03. Introducción a los circuitos lógicos
|
|
|
- Magdalena Díaz Carmona
- hace 9 años
- Vistas:
Transcripción
1 03. Introducción a los circuitos lógicos 1. LÓGICA DE PROPOSICIONES...2 PROPOSICIÓN...2 CONECTORES U OPERADORES LÓGICOS...2 Tablas de...2 Tautología...2 Contradicción ÁLGEBRA DE BOOLE...3 AXIOMAS DEL ÁLGEBRA DE BOOLE PROPIEDAD CONMUTATIVA PROPIEDAD ASOCIATIVA PROPIEDAD DISTRIBUTIVA ELEMENTOS NEUTROS COMPLEMENTACIÓN (ley de tercio excluido)...3 PRINCIPIO DE DUALIDAD...3 TEOREMAS BÁSICOS...3 TEOREMA 1 (IDEMPOTENCIA)...4 TEOREMA 2 (ACOTACIÓN)...4 TEOREMA 3 (INVOLUCIÓN)...4 TEOREMA TEOREMA 5 (ABSORCIÓN)...4 LEYES DE DE MORGAN...4 OPERADORES NO FUNDAMENTALES IMPLICACIÓN, XOR, XNOR...4 Implicación...4 XOR...4 XNOR. Equivalencia PUERTAS LÓGICAS...5 PUERTA OR. FUNCIÓN OR...5 PUERTA AND. FUNCIÓN AND...5 PUERTA NOT. FUNCIÓN NOT. INVERSOR...5 PUERTA NOR. FUNCIÓN NOR...6 PUERTA NAND. FUNCIÓN NAND...6 PUERTA XOR. FUNCIÓN XOR...6 PUERTA XNOR. FUNCIÓN XNOR...6 Conjunto de puertas completo...6 Implementación de funciones booleanas mediante conjuntos completos...6 NOT-AND-OR...6 NOT-OR-AND...7 NAND-NAND...7 NOR-NOR ENLACES WEB...7 1
2 1. LÓGICA DE PROPOSICIONES La lógica es la parte de la filosofía y de las matemáticas que estudia el razonamiento humano; es decir, el valor de de las proposiciones y de las deducciones. PROPOSICIÓN Se llama proposición a cualquier enunciado del que podemos decir si es ero o falso. Por lo tanto, desde la lógica, el valor de una proposición sólo tiene dos posibilidades: ero o falso; que simbólicamente representamos por 1 y 0 y electrónicamente por cerrado y abierto. La lógica sólo estudia este aspecto de las proposiciones es decir su valor de. Ej: Serían proposiciones: hoy es lunes ; 4 es múltiplo de 2, estamos en clase. CONECTORES U OPERADORES LÓGICOS Son los operadores que usamos con las proposiciones; es decir, para construir nuevas proposiciones a partir de otras. Los más importantes son: la negación lógica (no), la disyunción (o) y la conjunción (y). Los símbolos que reciben según el contexto son: Negación: NO T ( ) Disyunción: OR + Conjunción : AN D Ej: No hay clase ; el número es par y es cubo ; el número es positivo o es nulo Tablas de Es una representación del valor de de cada operación lógica o conector según el valor de sus variables proposicionales. Ej: la tabla de de la negación lógica es la siguiente: Tautología 1. A B A + B A B A A También podríamos ponerlo así: Contradicción 0. Se llama tautología a una proposición que siempre es era. Siempre tiene el valor Ej: el número es par o impar (estamos en el universo de los números naturales) Se llama contradicción a una proposición que siempre es falsa. Siempre tiene el valor 2
3 Ej: x 2 = -1 (x indica un número real). Otra posibilidad sería: el número es par e impar (en el universo de los números naturales) 2. ÁLGEBRA DE BOOLE Es la sistematización de la estructura de las proposiciones con sus operadores lógicos. Por lo tanto, es un conjunto = {0,1} ; es decir, con dos elementos: 0 y 1. Estos se llaman constantes, representan el valor falso y ero. Se llama variable a cualquier símbolo que representa un elemento arbitrario del álgebra; es decir, una proposición. Las variables las representaremos con letras mayúsculas A, B, C, Con los operadores binarios: ( ) y ( + ) y ( ) que cumplen los axiomas siguientes: Axioma: Principio de partida. No se demuestra. Teorema: Deducción a partir de los axiomas (y teoremas). AXIOMAS DEL ÁLGEBRA DE BOOLE 1.