bits. Cuantos bits? Depende de lo grande que sean los números con los que se quiere trabajar. En el interior de los microprocesadores es muy normal encontrar multiplexores de 8 bits, que tienen varias entradas de datos de 8 bits. Pero se puede trabajar con multiplexores que tengan 4 bits por cada entrada, o incluso 2, o incluso 1bit. En la figura 5.4 se muestran dos multiplexores que tienen 4 entradas de datos. Por ello la entrada de selección tiene dos bits (para poder seleccionar entre los cuatro canales posibles). Sin embargo, en uno las entradas de datos son de 2 bits y en el otro de 1 bit.
2 Mirando el número de salidas, podemos conocer el tamaño de los canales de entrada. Así en los dos multiplexores de la figura 5.4, vemos que el de la izquierda tiene 2 bits de salida, por tanto sus canales de entrada son de 2 bits. El de la derecha tiene 1 bit de salida, por tanto los canales de 1 bit. Los multiplexores en lo que principalmente nos centraremos son los que tienen canales de 1 bit. A partir de ellos podremos construir multiplexores mayores, bien con un mayor número de canales de entrada o bien con un mayor número de bits por cada canal Multiplexores de 1 bit y sus expresiones booleanas Llamaremos así a los multiplexores que tienen canales de entrada de 1 bit, y por tanto sólo tienen un bit de salida. Estudiaremos estos multiplexores, comenzando por el más simple de todos, el que sólo tienen una entrada de selección. Multiplexores con una entrada de selección El multiplexor más simple es el que sólo tiene una entrada de selección, S, que permite seleccionar entre dos entradas de datos, según que Su aspecto es el siguiente: NOTA: En esta asignatura representaremos los multiplexores de igual que cualquier otro circuito, mediante una caja que tiene unas entradas y unas salidas. No obstante, el símbolo normalmente empleado es el siguiente:
3 _ Se S Cómo podemos expresar la función de salida F, usando el Algebra de Boole?. Existe una manera muy sencilla y que ya conocemos: hacer la tabla de verdad y obtener la función más simplificada. Construyamos la tabla de verdad. Lo primero que nos preguntamos es, Cuantas entradas tengo en este circuito?. En total hay tres entradas. Dos son de datos: y una es de selección: La tabla de verdad tendrá en total _ Para construir esta tabla de verdad sólo hay que entender el funcionamiento del multiplexor e ir caso por caso rellenando la tabla. Por ejemplo, qué ocurre si Aplicamos la definición de multiplexor. Puesto que está seleccionando la entrada de datos 0, es decir, la entrada Por tanto, lo que entre por la entrada será ignorado por el multiplexor. Si la entrada seleccionada es la la salida tendrá su mismo valor. Y puesto que entonces F =1. _ Si hacemos lo mismo para todos l os casos, tendremos la siguiente tabla de verdad:
4 _ La tabla se ha dividido en dos bloques, uno en el que y otro en el que En el primer bloque, se selecciona salida. para que se vea _ que son los mismos que hay a la En el bloque inferior, lo que se selecciona es y es lo que se obtiene por la salida. Apliquemos el método de Karnaugh para obtener la expresión más simplificada de F. El diagrama que se obtiene es el siguiente: (Se aconseja al lector que lo haga por su propia cuenta, sin mirar los apuntes, así le sirve además para practicar ) Obtenemos la siguiente expresión: Y si ahora escuchamos lo que la ecuación nos dice, veremos que tiene mucho sentido:
5 Es justo la definición de un multiplexor!! La salida toma el valor de una de las entradas, según el valor que tome la entrada de selección. En realidad, el multiplexor lo podríamos haber descrito de una manera más sencilla, y podríamos haber obtenido la ecuación de otra forma. Veamos cómo. La función F que describe el comportamiento de un multiplexor con una única entrada de selección, la podemos describir mediante la siguiente tabla: que lo que nos viene a decir es lo mismo que su ecuación: cuando multiplexor aparece el valor y cuando S=1, aparece el valor por la salida del Estamos considerando las variables _como parámetros y NO como variables de entrada del circuito y por tanto estamos considerando como si la función F sólo dependiese de la variable S, es decir, tenemos la función F(S). Cómo podemos obtener la ecuación del multiplexor a partir de esta tabla?: aplicando el teorema de expansión, que vimos en el apartado 3.4 obtenemos los siguiente: y F(1) es la salida del multiplexor cuando S=1, es decir, que cuando S=0, es la salida La ecuación del multiplexor es la siguiente: Que es la misma ecuación que habíamos obtenido por Karnaugh!! No se asuste el lector por los desarrollos teóricos. Lo importante es comprender cómo funcionan este tipo de multiplexores y cuál es la ecuación que los describe, independientemente de cómo la hallamos obtenido. Aquí, hemos obtenido la ecuación por dos métodos diferentes. Veremos que con los multiplexores de dos entradas de selección sólo lo podremos hacer por el segundo método.
