TEMA II.- ÁLGEBRA DE BOOLE
|
|
|
- Amparo Río Revuelta
- hace 9 años
- Vistas:
Transcripción
1 TEMA II.- ÁLGEBRA DE BOOLE UN SISTEMA DE ELEMENTOS B Y DOS OPERACIONES BINARIAS CERRA- DAS ( ) Y (+) SE DENOMINA ALGEBRA DE BOOLE SIEMPRE Y CUANDO SE CUMPLAN LAS SIGUIENTES PROPIEDADES: PROPIEDAD CONMUTATIVA: A + B = B + A A B = B A PROPIEDAD DISTRIBUTIVA: A + (B C) = (A + B) (A + C) A (B + C) = A B + A C ELEMENTOS NEUTROS DIFERENTES: A + 0 = A A 1 = A SIEMPRE EXISTE EL COMPLEMENTO DE A, DENOMINADO A O A A + A = 1 A A = 0
2 PRINCIPIO DE DUALIDAD: CUALQUIER TEOREMA O IDENTIDAD ALGEBRAICA DEDU- CIBLE DE LOS POSTULADOS ANTERIORES PUEDE TRANSFORMARSE EN UN SEGUNDO TEOREMA O IDENTIDAD VÁLIDA SUSTITU- YENDO 1 S POR 0 S Y (+) POR ( ) CONSTANTE: CUALQUIER ELEMENTO DEL CONJUNTO B VARIABLE: SÍMBOLO QUE REPRESENTA UN ELEMENTO ARBITRARIO DEL ÁLGEBRA, YA SEA CONSTANTE O UNA FÓRMULA TEOREMA 1: EL ELEMENTO COMPLEMENTO, A, ES ÚNICO TEOREMA DE LOS ELEMENTOS NULOS: PARA CADA ELEMENTO DE B, SE VERIFICA: A + 1 = 1 A 0 = 0 TEOREMA 3: CADA ELEMENTO IDENTIDAD ES EL COMPLEMENTO DEL OTRO TEOREMA DE IDEMPOTENCIA: PARA CADA ELEMETO DE B, SE VERIFICA: A + A = A A A = A
3 TEOREMA DE INVOLUCIÓN: PARA CADA ELEMENTO DE B, SE VERIFICA: (A ) = A TEOREMA DE ABSORCIÓN: PARA CADA PAREJA DE ELEMENTOS DE B, SE VERI- FICA: A + A B = A A (A + B) = A TEOREMA 7: PARA CADA PAREJA DE ELE- MENTOS DE B, SE VERIFICA: A + A B = A + B A (A + B) = A B LEYES DE DEMORGAN: PARA CADA PAREJA DE ELEMENTOS DE B, SE VERIFICA: (A + B) = A B (A B) = A + B LEYES DE DEMORGAN GENERALIZADAS: PARA CADA CONJUNTO DE B, SE VERIFICA (A+B+...+Q) = A B... Q (A B... Q) = A +B +...+Q TEOREMA DE ASOCIATIVIDAD: CADA UNO DE LOS OPERADORES BINARIOS (+) Y ( ) CUMPLEN LA PROPIEDAD ASOCIATIVA A+(B+C) = (A+B)+C A (B C) = (A B) C
4 ÁLGEBRA DE CONMUTACIÓN: UN SISTEMA DE ELEMENTOS B={0,1} Y LOS OPERADO- RES DEFINIDOS DE LA SIGUIENTE FORMA A B A+B A B A ES UN ÁLGEBRA DE BOOLE OPERADOR + --> OPERADOR OR OPERADOR --> OPERADOR AND OPERADOR --> OPERADOR NOT FUNCIÓN COMPLETA: UNA FUNCIÓN QUE SE ENCUENTRA DEFINIDA PARA TODAS LAS COMBINACIONES DE LAS VARIABLES DE ENTRADA TABLA DE COMBINACIONES: FORMA DE REPRESENTAR FUNCIONES X 1 X 0 F(X 1,X 0 ) 0 0 F(0,0) 0 1 F(0,1) 1 0 F(1,0) 1 1 F(1,1)