- PROPIEDAD CONMUTATIVA A + B = B + A A B = B A Ej: Múltiplo de 2 o múltiplo de 3 es lo mismo que decir Múltiplo de 3 o múltiplo de PROPIEDAD ASOCIATIVA (A + B) + C = A + (B + C) (A B) C = A (B C) Ej: Múltiplo de 2 o de 3 o múltiplo de 5 es lo mismo que decir: Múltiplo de 2 o múltiplo de 3 o de 5 3. PROPIEDAD DISTRIBUTIVA A (B + C) = A B + A C A + (B C) = (A + B) (A + C) Ej: Múltiplo de 2 y múltiplo de 3 o de 5 es lo mismo que decir: multiplo de 2 y de 3 o múltiplo de 2 y de 5 4. ELEMENTOS NEUTROS Ej: sube un piso o sube arriba ; A + 0 = A A 1 = A 5. COMPLEMENTACIÓN (ley de tercio excluido) Todo elemento A tiene un único complementario que cumple que: A + A = 1 A A = 0 Ej: par o impar es siempre ero. Está vivo y está muerto es siempre falso. PRINCIPIO DE DUALIDAD Cualquier teorema o identidad algebraica deducible de los postulados anteriores puede transformarse en un segundo teorema o identidad válida sin mas que intercambiar ( + ) por ( ) y 1 por 0. A + B = B + A A B = B A (A + B) + C = A + (B + C) (A B) C = A (B C) A (B + C) = A B + A C A + (B C) = (A + B) (A + C) A + 0 = A A 1 = A A + A = 1. A A = 0 TEOREMAS BÁSICOS No se ponen demostraciones. 3
4 TEOREMA 1 (IDEMPOTENCIA) Para cada elemento se verifica: A + A = A A A = A TEOREMA 2 (ACOTACIÓN) Para cada elemento A se verifica: A + 1 = 1 A 0 = 0 TEOREMA 3 (INVOLUCIÓN) Para cada elemento de, se verifica: (A ) = A TEOREMA 4 Cada elemento identidad es el complemento del otro. 0 = 1 1 = 0 TEOREMA 5 (ABSORCIÓN) Para cada par de elementos A y B, se verifica: A + A B = A A (A + B) = A LEYES DE DE MORGAN Para cada par de elementos A y B, se verifica: (A + B) = A B (A B) = A + B Ej: Sea A = múltiplo de 2 ; B = múltiplo de 3 Lo contrario de múltiplo de 2 o múltiplo de 3 es no múltiplo de 2 y no múltiplo de 3. Lo contrario de múltiplo de 2 y de 3 es no múltiplo de 2 o no múltiplo de 3 OPERADORES NO FUNDAMENTALES IMPLICACIÓN, XOR, XNOR. Los operadores no fundamentales pueden expresarse a partir de los operadores fundamentales. Implicación XOR Se lee si entonces Se representa A > B Su tabla de es: A B A B Ej: A = Si falta Ana ; B = Llámame. La implicación equivale a este elemento del Álgebra. A B = A + B Sólo es falsa cuando siendo A era, B es falsa. A B = A B + B A XOR se conoce como OR exclusiva. Es era sólo cuando una de las dos es era y la otra falsa. Su tabla de es: 4
5 XNOR. Equivalencia A B A B Es la negación de la XOR. Es la doble implicación o equivalencia. si y sólo si Se escribe así: A B. Se lee A es equivalente a B o A si y sólo si B Su tabla de es: A B A B Ej. A = El triángulo a, b y c es rectángulo ; B = En el triángulo c 2 = a 2 + b 2 A eb = A B + A B Es era cuando las dos son eras o las dos son falsas. 3. PUERTAS LÓGICAS PUERTA OR. FUNCIÓN OR A B A + B PUERTA AND. FUNCIÓN AND A B A B PUERTA NOT. FUNCIÓN NOT. INVERSOR A A
6 PUERTA NOR. FUNCIÓN NOR A B (A + B) PUERTA NAND. FUNCIÓN NAND A B (A B) PUERTA XOR. FUNCIÓN XOR A B (A B) PUERTA XNOR. FUNCIÓN XNOR A B (A B) Conjunto de puertas completo Un CONJUNTO DE PUERTAS COMPLETO es aquel con el que se puede implementar cualquier función lógica. Son conjuntos completos (uno por línea): Puertas AND, OR y NOT. Puertas AND y NOT. Puertas OR y NOT. Puertas NAND. Puertas NOR. Implementación de funciones booleanas mediante conjuntos completos NOT-AND-OR Ejemplo 1: F(A,B,C) = AC + B C + BC 6
7 NOT-OR-AND Ejemplo 2: F(A,B,C) = (A + C) (B + C ) (B + C) NAND-NAND Buscamos grupos de variables con la forma de salida de una puerta NAND. Ejemplo 1: F(A,B,C) = AC + B C + BC Negamos 2 veces: F(A,B,C) = AC + B'C + BC' Aplicamos De Morgan: F(A,B,C) = AC B'C BC' NOR-NOR Buscamos grupos de variables con la forma de salida de una puerta NOR. Ejemplo 2: F(A,B,C) = (A + C) (B + C ) (B + C) Negamos 2 veces: F(A,B,C) = (A+C) (B+C') (B'+C) Aplicamos De Morgan: F( A, B, C ) = (A+C) + (B'+C) + (B+C') 4. ENLACES WEB 7
8 8
Tema 3.1 Introducción a los circuitos combinacionales. Algebra de Boole
Tema 3.1 Introducción a los circuitos combinacionales. Algebra de Boole Índice Algebra de Boole. Definición. Operaciones lógicas: OR, AND, XOR y NOT Puertas lógicas Algebra de Boole Postulados Teoremas
El álgebra booleana fue estudiada por Pitágoras y George Boole.