6 Multiplexores con dos entradas de selección. El siguiente multiplexor en complejidad es el que tenga 2 entradas de selección, por lo que se podrá seleccionar hasta 4 entradas posibles. Habrá por tanto 4 entradas de datos. El circuito es como el siguiente: Hay 4 entradas de datos y 2 entradas de selección, en total 6 entradas. Ahora hacemos lo mismo que antes, construimos la tabla de verdad y aplicamos Karnaugh... pero... 6 variables? Hay que hacer una tabla que tenga una función de 6 variables!!! _ Y luego aplicar Karnaugh a Vemos que este método, aunque fácil, require muchas operaciones. Es un método ideal para que lo haga un ordenador!!. Nosotros obtendremos sus ecuaciones de otra manera diferente. Vamos a describir este multiplexor mediante la siguiente tabla:
7 que lo que nos está expresando es que la salida del multiplexor valdrá según el valor que tomen las variables de entrada _ Estamos considerando que la función F sólo depende de estas dos variables: 0 ó 1. son parámetros, es decir, valores constantes que pueden valer Si aplicamos el teorema de expansión a la función obtenemos lo siguiente: desarrollándola por Y si ahora aplicamos nuevamente el teorema de expansión a las funciones Y desarrollándolas por la variable Y ahora, si lo juntamos todo en una única expresión, tenemos: Cuando vale F(0,0)?, es decir, cuál es la salida del multiplexor cuando _ Por la definición de multiplexor, la salida será lo que venga por el canal 0, que es De la misma manera obtenemos que
8 Sustituyendo estos valores en la ecuación anterior y reordenándola un poco tenemos la expresión final para un multiplexor de dos entradas de selección: Olvidémonos ahora de cómo hemos obtenido esa ecuación. Lo importante es entenderla y saber utilizarla. Vamos a comprobar si efectivamente esta ecuación describe el funcionamiento de un multiplexor de 2 entradas de selección y 4 entradas de datos. Si sabemos por el comportamiento de un multiplexor que se seleccionará la Entrada para que aparezca por la salida. Vamos a comprobarlo. En la ecuación del multiplexor sustituimos Se deja como ejercicio el que se compruebe la ecuación para el resto de valores de las entradas de selección Demultiplexores Conceptos El concepto de demultiplexor es similar al de multiplexor, viendo las entradas de datos como salidas y la salida como entradas. En un multiplexor hay varias entradas de datos, y sólo una de ellas se saca por el canal de salida. En los demultiplexores hay un único canal de entrada que se saca por una de las múltiples salidas (y sólo por una!!!).
9 Si utilizamos el símil de la granja y las tuberías, podemos imaginar el siguiente escenario. Supongamos que ahora a la granja le llega una única tubería con agua, pero en el interior de la granja hay varias mangueras, cada una para limpiar una zona del establo o dar de beber a los animales de esa zona. Cómo sólo hay un granjero, sólo podrá usar una de las mangueras cada vez (el granjero no podrá usar a la vez dos mangueras, porque están en sitios diferentes!!). Para seleccionar qué manguera quiere usar en cada momento, hay una llave de paso, de manera que si la sitúa en una posición, el agua que viene por la entrada saldrá por la manguera 0, mientras que si la sitúa en la otra posición, el agua saldrá por la manguera 1 (ver figura 5.5) De la misma manera que en los multiplexores puede haber varias entradas, en los demultiplexores puede haber varias salidas. Por ejemplo en la figura 5.6 se muestra el mismo sistema de tuberías de la granja, pero ahora hay 4 mangueras, para llegar a 4 zonas distintas de la granja. Ahora el granjero tendrá que posicionar la llave de paso en una de las 4 posiciones posibles, para que el agua salga por la manguera seleccionada. Ya comprendemos cómo funcionan los demultiplexores. Si lo aplicamos al mundo de la electrónica, en vez de tuberías tendremos canales de datos. Habrá un único canal de entrada, por el que llegarán números, que saldrán sólo por uno de los canales de salida, el que tengamos seleccionado, como se muestra en la figura 5.7. En general en un demultiplexor tendremos: Una entrada de datos Figura 5.6: Sistema de agua de 4 mangueras
10 Figura 5.7: Un demultiplexor que selecciona entre 4 canales de datos Figura 5.8: Una alternativa para comunicar sistemas Una entrada de selección: que indica a cuál de las salidas se manda la entrada Varios canales de datos de salida. Sólo estará activo el que se haya seleccionado.
