Lógica Digital - Circuitos Combinatorios
|
|
|
- Benito Fidalgo Marín
- hace 8 años
- Vistas:
Transcripción
1 Lógica Digital - Circuitos Combinatorios Expositor: Esteban Pontnau Primer Cuatrimestre de 2012 Departamento de Computación, FCEyN,Universidad de Buenos Aires. 3 de abril de 2012
2 Objetivos de la clase de hoy Repasar los operadores y propiedades del algebra de boole vistas en la teórica y utilizarlas para implementar circuitos combinatorios simples.
3 Propiedades Suma de productos Producto de sumas Compuertas lógicas Repasemos... Operadores lógicos: Pueden ser completamente descriptos usando su tabla de verdad. AND, OR, NOT Operadores básicos NAND, NOR Operadores universales Expresiones booleanas: Combinación de operadores lógicos y variables booleanas. Ej. F (X, Y, Z) = X + Y Z. Orden de precedencia en la evaluación NOT > AND > OR. Dos expresiones son iguales sii tienen la misma tabla de verdad. Identidades booleanas: Reducciones utilizando propiedades o leyes. X YZ + X Y Z + XZ == X Y + XZ
4 Propiedades Suma de productos Producto de sumas Compuertas lógicas Propiedades Identidad 1.A = A 0 + A = A Nulo 0.A = A = 1 Idempotencia A.A = A A + A = A Inverso A.A = 0 A + A = 1 Conmutatividad A.B = B.A A + B = B + A Asociatividad (A.B).C = A.(B.C) (A + B) + C = A + (B + C) Distributividad A + B.C = (A + B).(A + C) A.(B + C) = A.B + A.C Absorción A.(A + B) = A A + A.B = A De Morgan (A.B) = A + B (A + B) = A.B No existe una forma mecánica y facil para reducir una función, hay que practicar. De esto se deduce que no hay una única forma de escribir una función lógica, surge la necesidad de las formas canónicas.
5 Propiedades Suma de productos Producto de sumas Compuertas lógicas Formas Canónicas La idea es, dada una tabla de verdad escribir una expresión booleana que la represente. Las dos técnicas que vamos a ver son Suma de Productos y Producto de Sumas. No necesariamente vamos a obtener la expresión Óptima (o sea la que use menos operadores).
6 Propiedades Suma de productos Producto de sumas Compuertas lógicas Suma de productos Por cada valor de la función que sea 1 escribimos un término utilizando todas las variables unidas por operadores AND, de forma tal que el término también valga 1. Luego combinamos todo con operadores OR. Probemos con un ejemplo sencillo: A B F(A,B) F (A, B) = AB + AB (Es el operador OR-Excusivo o XOR)
7 Propiedades Suma de productos Producto de sumas Compuertas lógicas Producto de sumas Por cada valor de la función que sea 0 escribimos un término utilizando todas las variables unidas por operadores OR, de forma tal que el término también valga 0. Luego combinamos todo con operadores AND. Usando el ejemplo anterior: A B F(A,B) F (A, B) = (A + B)(A + B)
8 Propiedades Suma de productos Producto de sumas Compuertas lógicas Compuertas lógicas Una compuerta es un dispositivo electrónico que produce un resultado en base a un conjunto de valores de entrada. Se corresponden exactamente con los operadores que vimos antes.
9 Propiedades Suma de productos Producto de sumas Compuertas lógicas Compuerta NOT A NOT A
10 Propiedades Suma de productos Producto de sumas Compuertas lógicas Compuerta AND A B A AND B
11 Propiedades Suma de productos Producto de sumas Compuertas lógicas Compuerta OR A B A OR B
12 Propiedades Suma de productos Producto de sumas Compuertas lógicas Compuerta XOR u OR-EXCLUSIVA A B A XOR B
13 Propiedades Suma de productos Producto de sumas Compuertas lógicas Compuerta NOR A B A NOR B
14 Propiedades Suma de productos Producto de sumas Compuertas lógicas Compuerta NAND A B A NAND B
15 Propiedades Suma de productos Producto de sumas Compuertas lógicas CEDAR Logic Simulator
16 Ejercicio 1 Demostrar si la siguiente igualdad entre expresiones booleanas es verdadera o falsa: (X + Y ) = (X.Y ).Z + X.Z + (Y + Z)
17 Recordemos las propiedades Identidad 1.A = A 0 + A = A Nulo 0.A = A = 1 Idempotencia A.A = A A + A = A Inverso A.A = 0 A + A = 1 Conmutatividad A.B = B.A A + B = B + A Asociatividad (A.B).C = A.(B.C) (A + B) + C = A + (B + C) Distributividad A + B.C = (A + B).(A + C) A.(B + C) = A.B + A.C Absorción A.(A + B) = A A + A.B = A De Morgan (A.B) = A + B (A + B) = A.B
18 Una solución: (X.Y ).Z + X.Z + (Y + Z) De Morgan (X.Y ).Z + X.Z + Y.Z Distributiva (X.Y ).Z + (X + Y ).Z De Morgan (X + Y ).Z + (X + Y ).Z Distributiva (X + Y ).(Z + Z) Inverso (X + Y ).1 Identidad X + Y Listo!, probamos que es igual
19 Ejercicio 2 Dada la siguiente tabla de verdad: A B C F Escribir una expresión booleana que la represente. Implementarla utilizando a lo sumo una compuerta AND, una compuerta OR y una compuerta NOT.