5 FÓRMULAS DE CONMUTACIÓN: EXPRESIÓN DE UNA FUNCIÓN DE CONMU- TACIÓN. 1 Y 0 SON FÓRMULAS DE CONMUTACIÓN X I ES UNA FÓRMULA SI PERTENECE A {0,1} SI A ES UNA FÓRMULA, A TAMBIÉN LO ES SI A Y B SON FÓRMULAS, A+B Y A B LO SON NADA MÁS ES UNA FÓRMULA A MENOS QUE SIGAN LOS PUNTOS ANTERIORES EN UN NÚMERO FINITO DE PASOS. TEOREMA 11: CADA FÓRMULA DESCRIBE UNA ÚNICA FUNCIÓN DOS FÓRMULAS, A Y B, SON EQUIVALENTES (A=B) SI DESCRIBEN LA MISMA FUNCIÓN DE CONMUTACIÓN TÉRMINO PRODUCTO: OPERACIÓN AND DE UN NÚMERO DE LITERALES FÓRMULA NORMAL DISYUNTIVA: SUMA DE TÉRMINOS PRODUCTOS
6 TÉRMINO SUMA: OPERACIÓN OR DE UN NÚMERO DE LITERALES FÓRMULA NORMAL CONJUNTIVA: PRODUCTO DE TÉRMINOS SUMA MINTÉRMINO (m i ): TÉRMINO PRODUCTO EN EL QUE APARECEN TODAS LAS VARIABLES, YA SEAN COMPLEMENTADAS O SIN COMPLEMENTAR FÓRMULA CANÓNICA DISYUNTIVA O DE MINTÉRMINOS: SUMA DE MIN- TÉRMINOS TEOREMA 12: DADA LA LISTA COMPLETA DE MINTÉRMINOS Y ASIG- NANDO 1 S Y 0 S ARBITRARIAMENTE A LAS VARIABLES, SIEMPRE HAY UN Y SÓLO UN MINTÉRMINO QUE TOMA EL VALOR 1. TEOREMA 13: LA FÓRMULA COMPUESTA POR TODOS LOS MINTÉRMINOS SERÁ IDÉNTICAMENTE 1.
7 TEOREMA 14: CADA FUNCIÓN PUEDE EXPREASRSE COMO SUMA DE MIN- TÉRMINOS TEOREMA 15: LA FÓRMULA DE MINTÉRMINOS ES ÚNICA PRIMER TEOREMA DE EXPANSIÓN: SIEMPRE SE VERIFICA: F(X 1,...,X N ) = X 1 F(1,...,X N ) + X 1 F(0,...,X N ) TEOREMA 17: CADA FUNCIÓN COMPLETA PUEDE EXPRESARSE COMO: F(X 1,...,X N ) = Σ i F(i) m i (X 1,...,X N ) F(X,Y,Z) = X Y Z+X Y Z +X Y Z = m 7 + m 2 + m 0 MAXTÉRMINO (M I ): TÉRMINO SUMA EN EL QUE APARECEN TODAS LAS VARIABLES, YA SEAN COMPLEMENTADAS O SIN COMPLEMENTAR FÓRMULA CANÓNICA CONJUNTIVA O DE MAXTÉRMINOS: PRODUCTO DE MAXTÉRMINOS
8 TEOREMA 18: DADA LA LISTA COMPLETA DE MAXTÉRMINOS Y ASIG- NANDO 0 S Y 1 S ARBITRARIAMENTE A LAS VARIABLES, SIEMPRE HAY UN Y SÓLO UN MAXTÉRMINO QUE TOMA EL VALOR 0. TEOREMA 19: LA FÓRMULA COMPUESTA POR TODOS LOS MAXTÉRMINOS SERÁ IDÉNTICAMENTE 0. TEOREMA 20: CADA FUNCIÓN PUEDE EXPRESARSE COMO PRODUCTO DE MAXTÉRMINOS TEOREMA 21: LA FÓRMULA DE MAXTÉRMINOS ES ÚNICA SEGUNDO TEOREMA DE EXPANSIÓN: SIEMPRE SE VERFICA: F(X 1,...,X N )=[X 1 +F(0,...,X N )] [X 1 +F(1,...,X N )] TEOREMA 23: CADA FUNCIÓN COMPLETA PUEDE ESCRIBIRSE COMO: F(X 1,...,X N ) = Π i [F(i)+M(X 1,...,X N )] F(X,Y,Z) = (X +Y +Z ) (X+Y +Z) (X+Y+Z) = M 7 M 2 M 0