11 Juntando multiplexores y demultiplexores Vamos a ver una aplicación típica de los multiplexores y los demultiplexores. Imaginemos que tenemos 4 sistemas, que los llamaremos a,b,c y d, y que necesitan enviar información a otros 4 dispositivos A,B,C y D. La comunicación es uno a uno, es decir, el sistema a sólo envía información al sistema A, el b al B, el c al C y el d al D. Qué alternativas hay para que se produzca este envío de datos? Una posibilidad es obvia, y es la que se muestra en la figura Directamente se tiran cables para establecer los canales de comunicación. Pero esta no es la única solución. Puede ser que podamos tirar los 4 cables, porque sean muy caros o porque sólo haya un único cable que comunique ambas parte, y será necesario llevar por ese cable todas las comunicaciones. La solución se muestra en la figura 5.9. Vemos que los sismteas a, b, c y d se conectan a un multiplexor. Un circuito de control, conectado a las entradas de selección de este multiplexor, selecciona periódicamente los diferentes sistemas, enviando por la salida el canal correspondiente. Podemos ver que a la salida del multiplexor se encuentra la información enviada por los 4 sistemas. Se dice que esta información está multiplexada en el tiempo. Al final de esta línea hay un demultiplexor que realiza la función inversa. Un circuito de control selecciona periódicamente por qué salidas debe salir la información que llega por la entrada. Lo que hemos conseguido es que toda la información enviada por un sistema, llega a su homólogo en el extremo anterior, pero sólo hemos utilizado un único canal de datos. Figura 5.9: Uso de un multiplexor y demultiplexor para transmisión de datos por un único cable
12 Continuará... Nota de Radacción: El lector puede descargar este capítulo y capítulos anteriores del curso desde la sección Artículos Técnicos en el sitio web de EduDevices ( )
Curso Completo de Electrónica Digital
CURSO Curso Completo de Electrónica Digital Departamento de Electronica y Comunicaciones Universidad Pontifica de Salamanca en Madrid Prof. Juan González Gómez 4.5. Análisis de circuitos combinacionales
ALGEBRA DE BOOLE. Curso Completo de Electrónica Digital. Capítulo La operación CURSO
CURSO Curso Completo de Electrónica Digital Departamento de Electronica y Comunicaciones Universidad Pontifica de Salamanca en Madrid Prof. Juan González Gómez Capítulo 3 ALGEBRA DE BOOLE Continuación...
Curso Completo de Electrónica Digital
CURSO Curso Completo de Electrónica Digital Departamento de Electronica y Comunicaciones Universidad Pontifica de Salamanca en Madrid Prof. Juan González Gómez Capítulo 3 ALGEBRA DE BOOLE Continuación...
Codificadores, Decodificadores y Comparadores...
CURSO Curso Completo de Electrónica Digital Departamento de Electrónica y Comunicaciones Universidad Pontifica de Salamanca en Madrid Prof. Juan González Gómez Capítulo 6 Codificadores, Decodificadores
CIRCUITOS MULTIPLEXORES Y DEMULTIPLEXORES
Oscar Ignacio Botero Henao. CIRCUITOS MULTIPLEXORES Y DEMULTIPLEXORES MULTIPLEXOR (MUX) Un Multiplexor (MUX) es un circuito combinacional al que entran varios canales de datos, y sólo salen los datos del
Curso Completo de Electrónica Digital
CURSO Curso Completo de Electrónica Digital Departamento de Electronica y Comunicaciones Universidad Pontifica de Salamanca en Madrid Prof. Juan González Gómez 4.3. Diseño de circuitos combinacionales
Curso Completo de Electrónica Digital. 3.7. Simplificación de funciones booleanas
CURSO Curso Completo de Electrónica Digital Departamento de Electronica y Comunicaciones Universidad Pontifica de Salamanca en Madrid Prof. Juan González Gómez Capítulo 3 ALGEBRA DE BOOLE Continuación...
circuitos digitales números binario.