ALGEBRA DE BOOLE Centro CFP/ES ALGEBRA DE BOOLE El álgebra booleana fue estudiada por Pitágoras y George Boole. Con el álgebra booleana, partiendo de una serie de sentencias lógicas iniciales verdaderas
ALGEBRA DE BOOLE George Boole C. E. Shannon E. V. Hungtington [6]
ALGEBRA DE BOOLE El álgebra booleana, como cualquier otro sistema matemático deductivo, puede definirse con un conjunto de elementos, un conjunto de operadores y un número de axiomas no probados o postulados.
Introducción a la Matemática Discreta
Introducción a la Matemática Discreta Lógica proposicional y Álgebras de Boole Luisa María Camacho Camacho Introd. a la Matemática Discreta 1 / 25 Introducción a la Matemática Discreta Temario Tema 1.
Álgebra Booleana. Álgebra Booleana. Definiciones. Definiciones. Definiciones. Definiciones. Sistemas Digitales Mario Medina 1
Álgebra Booleana Álgebra Booleana Mario Medina C. [email protected] Postulados y axiomas Lemas y teoremas Referencias a otras álgebras Álgebra de Boole: estructura algebraica definida sobre un conjunto
Compuertas Lógicas, Algebra Booleana
Compuertas Lógicas, Algebra Booleana Representación de números negativos Herramientas para conversión y operaciones aritméticas Evaluación BIN DEC DEC Revisión Evaluación Compuertas lógicas Algebra Booleana
UNIDAD I: LÓGICA MATEMÁTICA
UNIDAD I: LÓGICA MATEMÁTICA 1.1. Introducción La Lógica Matemática es la rama de las Matemáticas que nos permite comprender sobre la validez o no de razonamientos y demostraciones que se realizan. La lógica
Lógica Proposicional. Cátedra de Matemática
Lógica Proposicional Cátedra de Matemática Abril 2017 Qué es la lógica proposicional? Es la disciplina que estudia métodos de análisis y razonamiento; utilizando el lenguaje de las matemáticas como un
Algebras booleanas. B2) Leyes Distributivas. Cada operación es distributiva con respecto a la otra:
Algebras booleanas AXIOMAS DEL ALGEBRA DE BOOLE Sea B un conjunto en el cual se han definido dos operaciones binarias, + y * (En algunos casos se definen en términos de y respectivamente), y una operación
1.1 Circuitos Digitales
TEMA III Circuitos Digitales Electrónica II 27. Circuitos Digitales Del mundo analógico al digital. Ventajas de la señal digital. Inconvenientes de la señal digital. Algebra de Boole. Puertas Lógicas.
Ampliación Matemática Discreta. Justo Peralta López
Justo Peralta López UNIVERSIDAD DE ALMERíA DEPARTAMENTO DE ÁGEBRA Y ANÁLISIS MATEMÁTICO 1 Introducción 2 Definición semántica de las proposiciones 3 Diagrama de valores de certeza 4 Evaluación de fórmulas.
Algebra de Boole. » a + a = 1» a a = 0
Algebra de Boole Dos elementos: 0 y 1 Tres operaciones básicas: producto ( ) suma ( + ) y negación ( ` ) Propiedades. Siendo a, b, c números booleanos, se cumple: Conmutativa de la suma: a + b = b + a
Tema 1: Circuitos Combinacionales
Tema : Circuitos Combinacionales Contenidos. Introducción. Aritmética. Álgebra de Boole Señales Sistemas. Introducción Entrada Ecitación Sistema Salida Respuesta Un sistema es un conjunto de partes o elementos
TEMA 1: LÓGICA. p p Operador conjunción. Se lee y y se representa por. Su tabla de verdad es: p q p q
TEMA 1: LÓGICA. Definición. La lógica es la ciencia que estudia el razonamiento formalmente válido. Para ello tiene un simbolismo que evita las imprecisiones del lenguaje humano y permite comprobar la
Fundamentos de Computadores. Álgebra de Conmutación
Fundamentos de Computadores Álgebra de Conmutación Objetivos Conceptuales: Conocer el Álgebra de Boole y el Álgebra de Conmutación como caso especial de aquella Propiedades del Álgebra de Boole Representación
2-Funciones y representaciones booleanas
2-Funciones y representaciones booleanas 2.1 Lógica y álgebra de Boole 2.2 Funciones booleanas 2.3 Representaciones de funciones booleanas. 2.4 Funciones de varias variables. 2: Funciones booleanas 1 Lógica
Álgebra de Boole. Adición booleana. Multiplicación booleana. Escuela Politécnica Superior
Álgebra de Boole El Álgebra de Boole es una forma muy adecuada para expresar y analizar las operaciones de los circuitos lógicos. Se puede considerar las matemáticas de los sistemas digitales. Operaciones
Lógica proposicional. 1. Lógica proposicional. 4. Conectivos lógicos. 2. Proposición lógica. 3. Negación de una proposición
Lógica proposicional 1. Lógica proposicional Es una parte de la lógica que estudia las proposiciones y la relación existente entre ellas, así como la función que tienen los conectivos lógicos. 2. Proposición
Álgebra Booleana. Suma Booleana. El término suma es 1 si al menos uno de sus literales son 1. El término suma es 0 solamente si cada literal es 0.