20 Recordemos las propiedades Identidad 1.A = A 0 + A = A Nulo 0.A = A = 1 Idempotencia A.A = A A + A = A Inverso A.A = 0 A + A = 1 Conmutatividad A.B = B.A A + B = B + A Asociatividad (A.B).C = A.(B.C) (A + B) + C = A + (B + C) Distributividad A + B.C = (A + B).(A + C) A.(B + C) = A.B + A.C Absorción A.(A + B) = A A + A.B = A De Morgan (A.B) = A + B (A + B) = A.B
21 Expresamos como una suma de productos: (A.B.C) + (A.B.C) + (A.B.C) Como nos restringen la cantidad de compuertas tenemos que simplificar. (A.B.C) + (A.B.C) + (A.B.C) Distributiva ((A.B) + (A.B) + (A.B)).C Distributiva ((A.B) + (A + A).B).C Inverso ((A.B) + 1.B).C Identidad ((A.B) + B).C Distributiva ((A + B).(B + B)).C Inverso ((A + B),1).C Identidad (A + B).C Bingo!
22 Para que nos sirvió esto? Implementación de la primer expresión.
23 Para que nos sirvió esto? Implementación de la segunda expresión.
24 Ejercicio 3 Armar un inversor de 3 bits. Este circuito invierte o no tres entradas de acuerdo al valor de una cuarta que actúa como control. En otras palabras, un inversor de k-bits es un circuito de k+1 entradas (e 1,..., e k, e k+1 ) y k salidas (s 1,..., s k ) que funciona del siguiente modo: Si e k+1 = 1, entonces s i = not(e i ) para todo i < k + 1 Si e k+1 = 0, entonces s i = e i para todo i < k + 1 Ejemplo: inversor(0110)=011 inversor(1001)=011
25 Solución: Tabla de verdad (Continua) e 1 e 2 e 3 e 4 s 1 s 2 s
26 Solución: Tabla de verdad (Continuación) Cómo quedarían las ecuaciones? e 1 e 2 e 3 e 4 s 1 s 2 s
27 Ecuaciones para S 1, S 2 y S 3 s 1 = (e 1.e 2.e 3.e 4 ) + (e 1.e 2.e 3.e 4 ) + (e 1.e 2.e 3.e 4 ) + (e 1.e 2.e 3 e 4 ) + (e 1.e 2.e 3.e 4 ) + (e 1.e 2.e 3.e 4 ) + (e 1.e 2.e 3.e 4 ) + (e 1.e 2.e 3.e 4 ) s 2 = (e 1.e 2.e 3.e 4 ) + (e 1.e 2.e 3.e 4 ) + (e 1.e 2.e 3.e 4 ) + (e 1.e 2.e 3 e 4 ) + (e 1.e 2.e 3.e 4 ) + (e 1.e 2.e 3.e 4 ) + (e 1.e 2.e 3.e 4 ) + (e 1.e 2.e 3.e 4 ) s 3 = (e 1.e 2.e 3.e 4 ) + (e 1.e 2.e 3.e 4 ) + (e 1.e 2.e 3.e 4 ) + (e 1.e 2.e 3 e 4 ) + (e 1.e 2.e 3.e 4 ) + (e 1.e 2.e 3.e 4 ) + (e 1.e 2.e 3.e 4 ) + (e 1.e 2.e 3.e 4 )
28 Primero pensar como invertir un solo bit e i e (k+1) s i Hay que usar (P.Q) + (P.Q) que es una XOR ( ) P Q = (P.Q) + (P.Q)
29 Comparemos con la ecuación de S 1 (e 1.e 2.e 3.e 4 ) + (e 1.e 2.e 3.e 4 ) + (e 1.e 2.e 3.e 4 ) + (e 1.e 2.e 3 e 4 ) + (e 1.e 2.e 3.e 4 ) + (e 1.e 2.e 3.e 4 ) + (e 1.e 2.e 3.e 4 ) + (e 1.e 2.e 3.e 4 ) e 1 ((e 2.e 3.e 4 ) + (e 2.e 3.e 4 ) + (e 2.e 3.e 4 ) + (e 2.e 3.e 4 )) + e 1 ((e 2.e 3.e 4 ) + (e 2.e 3.e 4 ) + (e 2.e 3.e 4 ) + (e 2.e 3.e 4 ) e 1 (((e 2.e 3 ) + (e 2.e 3 ) + (e 2.e 3 ) + (e 2.e 3 ))e 4 ) + e 1 (((e 2.e 3 ) + (e 2.e 3 ) + (e 2.e 3 ) + (e 2.e 3 ))e 4 ) e 1 ((e 2 (e 3 + e 3 ) + e 2 (e 3 + e 3 ))e 4 ) + e 1 ((e 2 (e 3 + e 3 ) + e 2 (e 3 + e 3 ))e 4 ) e 1 ((e 2 + e 2 )e 4 ) + e 1 ((e 2 + e 2 )e 4 ) (e 1.e 4 ) + (e 1.e 4 )
30 Solución:
31 Ejercicio 4 Armar un circuito de 3 bits. Este deberá mover a izquierda o a derecha los bits de entrada de acuerdo al valor de una de ellas que actúa como control. En otras palabras, un shift izq-der de k-bits es un circuito de k+1 entradas (e k,..., e 0 ) y k salidas (s k 1,..., s 0 ) que funciona del siguiente modo: Si e k = 1, entonces s i = e i 1 para todo 0 < i < k y s 0 = 0 Si e k = 0, entonces s i = e i+1 para todo 0 i < k 1 y s k 1 = 0 Ejemplo: shift lr(1,011)=110 shift lr(0,011)=001 shift lr(1,100)=000 shift lr(1,101)=010