9 TEOREMA 24: EL COMPLEMENTO DE UNA FÓRMULA DE MINTÉRMINOS ESTÁ FORMADO POR LA SUMA DE LOS MINTÉRMINOS QUE NO APARECEN TEOREMA 25: EL COMPLEMENTO DE UNA FÓRMULA DE MÁXTERMINOS ESTÁ FORMADO POR EL PRODUCTO DE LOS MAXTÉRMINOS QUE NO APA- RECEN TEOREMA 26: m i = M i Y M i = m i LA TRANSFORMACIÓN DE UNA FÓRMULA DE MINTÉRMINOS (EN GENERAL DISYUNTIVA) EN OTRA DE MAXTÉRMINOS (EN GENERAL CONJUNTVA) SE BASA EN LA DOBLE COMPLEMENTACIÓN, (F ) = F CRITERIOS DE MINIMALIDAD: MENOR NÚMERO DE VARIABLES MENOR NÚMERO DE TÉRMINOS MENOR VALOR ASOCIADO: Nº TÉRMINOS + Nº VARIABLES - Nº TÉRMINOS CON UN SOLO LITERAL -1
10 FUNCIONES INCOMPLETAS: FUNCIONES QUE NO ESTÁN DEFINIDAS PARA TODAS LAS COMBINACIONES DE LAS VARIABLES DE ENTRADA FUNCIÓN COMPLETA CON TODAS LAS INESPECIFICACIONES A 0 FUNCIÓN INESPECIFICACIÓN COMPLEMENTO DE UNA FUNCIÓN INCOMPLETA: OTRA FUNCIÓN INCOM- PLETA CON LA MISMA FUNCIÓN INESPECIFIFCACIÓN Y EL COMPLE- MENTO DE LA FUNCIÓN COMPLETA LAS FÓRMULAS DE MINTÉRMINOS Y MAXTÉRMINOS DE LAS FUNCIONES INCOMPLETAS NO SON ÚNICAS
11 ARITMÉTICA BINARIA SUMA BINARIA: A B SUMA ACARREO <-- ACARREO > > > RESTA BINARIA: A B RESTA DESBORDAMIENTO > <-- DESBORDAMIENTO >
12 COMPLEMENTO A DOS: NÚMERO BINARIO NEGA- TIVO INVERSIÓN DEL NÚMERO Y SUMAR 1 2 (1011) --> = 0101 DESDE LA DERECHA, BUSCAR EL PRIMER 1, Y A PARTIR DEL SIGUIENTE INVERTIR EL RESTO DE BITS. 2 (1011) --> 0101 OPERACIONES DE DESPLAZAMIENTO DESPLAZAMIENTO DE N DÍGITOS A LA IZQUIERDA (AÑADIENDO CEROS EN CASO NECESARIO) ES IGUAL QUE MULTIPLICAR POR 2 N DESPLAZAMIENTO DE N DÍGITOS A LA DERE- CHA (AÑADIENDO CEROS EN CASO NECESA- RIO) ES IGUAL QUE MULTIPLICAR POR 2 -N O DIVIDIR POR 2 N MULTIPLICACIÓN BINARIA: A B A B SE MULTIPLICA DÍGITO A DÍGITO Y SE REALI- ZAN LAS SUMAS SUCESIVAS:
13 DIVISIÓN BINARIA: MEDIANTE ALGORITMO ALINEAR EL DIVISOR CON LA PARTE MÁS IZQUIERDA DEL DIVIDENDO (QUE SEA MAYOR QUE EL DIVISOR) AL COCIENTE SE LE AÑADE UN 1. BAJA EL SIGUIENTE DÍGITO DEL DIVIDENDO AL RESULTADO DE LA RESTA 0 < RESTA < : AL COCIENTE SE LE AÑADE UN 0. BAJA EL SIGUIENTE DÍGITO DEL DIVIDENDO AL RESULTADO DE LA RESTA ANTERIOR
Fundamentos de Computadores. Álgebra de Conmutación
Fundamentos de Computadores Álgebra de Conmutación Objetivos Conceptuales: Conocer el Álgebra de Boole y el Álgebra de Conmutación como caso especial de aquella Propiedades del Álgebra de Boole Representación
Álgebra Booleana. Suma Booleana. El término suma es 1 si al menos uno de sus literales son 1. El término suma es 0 solamente si cada literal es 0.