CIRCUITOS DIGITALES Vamos a volver a los circuitos digitales. Recordemos que son circuitos electrónicos que trabajan con números, y que con la tecnología con la que están realizados, estos números están
BLOQUE V. CONTROL Y PROGRAMACIÓN DE SISTEMAS AUTOMÁTICOS
Bloque V. Control y programación de sistemas automáticos pág. 1 Bloque V. Control y programación de sistemas automáticos pág. 2 BLOQUE V. CONTROL Y PROGRAMACIÓN DE SISTEMAS AUTOMÁTICOS 1. LA INFORMACIÓN
BLOQUE V. CONTROL Y PROGRAMACIÓN DE SISTEMAS AUTOMÁTICOS
Bloque V. Control y programación de sistemas automáticos pág. 1 BLOQUE V. CONTROL Y PROGRAMACIÓN DE SISTEMAS AUTOMÁTICOS 1. LA INFORMACIÓN BINARIA 1.1. Sistemas de numeración y códigos Def. Sistema de
Organización del Computador 1 Lógica Digital 1: álgebra de Boole y
Introducción Circuitos Bloques Organización del Computador 1 Lógica Digital 1: álgebra de Boole y compuertas Departamento de Computación Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires
UNIDAD EDUCATIVA FISCOMISIONAL DON BOSCO
UNIDAD EDUCATIVA FISCOMISIONAL DON BOSCO NOMBRE DEL/LA ESTUDIANTE: RESULTADO ASIGNATURA: ELECTRÓNICA DIGITAL GRADO / CURSO: 2do ET ACTIVIDAD Preparatorio y Guía de práctica TEMA: Sistema de vigilancia
TEMA 3 BLOQUES COMBINACIONALES.
TEMA 3 BLOQUES COMBINACIONALES. Objetivos. Describir la diferencia entre circuitos combinacionales y secuenciales. Interpretar la función de un multiplexor, un demultiplexor, un codificador y un decodificador.
Unidad 3: Circuitos digitales.
A-1 Appendix A - Digital Logic Unidad 3: Circuitos digitales. Diapositivas traducidas del libro Principles of Computer Architecture Miles Murdocca and Vincent Heuring Appendix A: Digital Logic A-2 Appendix
Organización del Computador 1 Lógica Digital 1: álgebra de Boole y compuertas
Organización del Computador 1 Lógica Digital 1: álgebra de Boole y compuertas Dr. Marcelo Risk Departamento de Computación Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires 2017 Lógica
EJERCICIOS TEMA 17: CIRCUITOS DIGITALES COMBINACIONALES
EJERCICIOS TEMA 17: CIRCUITOS DIGITALES COMBINACIONALES Ejercicio PAU Septiembre 2010/2011 a) Rellenamos la tabla de la verdad colocando salidas 1 en las posiciones indicadas: Posición a b c d f 0 0 0
Suma de productos Producto de sumas. Fundamentos de los Computadores Grado en Ingeniería Informática
2. Simplificación de funciones booleanas: as Método de Karnaugh aug Suma de productos Producto de sumas Fundamentos de los Computadores Grado en Ingeniería Informática Introducción Los circuitos digitales
TEMA 1. Sistemas Combinacionales.
TEMA. Sistemas Combinacionales.. Introducción a los sistemas digitales. Familias lógicas (2-20) 2. Definición de circuito combinacional (2-25) 3. Funciones combinacionales. Simplificación e implementación
Organización del Computador 1 Lógica Digital 1: álgebra de Boole y
Introducción Circuitos Bloques Organización del Computador 1 Lógica Digital 1: álgebra de Boole y compuertas Departamento de Computación Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires
Tema 3. 2 Sistemas Combinacionales
Tema 3. 2 Sistemas Combinacionales Índice Circuitos combinacionales: concepto, análisis y síntesis. Métodos de simplificación de funciones lógicas. Estructuras combinacionales básicas Multiplexores Demultiplexores
Dentro de un multiplexor hay que destacar tres tipos de señales: los datos de entrada, las entradas de control y la salida
LOS MULTIPLEXORES Vamos a estudiar, en éste capítulo, una serie de circuitos combinatorios relacionados con la transferencia de información; es decir, analizaremos la situación de tener varias señales
ELECTRÓNICA. Unidad 1: Fundamentos de Electrónica Digital 2ª Parte
ELECTRÓNICA Unidad 1: Fundamentos de Electrónica Digital 2ª Parte Operaciones con binario Suma: Ejemplo: 5 + 4 + 0 1 0 1 0 1 0 0 1 0 0 1 Operaciones con binario Resta: Ejemplo: 5-2 - 0 1 0 1 0 0 1 0 0
ELECTRÓNICA DIGITAL 1. INTRODUCCIÓN. SEÑALES ANALÓGICAS Y DIGITALES.