32 Ejercicio 4 Solución:
33 Ejercicio 5 Armar un sumador de un solo bit utilizando solo una compuerta AND y una compuerta XOR.
34 Solución: X Y C out Sum
35 Solución: X Y C out Sum
36 Ejercicio 6 Teniendo dos sumadores simples y solo una compuerta a elección, arme un sumador completo de un bit. (Recordar que un sumador completo también tiene entrada de carry)
37 X Y C in Sum C out
38 Solución:
39 Ejercicio 7 Usando sumadores completos y un tipo de compuerta a elección armar un circuito que convierta un entero en su inverso aditivo (el inverso aditivo de un número n es el número x tal que x + n = 0). Los enteros se representan con notación complemento a 2 de 4 bits. En esta reprepresentación el -8 no tiene inverso aditivo, no hace falta contemplar el caso aparte. Ejemplo: inversoad(1001)=0111 inversoad(0110)=1010 (HINT: Para los que NO HICIERON el ejercicio 24 de la práctica 1, el inverso aditivo de un número en complemento a 2 se obtiene invirtiendo bit a bit y sumando 1)
40 Solución: (Pensar como sería la solución usando sumadores simples.)
41 Cosas que tendríamos que haber entendido y tips Operadores y expresiones booleanas, reducciones utilizando propiedades. Dada una tabla de verdad escribir una expresión booleana que la represente. Implementar las expresiones utilizando compuertas lógicas. RECOMENDACIONES Sean cuidadosos cuando dibujan circuitos: Que quede claro cuando un cable esta conectado a otro y cuando lo saltea (pongan un circulito en la unión o una curva cuando no quieren que lo toque). Con todo esto pueden hacer la primera parte de la práctica 2.
Circuitos Combinatorios
Circuitos Combinatorios Expositor: Esteban Pontnau Autor: Luis Agustín Nieto Primer Cuatrimestre de 2011 Departamento de Computación, FCEyN,Universidad de Buenos Aires. 5 de abril de 2011 Objetivos de
Organización del Computador 1 Lógica Digital 1: álgebra de Boole y
Introducción Circuitos Bloques Organización del Computador 1 Lógica Digital 1: álgebra de Boole y compuertas Departamento de Computación Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires
Organización del Computador 1 Lógica Digital 1: álgebra de Boole y compuertas
Organización del Computador 1 Lógica Digital 1: álgebra de Boole y compuertas Dr. Marcelo Risk Departamento de Computación Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires 2017 Lógica
Compuertas Lógicas, Algebra Booleana
Compuertas Lógicas, Algebra Booleana Representación de números negativos Herramientas para conversión y operaciones aritméticas Evaluación BIN DEC DEC Revisión Evaluación Compuertas lógicas Algebra Booleana
Descripción en VHDL de arquitecturas para implementar el algoritmo CORDIC
Anexo B Funciones booleanas El álgebra de Boole provee las operaciones las reglas para trabajar con el conjunto {0, 1}. Los dispositivos electrónicos pueden estudiarse utilizando este conjunto las reglas
Tema 3.1 Introducción a los circuitos combinacionales. Algebra de Boole
Tema 3.1 Introducción a los circuitos combinacionales. Algebra de Boole Índice Algebra de Boole. Definición. Operaciones lógicas: OR, AND, XOR y NOT Puertas lógicas Algebra de Boole Postulados Teoremas
Arquitectura de Computadoras 2015 Práctico 03. Práctico 3. Álgebra de Boole. Método de Karnaugh. Circuitos lógicos combinatorios.
Práctico 3 Álgebra de Boole. Método de Karnaugh. Circuitos lógicos combinatorios. Objetivo Conocer y entrenarse en las técnicas para la construcción de circuitos combinatorios de mediano porte. Conocer
1.1 Circuitos Digitales
TEMA III Circuitos Digitales Electrónica II 27. Circuitos Digitales Del mundo analógico al digital. Ventajas de la señal digital. Inconvenientes de la señal digital. Algebra de Boole. Puertas Lógicas.
Álgebra de Boole. Adición booleana. Multiplicación booleana. Escuela Politécnica Superior
Álgebra de Boole El Álgebra de Boole es una forma muy adecuada para expresar y analizar las operaciones de los circuitos lógicos. Se puede considerar las matemáticas de los sistemas digitales. Operaciones
George Boole. Álgebra Booleana. Álgebra de Conmutación. Circuitos Digitales EC1723
George oole Circuitos Digitales EC723 Matemático británico (85-864). utodidacta y sin título universitario, en 849 fue nombrado Profesor de Matemáticas en el Queen's College en Irlanda. En su libro Laws
I UNIDAD ÁLGEBRA BOOLEANA Y COMPUERTAS LÓGICAS
I UNIDAD ÁLGEBRA BOOLEANA Y COMPUERTAS LÓGICAS 1.1 Electrónica Digital Obviamente es una ciencia que estudia las señales eléctricas, pero en este caso son señales discretas, es decir, están bien identificadas,
Álgebra Booleana. Álgebra Booleana. Definiciones. Definiciones. Definiciones. Definiciones. Sistemas Digitales Mario Medina 1
Álgebra Booleana Álgebra Booleana Mario Medina C. [email protected] Postulados y axiomas Lemas y teoremas Referencias a otras álgebras Álgebra de Boole: estructura algebraica definida sobre un conjunto
2-Funciones y representaciones booleanas
2-Funciones y representaciones booleanas 2.1 Lógica y álgebra de Boole 2.2 Funciones booleanas 2.3 Representaciones de funciones booleanas. 2.4 Funciones de varias variables. 2: Funciones booleanas 1 Lógica
GUIA 4: ALGEBRA DE BOOLE
GUIA 4: ALGEBRA DE BOOLE En 1854 George Boole introdujo una notación simbólica para el tratamiento de variables cuyo valor podría ser verdadero o falso (variables binarias) Así el álgebra de Boole nos
NOT. Ejemplo: Circuito C1
Métodos de diseño de circuitos digitales Sistemas combinacionales En un circuito combinacional los valores de las salidas dependen únicamente de los valores que tienen las entradas en el presente. Se construen
Álgebra de Boole. Valparaíso, 1 er Semestre Prof. Rodrigo Araya E.