Álgebra Booleana El álgebra de Boole son las matemáticas de los sistemas digitales. En el nivel de lógica digital de una computadora, lo que comúnmente se llama hardware y que está formado por los componentes
TEMA 3 ÁLGEBRA DE CONMUTACIÓN
TEMA 3 ÁLGEBRA DE CONMUTACIÓN TEMA 3: Álgebra de Boole ÍNDICE. POSTULADOS DEL ÁLGEBRA DE CONMUTACIÓN 2. ÁLGEBRA DE BOOLE BIVALENTE O ÁLGEBRA DE CONMUTACIÓN 2. Teoremas del álgebra de conmutación 3. VARIABLES
GUIA 4: ALGEBRA DE BOOLE
GUIA 4: ALGEBRA DE BOOLE En 1854 George Boole introdujo una notación simbólica para el tratamiento de variables cuyo valor podría ser verdadero o falso (variables binarias) Así el álgebra de Boole nos
Circuitos Electrónicos Digitales. Tema II Parte II. Álgebra de Conmutación
Circuitos Electrónicos Digitales Tema II Parte II Álgebra de Conmutación Índice 1.Álgebra de Conmutación 2.Funciones combinacionales 3.Formas normalizadas Álgebra de Conmutación Álgebra de Conmutación
Tema 3.1 Introducción a los circuitos combinacionales. Algebra de Boole
Tema 3.1 Introducción a los circuitos combinacionales. Algebra de Boole Índice Algebra de Boole. Definición. Operaciones lógicas: OR, AND, XOR y NOT Puertas lógicas Algebra de Boole Postulados Teoremas
Álgebra Booleana. Álgebra Booleana. Definiciones. Definiciones. Definiciones. Definiciones. Sistemas Digitales Mario Medina 1
Álgebra Booleana Álgebra Booleana Mario Medina C. [email protected] Postulados y axiomas Lemas y teoremas Referencias a otras álgebras Álgebra de Boole: estructura algebraica definida sobre un conjunto
Álgebra de Boole. Valparaíso, 1 er Semestre Prof. Rodrigo Araya E.
Prof. Rodrigo Araya E. [email protected] Universidad Técnica Federico Santa María Departamento de Informática Valparaíso, 1 er Semestre 2006 1 2 3 4 Contenido En 1815 George Boole propuso una herramienta
ALGEBRA BOOLEANA (ALGEBRA LOGICA)
ALGEBRA BOOLEANA Un sistema axiomático es una colección de conocimientos ordenados jerárquica-mente mediante reglas o leyes lógicas aplicadas a un número limitado de conceptos o principios básicos. Un
Álgebra de Boole. Adición booleana. Multiplicación booleana. Escuela Politécnica Superior
Álgebra de Boole El Álgebra de Boole es una forma muy adecuada para expresar y analizar las operaciones de los circuitos lógicos. Se puede considerar las matemáticas de los sistemas digitales. Operaciones
TEMA II: ÁLGEBRA DE CONMUTACIÓN
TEMA II: ÁLGEBRA DE CONMUTACIÓN En este capítulo veremos los métodos matemáticos que se disponen para las operaciones relacionadas con los circuitos digitales, así como las funciones más básicas de la
03. Introducción a los circuitos lógicos
03. Introducción a los circuitos lógicos 1. LÓGICA DE PROPOSICIONES...2 PROPOSICIÓN...2 CONECTORES U OPERADORES LÓGICOS...2 Tablas de...2 Tautología...2 Contradicción...2 2. ÁLGEBRA DE BOOLE...3 AXIOMAS
Centro Asociado Palma de Mallorca. Tutor: Antonio Rivero Cuesta
Centro Asociado Palma de Mallorca Arquitectura de Ordenadores Tutor: Antonio Rivero Cuesta Unidad Didáctica 1 Representación de la Información y Funciones Lógicas Tema 3 Algebra Booleana y Puertas Lógicas
2. ÁLGEBRA DE BOOLE OPERACIONES BÁSICAS DEL ÁLGEBRA DE BOOLE. OPERACIONES LÓGICAS.