1 ELECTRÓNICA DIGITAL 1. INTRODUCCIÓN. SEÑALES ANALÓGICAS Y DIGITALES. Podemos dividir la electrónica en dos grandes campos: la electrónica analógica y la electrónica digital, según el tipo de señales
Sistemas Electrónicos Digitales
Sistemas Electrónicos Digitales Profesor: Carlos Herrera C. I. Unidad COMPUERTAS LOGICAS Las compuertas lógicas son dispositivos que operan con aquellos estados lógicos Binarios y que funcionan igual que
Circuitos Combinatorios
UNIDAD 5 Circuitos Combinatorios Introducción a la unidad Los circuitos combinatorios o circuitos combinacionales transforman un conjunto de entradas en un conjunto de salidas de acuerdo con una o más
Unidad Didáctica 6 Electrónica Digital 4º ESO
Unidad Didáctica 6 Electrónica Digital 4º ESO ELECTRÓNICA DIGITAL SEÑALES ELECTRICAS LÓGICA BINARIA CIRCUITOS INTEGRADOS DIGITALES DISEÑO DE CTOS. COMBINACIONALES Y CTOS. IMPRESOS TIPOS SISTEMAS DE NUMERACIÓN
Taller No. 6 Final Electrónica digital (Multiplexores y demultiplexores)
Taller No. 6 Final Electrónica digital (Multiplexores y demultiplexores) CONCEPTOS PREVIOS MULTIPLEXORES: Los multiplexores son circuitos combinacionales con varias entradas y una salida de datos, y están
Nombre del Plantel: Conalep Tehuacán 150. Nombre del módulo: Operación de Circuitos de Electrónicos. Apunte 3: Álgebra de Boole
www.zonaemec.tk Nombre del Plantel: Conalep Tehuacán 50 Nombre del módulo: Operación de Circuitos de Electrónicos Apunte 3: Álgebra de Boole Ing. Jonathan Quiroga Tinoco Grupo: 309 Carrera: P.T.B. en SOMA
EJERCICIOS TEMA 17: CIRCUITOS DIGITALES COMBINACIONALES
EJERCICIOS TEMA 17: CIRCUITOS DIGITALES COMBINACIONALES Ejercicio PAU Septiembre 2010/2011 a) Rellenamos la tabla de la verdad colocando salidas 1 en las posiciones indicadas: Posición a b c d f 0 0 0
Organización de Computadoras
Organización de Computadoras SEMANA 1 UNIVERSIDAD NACIONAL DE QUILMES Qué vimos? Sistema Binario Interpretación Representación Aritmética Sistema Hexadecimal Hoy! Lógica proposicional Compuertas lógicas:
Informática Técnica 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
SISTEMAS NUMÉRICOS Desde luego que todos estaremos de acuerdo si decimos que la primera 'operación' aritmética que realizó el hombre fue la de contar. La necesidad de contar, le llevó a idear un sistema
Arquitectura de Computadoras Circuitos Combinatorios Basadas en las Notas de Teórico Versión 1.0 del Dpto. de Arquitectura-InCo-FIng
Basadas en las Versión 1.0 del Dpto. de Arquitectura-InCo-FIng CIRCUITOS COMBINATORIOS 1 Introducción En este capítulo presentaremos los elementos básicos para la implementación en hardware de las funciones
Organización n del Computador 1. Lógica Digital 1 Algebra de Boole y compuertas
Organización n del Computador 1 Lógica Digital 1 Algebra de Boole y compuertas Representación n de la Información La computadoras necesitan almacenar datos e instrucciones en memoria Sistema binario (solo
CIRCUITOS ELECTRÓNICOS. EXAMEN FINAL. Problema 1 del Primer Parcial (Para todos los alumnos que tengan el 1p pendiente)
CIRCUITOS ELECTRÓNICOS. EXAMEN FINAL. Problema del Primer Parcial (Para todos los alumnos que tengan el p pendiente) En los modernos sistemas de audio multicanal, se ha convertido en un estándar el uso
Tema 3. Electrónica Digital
Tema 3. Electrónica Digital 1.1. Definiciones Electrónica Digital La Electrónica Digital es la parte de la Electrónica que estudia los sistemas en los que en cada parte del circuito sólo puede haber dos
Arquitectura de Computadoras 2015 Práctico 03. Práctico 3. Álgebra de Boole. Método de Karnaugh. Circuitos lógicos combinatorios.
Práctico 3 Álgebra de Boole. Método de Karnaugh. Circuitos lógicos combinatorios. Objetivo Conocer y entrenarse en las técnicas para la construcción de circuitos combinatorios de mediano porte. Conocer
El álgebra booleana fue estudiada por Pitágoras y George Boole.