Álgebra Booleana El álgebra de Boole son las matemáticas de los sistemas digitales. En el nivel de lógica digital de una computadora, lo que comúnmente se llama hardware y que está formado por los componentes
Arquitectura de Computadoras Algebra de Boole Basadas en las Notas de Teórico Versión 1.0 del Dpto. de Arquitectura-InCo-FIng
Basadas en las Versión.0 del Dpto. de Arquitectura-InCo-FIng ALGEBRA DE BOOLE Introducción. El álgebra de Boole es una herramienta de fundamental importancia en el mundo de la computación. Las propiedades
I UNIDAD ÁLGEBRA BOOLEANA Y COMPUERTAS LÓGICAS
I UNIDAD ÁLGEBRA BOOLEANA Y COMPUERTAS LÓGICAS 1.1 Electrónica Digital Obviamente es una ciencia que estudia las señales eléctricas, pero en este caso son señales discretas, es decir, están bien identificadas,
Lógica Proposicional. Sergio Stive Solano Sabié. Abril de 2013
Lógica Proposicional Sergio Stive Solano Sabié Abril de 2013 Lógica Proposicional Sergio Stive Solano Sabié Abril de 2013 Proposiciones Definición 1.1 Una proposición (o declaración) es una oración declarativa
CONJUNTOS. Por ejemplo, el E del ejemplo 2 se escribe.
CONJUNTOS La teoría de conjuntos nos permite describir de forma precisa conjuntos de números, de personas, de objetos, etc que comparten una propiedad común. Esto puede ser de gran utilidad al establecer
Organización del Computador 1 Lógica Digital 1: álgebra de Boole y
Introducción Circuitos Bloques Organización del Computador 1 Lógica Digital 1: álgebra de Boole y compuertas Departamento de Computación Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires
CIRCUITOS LÓGICOS. Lógica FCE 1. ALGEBRA DE BOOLE
Lógica FE IRUITOS LÓGIOS 1. LGER DE OOLE 1.1 Introducción Tanto la teoría de conjuntos como la lógica de enunciados tienen propiedades similares. Tales propiedades se utilizan para definir una estructura
ANALÓGICO vs. DIGITAL
ANALÓGICO vs. DIGITAL Una señal analógica se caracteriza por presentar un numero infinito de valores posibles. Continuo Posibles valores: 1.00, 1.01, 200003,, infinitas posibilidades Una señal digital
Organización del Computador 1 Lógica Digital 1: álgebra de Boole y compuertas
Organización del Computador 1 Lógica Digital 1: álgebra de Boole y compuertas Dr. Marcelo Risk Departamento de Computación Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires 2017 Lógica
George Boole. Álgebra Booleana. Álgebra de Conmutación. Circuitos Digitales EC1723
George oole Circuitos Digitales EC723 Matemático británico (85-864). utodidacta y sin título universitario, en 849 fue nombrado Profesor de Matemáticas en el Queen's College en Irlanda. En su libro Laws
GUIA 4: ALGEBRA DE BOOLE
GUIA 4: ALGEBRA DE BOOLE En 1854 George Boole introdujo una notación simbólica para el tratamiento de variables cuyo valor podría ser verdadero o falso (variables binarias) Así el álgebra de Boole nos
EL LENGUAJE DE LAS COMPUTADORAS
EL LENGUAJE DE LAS COMPUTADORAS AUTORÍA ANGEL MANUEL RUBIO ORTEGA TEMÁTICA ELECTRICIDAD, ELECTRÓNICA ETAPA ESO, BACHILLERATO Resumen Actualmente nos encontramos rodeados dispositivos digitales. Por ello
Centro Asociado Palma de Mallorca. Tutor: Antonio Rivero Cuesta
Centro Asociado Palma de Mallorca Arquitectura de Ordenadores Tutor: Antonio Rivero Cuesta Unidad Didáctica 1 Representación de la Información y Funciones Lógicas Tema 3 Algebra Booleana y Puertas Lógicas
Matemáticas Básicas para Computación
Matemáticas Básicas para Computación MATEMÁTICAS BÁSICAS PARA COMPUTACIÓN 1 Sesión No. 6 Nombre: Álgebra Booleana Objetivo Durante la sesión el participante identificará las principales características
Circuitos Electrónicos Digitales
Circuitos Electrónicos Digitales Bloque 1: Circuitos Electrónicos y familias lógicas Tema 3: Familias lógicas Guión del tema Algebra de conmutación. Variables y operadores lógicos. Ejemplo de puertas lógicas.