Prof. Rodrigo Araya E. [email protected] Universidad Técnica Federico Santa María Departamento de Informática Valparaíso, 1 er Semestre 2006 1 2 3 4 Contenido En 1815 George Boole propuso una herramienta
UNIDAD 4. Álgebra Booleana
UNIDAD 4 Álgebra Booleana ÁLGEBRA BOOLEANA El Álgebra Booleana se define como una retícula: Complementada: existe un elemento mínimo 0 y un elemento máximo I de tal forma que si a esta en la retícula,
Organización de Computadoras
Organización de Computadoras SEMANA 1 UNIVERSIDAD NACIONAL DE QUILMES Qué vimos? Sistema Binario Interpretación Representación Aritmética Sistema Hexadecimal Hoy! Lógica proposicional Compuertas lógicas:
Práctica 2 - Lógica Digital
Práctica 2 - Lógica Digital Organización del Computador 1 Primer cuatrimestre de 2012 Todas las compuertas mencionadas en esta práctica son de 1 ó 2 entradas, a menos que se indique lo contrario. Usaremos
Algebra de Boole. » a + a = 1» a a = 0
Algebra de Boole Dos elementos: 0 y 1 Tres operaciones básicas: producto ( ) suma ( + ) y negación ( ` ) Propiedades. Siendo a, b, c números booleanos, se cumple: Conmutativa de la suma: a + b = b + a
Circuitos lógicos combinacionales. Tema 6
Circuitos lógicos combinacionales Tema 6 Qué sabrás al final del capítulo? Implementar funciones con dos niveles de puertas lógicas AND/OR OR/AND NAND NOR Analizar sistemas combinacionales, obteniendo
03. Introducción a los circuitos lógicos
03. Introducción a los circuitos lógicos 1. LÓGICA DE PROPOSICIONES...2 PROPOSICIÓN...2 CONECTORES U OPERADORES LÓGICOS...2 Tablas de...2 Tautología...2 Contradicción...2 2. ÁLGEBRA DE BOOLE...3 AXIOMAS
GUIA DE CIRCUITOS LOGICOS COMBINATORIOS
GUIA DE CIRCUITOS LOGICOS COMBINATORIOS 1. Defina Sistema Numérico. 2. Escriba la Ecuación General de un Sistema Numérico. 3. Explique Por qué se utilizan distintas numeraciones en la Electrónica Digital?
Electrónica Digital: Sistemas Numéricos y Algebra de Boole
Electrónica Digital: Sistemas Numéricos y Algebra de Boole Profesor: Ing. Andrés Felipe Suárez Sánchez Grupo de Investigación en Percepción y Sistemas Inteligentes. Email: [email protected]
TEMA 3 ÁLGEBRA DE CONMUTACIÓN
TEMA 3 ÁLGEBRA DE CONMUTACIÓN TEMA 3: Álgebra de Boole ÍNDICE. POSTULADOS DEL ÁLGEBRA DE CONMUTACIÓN 2. ÁLGEBRA DE BOOLE BIVALENTE O ÁLGEBRA DE CONMUTACIÓN 2. Teoremas del álgebra de conmutación 3. VARIABLES
Arquitectura de Computadoras Algebra de Boole Basadas en las Notas de Teórico Versión 1.0 del Dpto. de Arquitectura-InCo-FIng
Basadas en las Versión.0 del Dpto. de Arquitectura-InCo-FIng ALGEBRA DE BOOLE Introducción. El álgebra de Boole es una herramienta de fundamental importancia en el mundo de la computación. Las propiedades
Compuertas Lógicas. Sergio Stive Solano Sabié. Agosto de 2012 MATEMÁTICA. Sergio Solano. Compuertas lógicas NAND, NOR, XOR y XNOR
XOR y Lógicas Sergio Stive Solano Agosto de 2012 XOR y Lógicas Sergio Stive Solano Agosto de 2012 XOR y XOR y Con las puertas básicas podemos implementar cualquier función booleana. Sin embargo existen
ÁLGEBRAS DE BOOLE. En un álgebra de Boole (B, +,, ) se cumplen las siguientes propiedades, para todo x, y, z B: Doble Complemento
ÁLGEBRAS DE BOOLE CARACTERIZACIÓN DE UN ÁLGEBRA DE BOOLE Un álgebra de Boole (o álgebra booleana) consiste en un conjunto B = {0, 1}, operadores binarios + y en S y un operador unario en S. Estas operaciones
Existen diferentes compuertas lógicas y aquí mencionaremos las básicas pero a la vez quizá las más usadas:
Compuertas lógicas Las compuertas lógicas son dispositivos electrónicos utilizados para realizar lógica de conmutación. Son el equivalente a interruptores eléctricos o electromagnéticos. para utilizar
Clase Nº 2. Ing. Manuel Rivas DEPARTAMENTO DE ELECTRÓNICA. Trimestre Enero - Marzo 2006
EC2175 Ingeniería Electrónica 2 Clase Nº 2 Ing. Manuel Rivas DEPARTAMENTO DE ELECTRÓNICA Trimestre Enero - Marzo 2006 Objetivos de aprendizaje Conocer las operaciones lógicas básicas: AND, OR y NOT Estudiar
Conceptos previos. Revisión de Sistemas Lógicos Formatos Numéricos. Dpto. Ingeniería Electrónica y Comunicaciones
Conceptos previos Revisión de Sistemas Lógicos Formatos Numéricos Revisión de Sistemas Lógicos Álgebra de Boole Base matemática de la Electrónica Digital Consta de dos elementos: 0 lógico y 1 lógico Tecnología
Álgebra Booleana. Suma Booleana. El término suma es 1 si al menos uno de sus literales son 1. El término suma es 0 solamente si cada literal es 0.