ALGEBRA DE BOOLE Centro CFP/ES ALGEBRA DE BOOLE El álgebra booleana fue estudiada por Pitágoras y George Boole. Con el álgebra booleana, partiendo de una serie de sentencias lógicas iniciales verdaderas
Circuitos combinacionales. Funciones integradas
Circuitos combinacionales. Funciones integradas Salvador Marcos González [email protected] Funciones integradas Introducción La introducción en el diseño de sistemas digitales de circuitos MSI (media
PRÁCTICA 1: SISTEMAS COMBINACIONALES
DEPARTAMENTO DE AUTOMÁTICA UAH GRADO EN INGENIERÍA INFORMÁTICA OBJETIVOS PRÁCTICA : SISTEMAS COMBINACIONALES ü ü Iniciar y familiarizar al alumno con su puesto de trabajo en el laboratorio y con el manejo
Electrónica Digital. Ing. Javier Soto Vargas Ph.D. ECI TDDA(M) - Javier Soto 1
Electrónica Digital Ing. Javier Soto Vargas Ph.D. [email protected] ECI TDDA(M) - Javier Soto 1 Sistema Digital Manejo de elementos discretos de información. Elementos discretos: Señales eléctricas.
NOT. Ejemplo: Circuito C1
Métodos de diseño de circuitos digitales Sistemas combinacionales En un circuito combinacional los valores de las salidas dependen únicamente de los valores que tienen las entradas en el presente. Se construen
EL LENGUAJE DE LAS COMPUTADORAS
EL LENGUAJE DE LAS COMPUTADORAS AUTORÍA ANGEL MANUEL RUBIO ORTEGA TEMÁTICA ELECTRICIDAD, ELECTRÓNICA ETAPA ESO, BACHILLERATO Resumen Actualmente nos encontramos rodeados dispositivos digitales. Por ello
PRÁCTICA 1: SISTEMAS COMBINACIONALES
DEPARTAMENTO DE AUTOMÁTICA UAH GRADO fdsfdsdfsdfsdf EN INGENIERÍA INFORMÁTICA OBJETIVOS Iniciar y familiarizar al alumno con su puesto de trabajo en el laboratorio y con el manejo de la instrumentación
Lección 5: Porcentajes
Lección 5: Porcentajes En las lecciones anteriores estudiamos relaciones de proporcionalidad directa e inversa. En esta lección estudiaremos una relación de proporcionalidad directa especial: los porcentajes.
ARQUITECTURAS ESPECIALES
ARQUITECTURAS ESPECIALES EL - 337 Página Qué es un Multiplexor? EL - 337 Un multiplexor o MUX es un switch digital (interruptor digital) que conecta una de las entradas con su única salida. Desde el punto
Clase Nº 2. Ing. Manuel Rivas DEPARTAMENTO DE ELECTRÓNICA. Trimestre Enero - Marzo 2006
EC2175 Ingeniería Electrónica 2 Clase Nº 2 Ing. Manuel Rivas DEPARTAMENTO DE ELECTRÓNICA Trimestre Enero - Marzo 2006 Objetivos de aprendizaje Conocer las operaciones lógicas básicas: AND, OR y NOT Estudiar
ELECTRÓNICA. Unidad 2: Circuitos combinacionales. Primera Parte
ELECTRÓNICA Unidad 2: Circuitos combinacionales Primera Parte Unidad 2: Circuitos combinacionales 1. Introducción a los circuitos combinacionales. 2. Codificadores y decodificadores. 2.1. Codificadores
Ejercicios del bloque de Electrónica digital Tecnología Industrial II 2016/2017
Se desea diseñar un circuito lógico que detecte los números primos comprendidos entre 0 y 15, representados en binario natural. (No considere el cero y el 1 como primos a efectos de realizar la tabla de
Facultad de Ingeniería Eléctrica
Facultad de Ingeniería Eléctrica Laboratorio de Electrónica Ing. Luís García Reyes Práctica Número 10 Demultiplexores Materia: Laboratorio de Electrónica Digital I Objetivo: Comprobación del funcionamiento
Tabla 5.2 Compuertas básicas A B A B A B
Compuertas lógicas Un bloque lógico es una representación simbólica gráfica de una o más variables de entrada a un operador lógico, para obtener una señal determinada o resultado. Los símbolos varían de
DISEÑO DE CIRCUITOS SECUENCIALES
DISEÑO DE CIRCUITOS SECUENCILES Circuitos Digitales EC1723 Diseño de circuitos secuenciales (1) partir del enunciado del problema, construir el diagrama de estados y/o la tabla de estados y salidas. Determinar
Mapas de Karnaugh. Apunte N 4
Mapas de Karnaugh Apunte N 4 M é todos de Simplificación Para determinar cuándo una expresión booleana es la más simple de todas las equivalentes a ella, se adopta el criterio de expresión minimizada o
Lógica Digital - Circuitos Combinatorios
Lógica Digital - Circuitos Combinatorios Expositor: Esteban Pontnau Primer Cuatrimestre de 2012 Departamento de Computación, FCEyN,Universidad de Buenos Aires. 3 de abril de 2012 Objetivos de la clase
OCW-V.Muto Sistemas de numeración Cap. III CAPITULO III. SISTEMAS DE NUMERACION 1. REPRESENTACION DE LA INFORMACION
CAPITULO III. SISTEMAS DE NUMERACION 1. REPRESENTACION DE LA INFORMACION El sistema de numeración usado habitualmente es el decimal, de base 10, que no es adecuado para ser manejado por el ordenador, fundamentalmente
Otros circuitos digitales. Actividad de apertura. Circuitos lógicos secuenciales.