2. ÁLGEBRA DE BOOLE 2..- Definición. 2.2.- Operaciones básicas. 2.3.- Propiedades o teoremas del álgebra de Boole. 2.4.- Función Booleana / Lógica. 2.5.- Representación de función Booleana. 2.6.- Formas
Sistemas informáticos industriales. Algebra de Boole
Sistemas informáticos industriales 2016 lgebra de oole lgebra oole Se denomina así en honor a George oole (1815-1864). El algebra de oole se emplea en sistema de control digitales, desde los sistemas de
Organización del Computador 1 Lógica Digital 1: álgebra de Boole y
Introducción Circuitos Bloques Organización del Computador 1 Lógica Digital 1: álgebra de Boole y compuertas Departamento de Computación Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires
Organización del Computador 1 Lógica Digital 1: álgebra de Boole y compuertas
Organización del Computador 1 Lógica Digital 1: álgebra de Boole y compuertas Dr. Marcelo Risk Departamento de Computación Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires 2017 Lógica
Suma Resta Multiplica. División Alg. Boole Tbla Verdad Circuitos Karnaugh
Sistemas de Numeración Operaciones Aritméticas Con SIGNO 2007-0808 Sistemas de Numeración 1 Suma SUMA: Cuatro posibles casos: AyBsonpositivos => >A+B> >= 0 A y B son negativos => A+B < 0 A positivo y B
Operaciones con números racionales. SUMA/RESTA.
http//www.colegiovirgendegracia.org/eso/dmate.htm ARITMÉTICA Números racionales.9. Operaciones con números racionales. SUMA/RESTA. (A) Reducción a común denominador 4 y 7 4 4 y 7 6 y 4 80 80 80 80 (B)
k k N b Sistemas Númericos Sistemas con Notación Posicional (1) Sistemas con Notación Posicional (2) Sistemas Decimal
Sistemas con Notación Posicional (1) Sistemas Númericos N b = a n-1 *b n-1 + a n-2 *b n-2 +... + a 0 *b 0 +a -1 *b - 1 + a -2 *b -2 +... + a -m *b -m Sistemas con Notación Posicional (2) N b : Número en
Suma Resta Multiplica. División Alg. Boole Tbla Verdad Circuitos Karnaugh
Funciones Lógicas 2009-20102010 Sistemas de Numeración 1 Suma Algebra de Boole: Desarrollada en 1947 por George Boole y se usa para resolver problemas lógico-resolutivos. Son las matemáticas de los sistemas
Unidad IV. Teorema 1: Multiplicación por cero (identidad) Es el factor neutro: Suma: a+1=! producto: a0=0
Unidad IV Algebra Booleana 4.1 Teoremas y postulados. Teoremas Teorema 1: Multiplicación por cero (identidad) Es el factor neutro: Suma: a+1=!--------producto: a0=0 Teorema 2: Absorción En la suma se identifica
ESTRUCTURA Y TECNOLOGÍA DE LOS COMPUTADORES I. TEMA 4 Algebra booleana y puertas lógicas
ESTRUCTURA Y TECNOLOGÍA DE LOS COMPUTADORES I TEMA 4 Algebra booleana y puertas lógicas TEMA 4. Algebra booleana y puertas lógicas 4.1 Definición de álgebra de Boole 4.2 Teoremas del álgebra de Boole 4.3
Conceptos previos. Revisión de Sistemas Lógicos Formatos Numéricos. Dpto. Ingeniería Electrónica y Comunicaciones
Conceptos previos Revisión de Sistemas Lógicos Formatos Numéricos Revisión de Sistemas Lógicos Álgebra de Boole Base matemática de la Electrónica Digital Consta de dos elementos: 0 lógico y 1 lógico Tecnología
Algebra de Boole: Teoremas
Teorema 1: A + A = A Teorema 2: A A = A Teorema 3: A + 0 = A Teorema 4: A 1 = A Teorema 5: A 0 = 0 Teorema 6: A + 1 = 1 Teorema 7: (A + B) = A B Teorema 8: (A B) = A + B Teorema 9: A + A B = A Teorema
Compuertas Lógicas, Algebra Booleana
Compuertas Lógicas, Algebra Booleana Representación de números negativos Herramientas para conversión y operaciones aritméticas Evaluación BIN DEC DEC Revisión Evaluación Compuertas lógicas Algebra Booleana
I UNIDAD ÁLGEBRA BOOLEANA Y COMPUERTAS LÓGICAS