Álgebra Booleana El álgebra de Boole son las matemáticas de los sistemas digitales. En el nivel de lógica digital de una computadora, lo que comúnmente se llama hardware y que está formado por los componentes
Centro Asociado Palma de Mallorca. Tutor: Antonio Rivero Cuesta
Centro Asociado Palma de Mallorca Arquitectura de Ordenadores Tutor: Antonio Rivero Cuesta Unidad Didáctica 1 Representación de la Información y Funciones Lógicas Tema 3 Algebra Booleana y Puertas Lógicas
Fundamentos de Computadores. Álgebra de Conmutación
Fundamentos de Computadores Álgebra de Conmutación Objetivos Conceptuales: Conocer el Álgebra de Boole y el Álgebra de Conmutación como caso especial de aquella Propiedades del Álgebra de Boole Representación
IMPLEMENTACIÓN DE CIRCUITOS COMBINACIONALES
IMPLEMENTACIÓN DE CIRCUITOS COMBINACIONALES SIMPLIFICACIÓN DE FUNCIONES LÓGICAS Para implementar mediante un circuito digital formado por puertas lógicas una función lógica el primer paso consiste en realizar
Tabla 5.2 Compuertas básicas A B A B A B
Compuertas lógicas Un bloque lógico es una representación simbólica gráfica de una o más variables de entrada a un operador lógico, para obtener una señal determinada o resultado. Los símbolos varían de
Operaciones Booleanas y Compuertas Básicas
Álgebra de Boole El álgebra booleana es la teoría matemática que se aplica en la lógica combinatoria. Las variables booleanas son símbolos utilizados para representar magnitudes lógicas y pueden tener
2. ÁLGEBRA DE BOOLE OPERACIONES BÁSICAS DEL ÁLGEBRA DE BOOLE. OPERACIONES LÓGICAS.
2. ÁLGEBRA DE BOOLE 2..- Definición. 2.2.- Operaciones básicas. 2.3.- Propiedades o teoremas del álgebra de Boole. 2.4.- Función Booleana / Lógica. 2.5.- Representación de función Booleana. 2.6.- Formas
ALGEBRA BOOLEANA. CONMUTATIVO. Se dice que un operador binario º es conmutativo si A º B = B º A para todos los posibles valores de A y B.
ÁLGEBRA BOOLEANA UNEFA NUCLEO ZULIA El álgebra booleana es un sistema matemático deductivo centrado en los valores cero y uno (falso y verdadero). Un operador binario º definido en éste juego de valores
Tema 1: Circuitos Combinacionales
Tema : Circuitos Combinacionales Contenidos. Introducción. Aritmética. Álgebra de Boole Señales Sistemas. Introducción Entrada Ecitación Sistema Salida Respuesta Un sistema es un conjunto de partes o elementos
Álgebra Booleana y Simplificación Lógica
Álgebra Booleana y Simplificación Lógica M. en C. Erika Vilches Parte 2 Simplificación utilizando Álgebra Booleana Simplificar la expresión AB + A(B + C) + B(B + C) 1. Aplicar la ley distributiva al segundo
Álgebra de Boole. Tema 5
Álgebra de Boole Tema 5 Qué sabrás al final del capítulo? Leyes y propiedades del Álgebra de Boole Simplificar funciones utilizando el Álgebra de Boole Analizar circuitos mediante Álgebra de Boole y simplificarlos
k k N b Sistemas Númericos Sistemas con Notación Posicional (1) Sistemas con Notación Posicional (2) Sistemas Decimal
Sistemas con Notación Posicional (1) Sistemas Númericos N b = a n-1 *b n-1 + a n-2 *b n-2 +... + a 0 *b 0 +a -1 *b - 1 + a -2 *b -2 +... + a -m *b -m Sistemas con Notación Posicional (2) N b : Número en
El número decimal 57, en formato binario es igual a:
CURSO: ELECTRÓNICA DIGITAL UNIDAD 1: COMPUERTAS LÓGICAS - TEORÍA PROFESOR: JORGE ANTONIO POLANÍA 1. NÚMEROS BINARIOS EJEMPLO En el cuadro anterior, está la representación de los números binarios en formato
ÁLGEBRA BOOLEANA El álgebra booleana es un sistema matemático deductivo centrado en los valores cero y uno (falso y verdadero). Un operador binario "
ÁLGEBRA BOOLEANA El álgebra booleana es un sistema matemático deductivo centrado en los valores cero y uno (falso y verdadero). Un operador binario " " definido en éste juego de valores acepta un par de
Introducción a la Matemática Discreta
Introducción a la Matemática Discreta Lógica proposicional y Álgebras de Boole Luisa María Camacho Camacho Introd. a la Matemática Discreta 1 / 25 Introducción a la Matemática Discreta Temario Tema 1.