Otros circuitos digitales En esta unidad aprenderás: El funcionamiento de los codificadores y decodificadores Multiplexor y Demultiplexor Convertidor Digital-Análogo y Análogo-Digital UNIDAD 4 Actividad
TEMA 1 INTRODUCCIÓN A LOS SISTEMAS DIGITALES
TEMA 1 INTRODUCCIÓN A LOS SISTEMAS DIGITALES Exponer los conceptos básicos de los fundamentos de los Sistemas Digitales. Asimilar las diferencias básicas entre sistemas digitales y sistemas analógicos.
4. Decodificadores. Aplicaciones
4. Decodificadores. Aplicaciones Objetivos: Diseñar e implementar un decodificador a partir de puertas lógicas. Estudiar los circuitos integrados que implementan sistemas digitales decodificadores. Utilizar
Circuitos Combinatorios
Circuitos Combinatorios Primer Cuatrimestre de 2010 Departamento de Computación, FCEyN,Universidad de Buenos Aires. 7 de abril de 2010 Objetivos de la clase de hoy Repasar los operadores y propiedades
CURSO: ELECTRÓNICA DIGITAL UNIDAD 1: COMPUERTAS LÓGICAS - TEORÍA PROFESOR: JORGE ANTONIO POLANÍA
CURSO: ELECTRÓNICA DIGITAL UNIDAD 1: COMPUERTAS LÓGICAS - TEORÍA PROFESOR: JORGE ANTONIO POLANÍA Las compuertas lógicas son bloques que realizan las operaciones básicas de la aritmética binaria del álgebra
FUNDAMENTOS DE COMPUTADORES Ejercicios U2: Circuitos Combinacionales
U_. Se desea transmitir las primeras cuatro letras del alfabeto de un ordenador ORD a otro ORD. En el primero las cuatro letras están codificadas en tres líneas X, X y X y en el segundo tan sólo en dos,
INDICE 1. Conceptos Introductorias 2. Sistemas Numéricos y Códigos 3. Compuertas Lógicas y Álgebra Booleana 4. Circuitos Lógicos Combinatorios
INDICE Prefacio XIII 1. Conceptos Introductorias 1 1.1. Representaciones numéricas 3 1.2. Sistemas digitales y analógicos 4 1.3. Sistemas de números digitales 6 1.4. Representación de cantidades binarios
PROGRAMA DE ESTUDIO Área de Formación : Carlos González Zacarías Fecha de elaboración: 21 de Mayo de 2010 Fecha de última actualización:
PROGRAMA DE ESTUDIO Programa Educativo: Área de Formación : Licenciado en Informática Administrativa General Sistemas digitales Horas teóricas: 2 Horas prácticas: 4 Total de Horas: 6 Total de créditos:
GUIA DIDACTICA DE ELECTRONICA N º12 1. IDENTIFICACION ASIGNATURA GRADO PERIODO I.H.S. TECNOLOGIA ONCE CUARTO 6
1. IDENTIFICACION ASIGNATURA GRADO PERIODO I.H.S. TECNOLOGIA ONCE CUARTO 6 DOCENTE(S) DEL AREA:NILSON YEZID VERA CHALA COMPETENCIA: USO Y APROPIACION DE LA TECNOLOGIA NIVEL DE COMPETENCIA: INTERPRETATIVA
Circuitos Lógicos Combinatorios. Ing. Jorge Manrique 2004 Sistemas Digitales 1
Circuitos Lógicos Combinatorios Ing. Jorge Manrique 2004 Sistemas Digitales 1 Circuitos Combinatorios Un circuito combinatorio es un arreglo de compuertas lógicas con un conjunto de entradas y salidas.