CIENCIAS FORMALES CIENCIAS FÁCTICAS
UNA CLASIFICACIÓN DE LAS CIENCIAS CIENCIAS FORMALES CIENCIAS FÁCTICAS CIENCIAS FORMALES MATEMÁTICA LÓGICA CIENCIAS FÁCTICAS FÍSICA BIOLOGÍA QUÍMICA CIENCIAS SOCIALES OTRAS CIENCIAS FORMALES VOCABULARIO
TEMA 3 ÁLGEBRA DE CONMUTACIÓN
TEMA 3 ÁLGEBRA DE CONMUTACIÓN TEMA 3: Álgebra de Boole ÍNDICE. POSTULADOS DEL ÁLGEBRA DE CONMUTACIÓN 2. ÁLGEBRA DE BOOLE BIVALENTE O ÁLGEBRA DE CONMUTACIÓN 2. Teoremas del álgebra de conmutación 3. VARIABLES
Lógica Proposicional. Sergio Stive Solano Sabié. Marzo de 2012
Lógica Proposicional Sergio Stive Solano Sabié Marzo de 2012 Lógica Proposicional Sergio Stive Solano Sabié Marzo de 2012 Proposiciones Definición 1.1 Una proposición (o declaración) es una oración declarativa
Álgebra Booleana circuitos lógicos
Álgebra Booleana y circuitos lógicos OBJETIVO GENERAL Teniendo en cuenta que los circuitos digitales o lógicos operan de forma binaria, emplear el álgebra booleana como fundamento teórico para el análisis,
2. CONTROL DE CIRCUITOS ELECTRÓNICOS COLEGIO MALVAR DPTO. CCNN Y TECNOLOGÍA 3º ESO
2. CONTROL DE CIRCUITO ELECTRÓNICO COLEGIO MALVAR DPTO. CCNN Y TECNOLOGÍA 3º EO INTRODUCCIÓN Las agujas de un reloj, que giran representando el avance del tiempo, lo hacen en forma aná- loga (análogo =
Organización de Computadoras
Organización de Computadoras SEMANA 1 UNIVERSIDAD NACIONAL DE QUILMES Qué vimos? Sistema Binario Interpretación Representación Aritmética Sistema Hexadecimal Hoy! Lógica proposicional Compuertas lógicas:
Lógica Digital Transversal de Programación Básica Proyecto Curricular de Ingeniería de Sistemas
1 Lógica Digital 2013 Transversal de Programación Básica Proyecto Curricular de Ingeniería de Sistemas 2 La lógica es una disciplina que estudia la estructura, el fundamento y el uso de las expresiones
Electrónica Digital - Guión
Electrónica Digital - Guión 1. Introducción. 2. El álgebra de Boole. 3. Propiedades del álgebra de Boole. 4. Concepto de Bit y Byte. 5. Conversión del sistema decimal en binario y viceversa. 6. Planteamiento
TEMA I INTRODUCCIÓN A LA LÓGICA
TEMA I INTRODUCCIÓN A LA LÓGICA Policarpo Abascal Fuentes TEMA I Introducción a la lógica p. 1/6 TEMA 1 1. INTRODUCCIÓN A LA LÓGICA 1.1 INTRODUCCIÓN 1.2 LÓGICA PROPOSICIONAL 1.2.1 Conexiones lógicas 1.2.2
Algebra de Boole: Teoremas
Teorema 1: A + A = A Teorema 2: A A = A Teorema 3: A + 0 = A Teorema 4: A 1 = A Teorema 5: A 0 = 0 Teorema 6: A + 1 = 1 Teorema 7: (A + B) = A B Teorema 8: (A B) = A + B Teorema 9: A + A B = A Teorema
Matemática I C.F.E. I.N.E.T. Profesorado de Informática Conjuntos
Conjuntos Conceptos primitivos: CONJUNTO, ELEMENTO, PERTENECE. Pertenecer- Elemento Sea el conjunto de los ríos del Uruguay. El Río Negro es un río del Uruguay. Entonces, este río es un elemento del conjunto
Ampliación Matemática Discreta. Justo Peralta López
Justo Peralta López UNIVERSIDAD DE ALMERíA DEPARTAMENTO DE ÁGEBRA Y ANÁLISIS MATEMÁTICO 1 Introducción 2 Axiomas y reglas de inferencia Reglas de la impliación, conjunción y disyunción 3 Reglas derivadas
Tema 2. Funciones Lógicas. Algebra de Conmutación. Representación de circuitos digitales. Minimización de funciones lógicas.
Tema 2. Funciones Lógicas Algebra de Conmutación. Representación de circuitos digitales. Minimización de funciones lógicas. Álgebra de conmutación Algebra de Conmutación: Postulados y Teoremas. Representación
ALGEBRA y ALGEBRA LINEAL. Primer Semestre CAPITULO I LOGICA Y CONJUNTOS.