I UNIDAD ÁLGEBRA BOOLEANA Y COMPUERTAS LÓGICAS 1.1 Electrónica Digital Obviamente es una ciencia que estudia las señales eléctricas, pero en este caso son señales discretas, es decir, están bien identificadas,
Álgebra Booleana circuitos lógicos
Álgebra Booleana y circuitos lógicos OBJETIVO GENERAL Teniendo en cuenta que los circuitos digitales o lógicos operan de forma binaria, emplear el álgebra booleana como fundamento teórico para el análisis,
Fundamentos de los Computadores. Álgebra de Boole. 1 3. ÁLGEBRA DE BOOLE
Fundamentos de los Computadores. Álgebra de oole. 1 3. ÁLGER DE OOLE Un sistema de elementos y dos operaciones binarias cerradas ( ) y (+) se denomina LGER de OOLE siempre y cuando se cumplan las siguientes
ÁLGEBRAS DE BOOLE. En un álgebra de Boole (B, +,, ) se cumplen las siguientes propiedades, para todo x, y, z B: Doble Complemento
ÁLGEBRAS DE BOOLE CARACTERIZACIÓN DE UN ÁLGEBRA DE BOOLE Un álgebra de Boole (o álgebra booleana) consiste en un conjunto B = {0, 1}, operadores binarios + y en S y un operador unario en S. Estas operaciones
ALGEBRA DE BOOLE George Boole C. E. Shannon E. V. Hungtington [6]
ALGEBRA DE BOOLE El álgebra booleana, como cualquier otro sistema matemático deductivo, puede definirse con un conjunto de elementos, un conjunto de operadores y un número de axiomas no probados o postulados.
El álgebra booleana fue estudiada por Pitágoras y George Boole.
ALGEBRA DE BOOLE Centro CFP/ES ALGEBRA DE BOOLE El álgebra booleana fue estudiada por Pitágoras y George Boole. Con el álgebra booleana, partiendo de una serie de sentencias lógicas iniciales verdaderas
Algebra de Boole. » a + a = 1» a a = 0
Algebra de Boole Dos elementos: 0 y 1 Tres operaciones básicas: producto ( ) suma ( + ) y negación ( ` ) Propiedades. Siendo a, b, c números booleanos, se cumple: Conmutativa de la suma: a + b = b + a
Tema 1: Circuitos Combinacionales
Tema : Circuitos Combinacionales Contenidos. Introducción. Aritmética. Álgebra de Boole Señales Sistemas. Introducción Entrada Ecitación Sistema Salida Respuesta Un sistema es un conjunto de partes o elementos
ANALÓGICO vs. DIGITAL
ANALÓGICO vs. DIGITAL Una señal analógica se caracteriza por presentar un numero infinito de valores posibles. Continuo Posibles valores: 1.00, 1.01, 200003,, infinitas posibilidades Una señal digital
Tema 2. Funciones Lógicas. Algebra de Conmutación. Representación de circuitos digitales. Minimización de funciones lógicas.
Tema 2. Funciones Lógicas Algebra de Conmutación. Representación de circuitos digitales. Minimización de funciones lógicas. Álgebra de conmutación Algebra de Conmutación: Postulados y Teoremas. Representación
Álgebra Booleana y Diseño Lógico. Circuitos Digitales, 2º de Ingeniero de Telecomunicación. EITE ULPGC.
Álgebra Booleana y Diseño Lógico Circuitos Digitales, 2º de Ingeniero de Telecomunicación. EITE ULPGC. Índice 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. Propiedades algebraicas Definición axiomática de álgebra
ÁLGEBRA BOOLEANA. INTRODUCCIÓN AL ÁLGEBRA DE BOOLE
ÁLGEBRA BOOLEANA. INTRODUCCIÓN AL ÁLGEBRA DE BOOLE En 1854, George Boole publicó un libro titulado Investigación sobre las leyes del pensamiento, formulando un método simbólico para el estudio de las relaciones
Expresiones algebraicas
Polinomios Expresiones algebraicas Una expresión algebraica es cualquier combinación de números y letras relacionados por operaciones aritméticas: suma, resta, producto, división y potenciación. Ejemplos
UNIDAD 4. Álgebra Booleana
UNIDAD 4 Álgebra Booleana ÁLGEBRA BOOLEANA El Álgebra Booleana se define como una retícula: Complementada: existe un elemento mínimo 0 y un elemento máximo I de tal forma que si a esta en la retícula,
Introducción volts.