GUIA 4: ALGEBRA DE BOOLE
GUIA 4: ALGEBRA DE BOOLE En 1854 George Boole introdujo una notación simbólica para el tratamiento de variables cuyo valor podría ser verdadero o falso (variables binarias) Así el álgebra de Boole nos
Taller #1: Logisim PARTE 1:
Universidad Central de Venezuela Facultad de Ciencias Escuela de Computación Organización y Estructura del Computador II Taller #1: Logisim Logisim es una herramienta de libre distribución para diseñar
EJERCICIO No. 8 ALGEBRA BOOLEANA NOMBRE:
EJERCICIO No. 8 ALGEBRA BOOLEANA NOMBRE: Algebra de Boole El álgebra de Boole es una forma adecuada y sistemática de expresar y analizar las operaciones de los circuitos lógicos. El álgebra de Boole son
CURSO: 2º BACHILLERATO MATERIA: TECNOLOGÍA INDUSTRIAL II
CURSO: ILLERATO MATERIA: TECNOLOGÍA INDUSTRIAL II BLOQUES DE CONTENIDO Bloque I Materiales partimos de los aprendizajes del curso anterior para continuar profundizando en la manera de determinar las propiedades
RECEPTOR OPTIMO PARA TRANSMISION DE PULSOS POR CANALES AWGN
RECEPTOR OPTIMO PARA TRANSMISION DE PULSOS POR CANALES AWGN El receptor óptimo se determina bajo las siguientes premisas: Se asume que a la entrada del receptor llega una señal que es el pulso modificado
Práctica 2: Lógica Digital - Combinatorios
Organización del Computador I DC - UBA Segundo Cuatrimestre de 2009 Álgebra booleana Propiedades Álgebra booleana Compuertas - NOT Propiedades A NOT A 0 1 1 0 Compuertas - AND Propiedades A B A AND B 0
Universidad Autónoma de Baja California
Universidad Autónoma de Baja California Facultad de Ingeniería, Arquitectura y Diseño Práctica de laboratorio Programa educativo Plan de estudio Clave asignatura Nombre de la asignatura Bioingeniería 2009-2
Teoría de Circuitos: teoremas de circuitos
Teoría de Circuitos: teoremas de circuitos Pablo Monzón Instituto de Ingeniería Eléctrica (IIE) Facultad de Ingeniería-Universidad de la República Uruguay Primer semestre - 2017 Contenido 1 Teorema de
CODIFICADORES. Cuando solo una de las entradas está activa para cada combinación de salida, se le denomina codificador completo.
Circuitos Combinacionales MSI CODIFICADORES Son los dispositivos MSI que realizan la operación inversa a la realizada por los decodificadores. Generalmente, poseen 2 n entradas y n salidas. Cuando solo
APUNTES DE CATEDRA: SISTEMAS DE NUMERACION - REPRESENTACION INTERNA DE NUMEROS Y CARACTERES
Cátedra de COMPUTACION Carreras: Licenciatura en Matemática Profesorado en Matemática Profesora: Mgr. María del Carmen Varaldo APUNTES DE CATEDRA: SISTEMAS DE NUMERACION - REPRESENTACION INTERNA DE NUMEROS
Teoría de Circuitos: teoremas de circuitos
Teoría de Circuitos: teoremas de circuitos Pablo Monzón Instituto de Ingeniería Eléctrica (IIE) Facultad de Ingeniería-Universidad de la República Uruguay Primer semestre - 2016 Contenido 1 Teorema de
Selectividad Septiembre 2007 SEPTIEMBRE 2007
Bloque A SEPTIEMBRE 2007 1.- Cada instalación de una televisión analógica necesita 10 metros de cable y cada instalación de televisión digital necesita 20 metros. Cada televisión analógica necesita 20
TEST DE RAZONAMIENTO NUMÉRICO. Consejos generales
TEST DE RAZONAMIENTO NUMÉRICO Consejos generales 1 I. INTRODUCCIÓN En lo relativo a los cálculos de porcentajes, es fundamental tener en cuenta que los porcentajes, en realidad, son referencias abstractas,
Titulación: Grado en Ingeniería Informática Asignatura: Fundamentos de Computadores
Titulación: Grado en Ingeniería Informática Asignatura: Fundamentos de Computadores Bloque : Sistemas combinacionales Tema 4: Algebra de Boole y funciones lógicas Pablo Huerta Pellitero ÍNDICE Bibliografía
CODIFICADORES Y DECODIFICADORES
CODIFICADORES Y DECODIFICADORES Centro CFP/ES CODIFICADORES Un elemento cuyo código de entrada tiene más bits que el código de salida, a este elemento le llamaremos codificador. Si tenemos tres salidas,
Asignaturas antecedentes y subsecuentes Diseño de Sistemas Digitales II
PROGRAMA DE ESTUDIOS Diseño de Sistemas Digitales I Área a la que pertenece: Área Sustantiva Profesional Horas teóricas: 3 Horas prácticas: 2 Créditos: 8 Clave: F0157 Asignaturas antecedentes y subsecuentes