Tema 5: Álgebra de Boole Funciones LógicasL
Tema 5: Álgebra de Boole Funciones LógicasL Ingeniería Informática Universidad Autónoma de Madrid 1 Álgebra de Boole.. Funciones LógicasL O B J E T I V O S Conocer el Álgebra de Boole, sus teoremas y las
Algebra de Boole: Teoremas
Teorema 1: A + A = A Teorema 2: A A = A Teorema 3: A + 0 = A Teorema 4: A 1 = A Teorema 5: A 0 = 0 Teorema 6: A + 1 = 1 Teorema 7: (A + B) = A B Teorema 8: (A B) = A + B Teorema 9: A + A B = A Teorema
ANALÓGICO vs. DIGITAL
ANALÓGICO vs. DIGITAL Una señal analógica se caracteriza por presentar un numero infinito de valores posibles. Continuo Posibles valores: 1.00, 1.01, 200003,, infinitas posibilidades Una señal digital
Unidad IV. Teorema 1: Multiplicación por cero (identidad) Es el factor neutro: Suma: a+1=! producto: a0=0
Unidad IV Algebra Booleana 4.1 Teoremas y postulados. Teoremas Teorema 1: Multiplicación por cero (identidad) Es el factor neutro: Suma: a+1=!--------producto: a0=0 Teorema 2: Absorción En la suma se identifica
SUMADORES Y COMPARADORES
Universidad Nacional de Quilmes Diplomatura en Ciencia y Tecnología Circuito semisumador de un bit. TÉCNICAS DIGITALES Los circuitos sumadores entregan 2 datos: suma (S) y acarreo (A), y, este circuito
TEMA 5.2 FUNCIONES LÓGICAS TEMA 5 SISTEMAS DIGITALES FUNDAMENTOS DE ELECTRÓNICA
TEMA 5.2 FUNCIONES LÓGICAS TEMA 5 SISTEMAS DIGITALES FUNDAMENTOS DE ELECTRÓNICA 17 de febrero de 2015 TEMA 5.2 FUNCIONES LÓGICAS Puertas lógicas Simplificación de funciones lógicas 2 TEMA 5.2 FUNCIONES
Introducción al álgebra de Boole. Operaciones lógicas básicas. Propiedades del álgebra de Boole. a b a+b
Introducción al álgebra de Boole Muchos componentes utilizados en sistemas de control, como contactores y relés, presentan dos estados claramente diferenciados (abierto o cerrado, conduce o no conduce).
EJERCICIO No. 8 ALGEBRA BOOLEANA NOMBRE:
EJERCICIO No. 8 ALGEBRA BOOLEANA NOMBRE: Algebra de Boole El álgebra de Boole es una forma adecuada y sistemática de expresar y analizar las operaciones de los circuitos lógicos. El álgebra de Boole son
TRABAJO PRÁCTICO Nº 3. Expresiones booleanas, tablas de verdad y compuertas lógicas
Sistemas Digitales TRABAJO PRÁCTICO Nº 3 Expresiones booleanas, tablas de verdad y compuertas lógicas Ejercicio Nº 1: Dadas las siguientes funciones: F ( A, B, C, D) = C.( D + A) + A. C.( B + D 1 ) F 2
Álgebra de Boole. Tema 5
Álgebra de Boole Tema 5 Qué sabrás al final del capítulo? Leyes y propiedades del Algebra de Boole Simplificar funciones utilizando el Algebra de Boole Analizar circuitos mediante Algebra de Boole y simplificarlos
plicación de los circuitos SUMADOR DIBITAL S C
plicación de los circuitos ógicos A B SUMADOR DIBITAL S C Aplicaciones de los circuitos lógicos Algunas aplicaciones elementales como los circuitos aritméticos digitales y los codificadores y decodificadores,
FUNDAMENTOS DE COMPUTADORES Ejercicios U2: Circuitos Combinacionales
U_. Se desea transmitir las primeras cuatro letras del alfabeto de un ordenador ORD a otro ORD. En el primero las cuatro letras están codificadas en tres líneas X, X y X y en el segundo tan sólo en dos,
PUERTAS LOGICAS. Una tensión alta significa un 1 binario y una tensión baja significa un 0 binario.
PUERTAS LOGICAS Son bloques de construcción básica de los sistemas digitales; operan con números binarios, por lo que se denominan puertas lógicas binarias. En los circuitos digitales todos los voltajes,
Sistemas informáticos industriales. Algebra de Boole
Sistemas informáticos industriales 2016 lgebra de oole lgebra oole Se denomina así en honor a George oole (1815-1864). El algebra de oole se emplea en sistema de control digitales, desde los sistemas de
PROBLEMAS TECNOLOGÍA INDUSTRIAL II. CONTROL DIGITAL
PROBLEMAS TECNOLOGÍA INDUSTRIAL II. CONTROL DIGITAL 1. 2. 3. 4. 5. 6. a) Convierta el número (5B3) 16 al sistema decimal b) Convierta el número (3EA) 16 al sistema binario c) Convierta el número (235)
LECCIÓN Nº 02 FUNCIONES DE LOGICA COMBINACIONAL (PARTE 1)
LECCIÓN Nº 02 FUNCIONES DE LOGICA COMBINACIONAL (PARTE 1) 1. CONVERSORES DE CODIGO La disponibilidad de una gran variedad de códigos para los mismos elementos discretos de información origina el uso de
Algebra Booleana Transversal de Programación Básica Proyecto Curricular de Ingeniería de Sistemas
1 Algebra Booleana 2013 Transversal de Programación Básica Proyecto Curricular de Ingeniería de Sistemas 2 Introducción La herramienta fundamental para el análisis y diseño de circuitos digitales es el
ÁLGEBRA BOOLEANA. INTRODUCCIÓN AL ÁLGEBRA DE BOOLE
ÁLGEBRA BOOLEANA. INTRODUCCIÓN AL ÁLGEBRA DE BOOLE En 1854, George Boole publicó un libro titulado Investigación sobre las leyes del pensamiento, formulando un método simbólico para el estudio de las relaciones
CURSO: ELECTRÓNICA DIGITAL UNIDAD 1: COMPUERTAS LÓGICAS - TEORÍA PROFESOR: JORGE ANTONIO POLANÍA
CURSO: ELECTRÓNICA DIGITAL UNIDAD 1: COMPUERTAS LÓGICAS - TEORÍA PROFESOR: JORGE ANTONIO POLANÍA Las compuertas lógicas son bloques que realizan las operaciones básicas de la aritmética binaria del álgebra
TEMA 1. Sistemas Combinacionales.