ALGEBRA y ALGEBRA LINEAL 520142 Primer Semestre CAPITULO I LOGICA Y CONJUNTOS. DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas Universidad de Concepción 1 La lógica es
Definición y representación de los
Definición y representación de los circuitos lógicos. LÁMARA R + - + - OBJETIVO GENERAL BATERÍA Utilizar el álgebra booleana para analizar y describir el funcionamiento de las combinaciones de las compuertas
ÁLGEBRA BOOLEANA. INTRODUCCIÓN AL ÁLGEBRA DE BOOLE
ÁLGEBRA BOOLEANA. INTRODUCCIÓN AL ÁLGEBRA DE BOOLE En 1854, George Boole publicó un libro titulado Investigación sobre las leyes del pensamiento, formulando un método simbólico para el estudio de las relaciones
Capítulo 2 Conjuntos. 2.1 Introducción. 2.2 Determinación de conjuntos. Definición:
Capítulo 2 Conjuntos 2.1 Introducción El concepto de conjunto, de singular importancia en la ciencia matemática y objeto de estudio de una de sus disciplinas más recientes, está presente, aunque en forma
ÁLGEBRA DE BOOLE Y FUNCIONES LÓGICAS
1. Introducción ÁLGERA DE OOLE Y FUNCIONES LÓGICAS El Álgebra de oole es una parte de la matemática, la lógica y la electrónica que estudia las variables, operaciones y expresiones lógicas. Debe su nombre
ALGEBRA BOOLEANA (ALGEBRA LOGICA)
ALGEBRA BOOLEANA Un sistema axiomático es una colección de conocimientos ordenados jerárquica-mente mediante reglas o leyes lógicas aplicadas a un número limitado de conceptos o principios básicos. Un
Octubre de Circuitos Logicos MARIA ALEJANDRA GUIO SAENZ ALEJANDRO SALAZAR ALEJANDRO BELTRAN CAMILO RIVERA SYGMA
Octubre de 2016 Circuitos Logicos MARIA ALEJANDRA GUIO SAENZ ALEJANDRO SALAZAR ALEJANDRO BELTRAN CAMILO RIVERA SYGMA CIRCUITOS LOGICOS 1) FUNCIONES DEL ÁLGEBRA BOOLEANA BINARIA Sea B = {0, 1} sea B n =
TEMA II.- ÁLGEBRA DE BOOLE
TEMA II.- ÁLGEBRA DE BOOLE UN SISTEMA DE ELEMENTOS B Y DOS OPERACIONES BINARIAS CERRA- DAS ( ) Y (+) SE DENOMINA ALGEBRA DE BOOLE SIEMPRE Y CUANDO SE CUMPLAN LAS SIGUIENTES PROPIEDADES: PROPIEDAD CONMUTATIVA:
2. ÁLGEBRA DE BOOLE OPERACIONES BÁSICAS DEL ÁLGEBRA DE BOOLE. OPERACIONES LÓGICAS.
2. ÁLGEBRA DE BOOLE 2..- Definición. 2.2.- Operaciones básicas. 2.3.- Propiedades o teoremas del álgebra de Boole. 2.4.- Función Booleana / Lógica. 2.5.- Representación de función Booleana. 2.6.- Formas
Sistemas informáticos industriales. Algebra de Boole
Sistemas informáticos industriales 2016 lgebra de oole lgebra oole Se denomina así en honor a George oole (1815-1864). El algebra de oole se emplea en sistema de control digitales, desde los sistemas de
Guía de Ejercicios: Lógica y Teoría de Conjuntos
Guía de Ejercicios: Lógica y Teoría de Conjuntos Área de Matemática Objetivo de aprendizaje Usar conectivos lógicos y relaciones conjuntistas. Negar una proposición. Contenidos 1. Elementos de lógica proporcional.
Conceptos previos. Revisión de Sistemas Lógicos Formatos Numéricos. Dpto. Ingeniería Electrónica y Comunicaciones
Conceptos previos Revisión de Sistemas Lógicos Formatos Numéricos Revisión de Sistemas Lógicos Álgebra de Boole Base matemática de la Electrónica Digital Consta de dos elementos: 0 lógico y 1 lógico Tecnología
TEMA II. 1.1 Negación La negación es la inversa de los valores de verdad de una declaración como se muestra en la figura: Negación
TEMA II 1. APLICACIONES PRACTICAS DE LOGICA SIMBOLICA Y ÁLGEBRA DE PROPOSICIONES La proposición lógica hace más fácil y efectiva la manipulación de valores de verdad entre proposiciones. Las tablas de
Álgebra de Boole. Tema 5
Álgebra de Boole Tema 5 Qué sabrás al final del capítulo? Leyes y propiedades del Álgebra de Boole Simplificar funciones utilizando el Álgebra de Boole Analizar circuitos mediante Álgebra de Boole y simplificarlos
Matemáticas Discretas Lógica
Coordinación de Ciencias Computacionales - INAOE Matemáticas Discretas Lógica Cursos Propedéuticos 2010 Ciencias Computacionales INAOE Lógica undamentos de Lógica Cálculo proposicional Cálculo de predicados
Tabla 5.2 Compuertas básicas A B A B A B
Compuertas lógicas Un bloque lógico es una representación simbólica gráfica de una o más variables de entrada a un operador lógico, para obtener una señal determinada o resultado. Los símbolos varían de
Clase Nº 2. Ing. Manuel Rivas DEPARTAMENTO DE ELECTRÓNICA. Trimestre Enero - Marzo 2006
EC2175 Ingeniería Electrónica 2 Clase Nº 2 Ing. Manuel Rivas DEPARTAMENTO DE ELECTRÓNICA Trimestre Enero - Marzo 2006 Objetivos de aprendizaje Conocer las operaciones lógicas básicas: AND, OR y NOT Estudiar
UNIDAD 4. Álgebra Booleana
UNIDAD 4 Álgebra Booleana ÁLGEBRA BOOLEANA El Álgebra Booleana se define como una retícula: Complementada: existe un elemento mínimo 0 y un elemento máximo I de tal forma que si a esta en la retícula,
Introducción a la Lógica
Tema 0 Introducción a la Lógica En cualquier disciplina científica se necesita distinguir entre argumentos válidos y no válidos. Para ello, se utilizan, a menudo sin saberlo, las reglas de la lógica. Aquí
Enunciados Abiertos y Enunciados Cerrados
I n g. L u z A d r i a n a M o n r o y M a r t í n e z L ó g i c a 1 Unidad II lógica proposicional Es probable que en el siglo IV antes de la Era Común, se iniciara con Aristóteles el estudio de la Lógica;
Lógica Digital - Circuitos Combinatorios
Lógica Digital - Circuitos Combinatorios Expositor: Esteban Pontnau Primer Cuatrimestre de 2012 Departamento de Computación, FCEyN,Universidad de Buenos Aires. 3 de abril de 2012 Objetivos de la clase
Matemáticas Dicretas LÓGICA MATEMÁTICA
Matemáticas Dicretas LÓGICA MATEMÁTICA Esta pagina fue diseñada como un auxiliar y herramienta para aquellos que esten interesados en reforzar y tener mas conocimientos sobre las matematicas discretas.