TEMA. Sistemas Combinacionales.. Introducción a los sistemas digitales. Familias lógicas (2-20) 2. Definición de circuito combinacional (2-25) 3. Funciones combinacionales. Simplificación e implementación
Introducción Flip-Flops Ejercicios Resumen. Lógica Digital. Circuitos Secuenciales - Parte I. Francisco García Eijó
Lógica Digital Circuitos Secuenciales - Parte I Francisco García Eijó Organización del Computador I Departamento de Computación - FCEyN UBA 7 de Septiembre del 2010 Agenda 1 Repaso 2 Multimedia Logic 3
TRABAJO PRÁCTICO Nº 3. Expresiones booleanas, tablas de verdad y compuertas lógicas
Sistemas Digitales TRABAJO PRÁCTICO Nº 3 Expresiones booleanas, tablas de verdad y compuertas lógicas Ejercicio Nº 1: Dadas las siguientes funciones: F ( A, B, C, D) C.( D A) AC..( B D 1 ) F2 ( A, B, C,
Números Reales. Hermes Pantoja Carhuavilca. Matematica I. Facultad de Ingeniería Industrial Universidad Nacional Mayor de San Marcos
Introducción Intervalos Valor Absoluto Facultad de Ingeniería Industrial Universidad Nacional Mayor de San Marcos Matematica I Introducción Intervalos Valor Absoluto Contenido 1 Introducción 2 3 Intervalos
El álgebra booleana fue estudiada por Pitágoras y George Boole.
ALGEBRA DE BOOLE Centro CFP/ES ALGEBRA DE BOOLE El álgebra booleana fue estudiada por Pitágoras y George Boole. Con el álgebra booleana, partiendo de una serie de sentencias lógicas iniciales verdaderas
DISEÑO DE CIRCUITOS LOGICOS COMBINATORIOS
DISEÑO DE CIRCUITOS LOGICOS COMBINATORIOS Circuitos Combinacionales Un circuito combinacional es un circuito digital cuyas salidas, en un instante determinado son función, exclusivamente, de la combinación
SISTEMAS LÓGICOS. UNIDAD 2: Álgebra De Boole
Definición SISTEMAS LÓGICOS UNIDAD 2: Álgebra De Boole Comenzaremos definiendo el Álgebra de Boole como el conjunto de elementos B que puede asumir dos valores posibles (0 y 1) y que están relacionados
Álgebra Booleana circuitos lógicos
Álgebra Booleana y circuitos lógicos OBJETIVO GENERAL Teniendo en cuenta que los circuitos digitales o lógicos operan de forma binaria, emplear el álgebra booleana como fundamento teórico para el análisis,
Octubre de Circuitos Logicos MARIA ALEJANDRA GUIO SAENZ ALEJANDRO SALAZAR ALEJANDRO BELTRAN CAMILO RIVERA SYGMA
Octubre de 2016 Circuitos Logicos MARIA ALEJANDRA GUIO SAENZ ALEJANDRO SALAZAR ALEJANDRO BELTRAN CAMILO RIVERA SYGMA CIRCUITOS LOGICOS 1) FUNCIONES DEL ÁLGEBRA BOOLEANA BINARIA Sea B = {0, 1} sea B n =
CIRCUITOS LÓGICOS. Lógica FCE 1. ALGEBRA DE BOOLE
Lógica FE IRUITOS LÓGIOS 1. LGER DE OOLE 1.1 Introducción Tanto la teoría de conjuntos como la lógica de enunciados tienen propiedades similares. Tales propiedades se utilizan para definir una estructura
Taller #2: Circuitos Combinacionales
Universidad Central de Venezuela Facultad de Ciencias Escuela de Computación Organización y Estructura del Computador II Taller #2: Circuitos Combinacionales Un circuito combinacional es un circuito digital
TEMA PUERTAS LÓGICAS. TÉCNICAS DE DISEÑO Y SIMPLIFICACIÓN DE FUNCIONES LÓGICAS.