Guía de estudio Algunos aspectos de lógica matemática Unidad A: Clases 1 y 2
Guía de estudio Algunos aspectos de lógica matemática Unidad A: Clases 1 y 2 Camilo Ernesto Restrepo Estrada, Félix Ruiz de Villalba, Lina María Grajales Vanegas y Sergio Iván Restrepo Ochoa *. 1. Lógica
Descripción en VHDL de arquitecturas para implementar el algoritmo CORDIC
Anexo B Funciones booleanas El álgebra de Boole provee las operaciones las reglas para trabajar con el conjunto {0, 1}. Los dispositivos electrónicos pueden estudiarse utilizando este conjunto las reglas
Si un objeto x es elemento de un conjunto A, se escribe: x A.
Conjuntos. Dentro de la teoría se consideran como primitivos o términos no definidos los conjuntos y los elementos. En general, se designan los conjuntos usando letras latinas mayúsculas y los elementos
ANOTACIONES BÁSICAS SOBRE LÓGICA PROPOSICIONAL FILOSOFÍA 1º BACHILLERATO
Pág. 1 Lógica Proposicional La lógica proposicional es la más antigua y simple de las formas de lógica. Utilizando una representación primitiva del lenguaje, permite representar y manipular aserciones
Álgebra de Boole A p u n te N 3
Álgebra de Boole Apunte N 3 G e o r g e B o o l e y C l a u d e S h a n n o n La finalidad de la Electrónica Digital es procesar la información. Para ello utiliza las operaciones definidas por George Boole
Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 1: Lunes 11 Viernes 16 de Marzo. Contenidos
Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 1: Lunes 11 Viernes 16 de Marzo Complementos Contenidos Clase 1: Elementos de lógica: Conectivos, tablas de verdad, tautologías y contingencias.
Algebra Booleana Transversal de Programación Básica Proyecto Curricular de Ingeniería de Sistemas
1 Algebra Booleana 2013 Transversal de Programación Básica Proyecto Curricular de Ingeniería de Sistemas 2 Introducción La herramienta fundamental para el análisis y diseño de circuitos digitales es el
Tema 2: Teoría de la Demostración
Tema 2: Teoría de la Demostración Conceptos: Estructura deductiva Teoría de la Demostración Sistemas axiomáticos: Kleene Fórmulas válidas Teorema de la Deducción Introducción a la T. de la Demostración
ALGEBRA BOOLEANA. CONMUTATIVO. Se dice que un operador binario º es conmutativo si A º B = B º A para todos los posibles valores de A y B.
ÁLGEBRA BOOLEANA UNEFA NUCLEO ZULIA El álgebra booleana es un sistema matemático deductivo centrado en los valores cero y uno (falso y verdadero). Un operador binario º definido en éste juego de valores
Tema 5: Álgebra de Boole Funciones LógicasL
Tema 5: Álgebra de Boole Funciones LógicasL Ingeniería Informática Universidad Autónoma de Madrid 1 Álgebra de Boole.. Funciones LógicasL O B J E T I V O S Conocer el Álgebra de Boole, sus teoremas y las
p q p q p (p q) V V V V V F F F F V V F F F V F
3.2 Reglas de inferencia lógica Otra forma de transformación de las proposiciones lógicas son las reglas de separación, también conocidas como razonamientos válidos elementales, leyes del pensamiento,
Álgebra Booleana y Diseño Lógico. Circuitos Digitales, 2º de Ingeniero de Telecomunicación. EITE ULPGC.