PUERTAS LÓGICAS. TÉCNICAS DE DISEÑO Y SIMPLIFICACIÓN DE FUNCIONES LÓGICAS. ÍNDICE.- INTRODUCCIÓN... 2.- ELECTRÓNICA DIGITAL... 3.. SISTEMAS DE NUMERACIÓN... 3.2. SEÑAL DIGITAL BINARIA... 3.3. SISTEMAS
EL LENGUAJE DE LAS COMPUTADORAS
EL LENGUAJE DE LAS COMPUTADORAS AUTORÍA ANGEL MANUEL RUBIO ORTEGA TEMÁTICA ELECTRICIDAD, ELECTRÓNICA ETAPA ESO, BACHILLERATO Resumen Actualmente nos encontramos rodeados dispositivos digitales. Por ello
CIRCUITOS DIGITALES UNIVERSIDAD CATOLICA DE CUENCA EXT. CAÑAR CATEDRATICO: ING. CRISTIAN FLORES ALUMNO: TITO GUASCO FECHA:
CIRCUITOS DIGITALES 2011 UNIVERSIDAD CATOLICA DE CUENCA EXT. CAÑAR CATEDRATICO: ALUMNO: FECHA: ING. CRISTIAN FLORES TITO GUASCO 11-10-2011 2 CIRCUITOS DIGITALES TEMA: COMPUERTAS LOGICAS Las computadoras
ÁLGEBRA DE BOOLE Y FUNCIONES LÓGICAS
1. Introducción ÁLGERA DE OOLE Y FUNCIONES LÓGICAS El Álgebra de oole es una parte de la matemática, la lógica y la electrónica que estudia las variables, operaciones y expresiones lógicas. Debe su nombre
LÓGICA SECUENCIAL Y COMBINATORIA
LÓGICA SECUENCIAL Y COMBINATORIA SESIÓN # 3 1.9 Códigos alfanuméricos. Además de los datos numéricos, una computadora debe ser capaz de manejar información no numérica. En otras palabras, una computadora
TEMA III TEMA III. Circuitos Digitales 3.1 REPRESENTACIÓN DE LA INFORMACIÓN 3.2 ALGEBRA DE BOOLE 3.3 MODULOS COMBINACIONALES BÁSICOS
TEMA III Circuitos Digitales Electrónica II 9- TEMA III Circuitos Digitales 3. REPRESENTACIÓN DE LA INFORMACIÓN 3. ALGEBRA DE BOOLE 3.3 MODULOS COMBINACIONALES BÁSICOS 3. REPRESENTACIÓN DE LA INFORMACIÓN.
Universidad Autónoma de Baja California
Universidad Autónoma de Baja California Facultad de Ingeniería, Arquitectura y Diseño Práctica de laboratorio Programa educativo Plan de estudio Clave asignatura Nombre de la asignatura Bioingeniería 2009-2
PRÁCTICA 1 MIC Usando el simulador (digital). Compruebe la tabla de verdad para las compuertas lógicas básicas: NOT, OR, AND, NAND, NAND, XOR
UNIVERSIDAD DE MAGALLANES FACULTAD DE INGENIERÍA DEPARTAMENTO DE COMPUTACIÓN Profesor: Eduardo Peña Jaramillo. Ayudante:. PRÁCTICA MIC38 Nombre de la práctica: Compuertas Lógicas Básicas y sus Tablas de
Introducción volts.
Constantes y Variables Booleanas Tabla de Verdad. Funciones lógicas (AND, OR, NOT) Representación de las funciones lógicas con compuerta lógicas básicas (AND, OR, NOT) Formas Canónicas y Standard (mini
Álgebra Booleana y Diseño Lógico. Circuitos Digitales, 2º de Ingeniero de Telecomunicación. EITE ULPGC.
Álgebra Booleana y Diseño Lógico Circuitos Digitales, 2º de Ingeniero de Telecomunicación. EITE ULPGC. Índice 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. Propiedades algebraicas Definición axiomática de álgebra
Circuitos Lógicos Combinatorios. Ing. Jorge Manrique 2004 Sistemas Digitales 1
Circuitos Lógicos Combinatorios Ing. Jorge Manrique 2004 Sistemas Digitales 1 Circuitos Combinatorios Un circuito combinatorio es un arreglo de compuertas lógicas con un conjunto de entradas y salidas.
Definición y representación de los
Definición y representación de los circuitos lógicos. LÁMARA R + - + - OBJETIVO GENERAL BATERÍA Utilizar el álgebra booleana para analizar y describir el funcionamiento de las combinaciones de las compuertas
CIRCUITOS DIGITALES -
CIRCUITOS DIGITALES - INTRODUCCIÓN CIRCUITOS DIGITALES CIRCUITOS DIGITALES SON LOS QUE COMUNICAN Y PROCESAN INFORMACIÓN DIGITAL SEÑAL DIGITAL: SOLO PUEDE TOMAR UN NÚMERO FINITO DE VALORES. EN BINARIO:
Matemáticas Básicas para Computación
Matemáticas Básicas para Computación MATEMÁTICAS BÁSICAS PARA COMPUTACIÓN 1 Sesión No. 6 Nombre: Álgebra Booleana Objetivo Durante la sesión el participante identificará las principales características
Problemas propuestos. Simplificar las siguientes expresiones lógicas
Razonar en base a los postulados y teoremas del álgebra de Boole si es posible o no definir un álgebra de Boole para tres elementos B = {0, a, 1} Demostrar los teoremas T1, T2, T7 y T9 mediante los postulados
ELECTRÓNICA DIGITAL 1. INTRODUCCIÓN. SEÑALES ANALÓGICAS Y DIGITALES.
1 ELECTRÓNICA DIGITAL 1. INTRODUCCIÓN. SEÑALES ANALÓGICAS Y DIGITALES. Podemos dividir la electrónica en dos grandes campos: la electrónica analógica y la electrónica digital, según el tipo de señales
CIRCUITOS LOGICOS. Que es una Proposición? Es una expresión verbal de un juicio acerca de algo.
GUIA : III CIRCUITOS LOGICOS OBJETIVOS Realizar la tabla de verdad para las compuertas lógicas básicas. AND,OR, NOT, NAND, OR-EX Representar simbólicamente una función booleana usando las compuertas básicas.
Curso Completo de Electrónica Digital
CURSO Curso Completo de Electrónica Digital Departamento de Electronica y Comunicaciones Universidad Pontifica de Salamanca en Madrid Prof. Juan González Gómez 4.3. Diseño de circuitos combinacionales
BLOQUE V. CONTROL Y PROGRAMACIÓN DE SISTEMAS AUTOMÁTICOS
Bloque V. Control y programación de sistemas automáticos pág. 1 Bloque V. Control y programación de sistemas automáticos pág. 2 BLOQUE V. CONTROL Y PROGRAMACIÓN DE SISTEMAS AUTOMÁTICOS 1. LA INFORMACIÓN