Álgebra Booleana y Diseño Lógico Circuitos Digitales, 2º de Ingeniero de Telecomunicación. EITE ULPGC. Índice 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. Propiedades algebraicas Definición axiomática de álgebra
Unidad IV. Teorema 1: Multiplicación por cero (identidad) Es el factor neutro: Suma: a+1=! producto: a0=0
Unidad IV Algebra Booleana 4.1 Teoremas y postulados. Teoremas Teorema 1: Multiplicación por cero (identidad) Es el factor neutro: Suma: a+1=!--------producto: a0=0 Teorema 2: Absorción En la suma se identifica
Electrónica Digital: Sistemas Numéricos y Algebra de Boole
Electrónica Digital: Sistemas Numéricos y Algebra de Boole Profesor: Ing. Andrés Felipe Suárez Sánchez Grupo de Investigación en Percepción y Sistemas Inteligentes. Email: [email protected]
Guía 4: Demostraciones en Cálculo Proposicional
Introducción a los Algoritmos - 2do. cuatrimestre 2014 Guía 4: Demostraciones en Cálculo Proposicional Docentes: Walter Alini y Luciana Benotti. El objetivo principal de esta guía es lograr un buen entrenamiento
Circuitos Combinatorios
Circuitos Combinatorios Expositor: Esteban Pontnau Autor: Luis Agustín Nieto Primer Cuatrimestre de 2011 Departamento de Computación, FCEyN,Universidad de Buenos Aires. 5 de abril de 2011 Objetivos de
Lógica de proposiciones (5)
Lógica de proposiciones (5) Fundamentos de Informática I I..I. Sistemas (2005-06) César Llamas Bello Universidad de Valladolid 1 Lógica Índice Lógica proposicional ecuacional Lógica: semántica Semántica
Compuertas Lógicas. Sergio Stive Solano Sabié. Agosto de 2012 MATEMÁTICA. Sergio Solano. Compuertas lógicas NAND, NOR, XOR y XNOR
XOR y Lógicas Sergio Stive Solano Agosto de 2012 XOR y Lógicas Sergio Stive Solano Agosto de 2012 XOR y XOR y Con las puertas básicas podemos implementar cualquier función booleana. Sin embargo existen
personal.us.es/elisacamol Elisa Cañete Molero Curso 2011/12
Teoría de conjuntos. Teoría de Conjuntos. personal.us.es/elisacamol Curso 2011/12 Teoría de Conjuntos. Teoría de conjuntos. Noción intuitiva de conjunto. Propiedades. Un conjunto es la reunión en un todo
ESTRUCTURA Y TECNOLOGÍA DE LOS COMPUTADORES I. TEMA 4 Algebra booleana y puertas lógicas
ESTRUCTURA Y TECNOLOGÍA DE LOS COMPUTADORES I TEMA 4 Algebra booleana y puertas lógicas TEMA 4. Algebra booleana y puertas lógicas 4.1 Definición de álgebra de Boole 4.2 Teoremas del álgebra de Boole 4.3
ÁLGEBRA BOOLEANA El álgebra booleana es un sistema matemático deductivo centrado en los valores cero y uno (falso y verdadero). Un operador binario "
ÁLGEBRA BOOLEANA El álgebra booleana es un sistema matemático deductivo centrado en los valores cero y uno (falso y verdadero). Un operador binario " " definido en éste juego de valores acepta un par de
Horas Trabajo Estudiante: 128
PROGRAMAS DE:: CIIENCIIAS BÁSIICAS E IINGENIIERÍÍAS DEPARTAMENTO DE MATEMÁTIICAS Y ESTADÍÍSTIICA CONTENIIDOSS PPROGRAMÁTIICOSS PPOR UNIIDADESS DE APPRENDIIZAJJE Curso: Créditos: 3 Lógica Matemática Horas
2.1. Introducción Lógica: Campo del conocimiento relacionado con el estudio y el análisis de los métodos de razonamiento. El razonamiento lógico es es
Tema 2. Introducción a la lógica 1. Introducción 2. Lógica de proposiciones 1. Definiciones 2. Sintaxis 3. Semántica Bibliografía Matemática discreta y lógica. Grassman y Tremblay. 1997. Prentice Hall.
Álgebra Booleana y Circuitos Lógicos. UCR ECCI CI-1204 Matemáticas Discretas Prof. M.Sc. Kryscia Daviana Ramírez Benavides
Álgebra Booleana Circuitos Lógicos UCR ECCI CI-1204 Matemáticas Discretas Prof. M.Sc. Krscia Daviana Ramíre Benavides Álgebra Booleana Tanto los conjuntos como las proposiciones tienen propiedades similares.
IDENTIFICACIÓN DE LA ACTIVIDAD PEDAGÓGICA DESARROLLO DE LA ACTIVIDAD. p, q, r, s
PROGRAMA DE FORMACIÓN UNIDAD DE APRENDIZAJE ACTIVIDAD OBJETIVOS IDENTIFICACIÓN DE LA ACTIVIDAD PEDAGÓGICA Colegio técnico uparsistem Matematica sexto PROPOSICIONES Y TABLA DE LA VERDAD (CONJUNCIÓN, DISYUNCIÓN,
UNIDAD 4. Algebra de Boole
UNIDAD 4 Algebra de Boole Introducción a la unidad La tecnología nos permite construir compuertas digitales a través de transistores y mediante las compuertas diseñamos los circuitos digitales empleados
John Venn Matemático y filósofo británico creador de los diagramas de Venn
Georg Cantor Matemático Alemán creador de la teoría de conjuntos John Venn Matemático y filósofo británico creador de los diagramas de Venn August De Morgan Matemático ingles creador de leyes que llevan