Constantes y Variables Booleanas Tabla de Verdad. Funciones lógicas (AND, OR, NOT) Representación de las funciones lógicas con compuerta lógicas básicas (AND, OR, NOT) Formas Canónicas y Standard (mini
I. ALGEBRA DE BOOLE. c) Cada operación es distributiva con respecto a la otra: a. ( b + c) = a. b + a. c a + ( b. c ) = ( a + b ).
I. I.1 DEFINICION. El Algebra de Boole es toda clase o conjunto de elementos que pueden tomar dos valores perfectamente diferenciados, que designaremos por 0 y 1 y que están relacionados por dos operaciones
Ampliación Matemática Discreta. Justo Peralta López
Justo Peralta López UNIVERSIDAD DE ALMERíA DEPARTAMENTO DE ÁGEBRA Y ANÁLISIS MATEMÁTICO 1 Introducción 2 Definición semántica de las proposiciones 3 Diagrama de valores de certeza 4 Evaluación de fórmulas.
EL LENGUAJE DE LAS COMPUTADORAS
EL LENGUAJE DE LAS COMPUTADORAS AUTORÍA ANGEL MANUEL RUBIO ORTEGA TEMÁTICA ELECTRICIDAD, ELECTRÓNICA ETAPA ESO, BACHILLERATO Resumen Actualmente nos encontramos rodeados dispositivos digitales. Por ello
ÁLGEBRA BOOLEANA El álgebra booleana es un sistema matemático deductivo centrado en los valores cero y uno (falso y verdadero). Un operador binario "
ÁLGEBRA BOOLEANA El álgebra booleana es un sistema matemático deductivo centrado en los valores cero y uno (falso y verdadero). Un operador binario " " definido en éste juego de valores acepta un par de
5.3. Álgebras de Boole y de conmutación. Funciones lógicas
5.3. Álgebras de Boole y de conmutación. Funciones lógicas 5.3.1. Algebra de conmutación o algebra booleana 5.3.1.1. Axiomas [ Wakerly 4.1.1 pág. 195] 5.3.1.2. Teoremas de una sola variable [ Wakerly 4.1.2
ÁLGEBRA DE BOOLE. 1.- Postulados de HUNTINGTON
ÁLGEBRA DE BOOLE El Algebra de Boole es importante pues permite representar matemáticamente el funcionamiento de los circuitos digitales. Los circuitos digitales son capaces de permanecer en 2 estados,
UNIDAD 4. Algebra de Boole
UNIDAD 4 Algebra de Boole Introducción a la unidad La tecnología nos permite construir compuertas digitales a través de transistores y mediante las compuertas diseñamos los circuitos digitales empleados
Álgebra Booleana y Circuitos Lógicos. UCR ECCI CI-0111 Estructuras Discretas Prof. Kryscia Daviana Ramírez Benavides
Álgebra Booleana y Circuitos Lógicos UCR ECCI CI-0111 Estructuras Discretas Prof. Kryscia Daviana Ramírez Benavides Álgebra Booleana Tanto los conjuntos como las proposiciones tienen propiedades similares.
Operaciones Booleanas y Compuertas Básicas
Álgebra de Boole El álgebra booleana es la teoría matemática que se aplica en la lógica combinatoria. Las variables booleanas son símbolos utilizados para representar magnitudes lógicas y pueden tener
1.1 Circuitos Digitales
TEMA III Circuitos Digitales Electrónica II 27. Circuitos Digitales Del mundo analógico al digital. Ventajas de la señal digital. Inconvenientes de la señal digital. Algebra de Boole. Puertas Lógicas.
Números Naturales. Cero elemento neutro: = 12 Sucesión fundamental : se obtiene el siguiente número = 9
Números Naturales Cuando comenzamos a contar los objetos, los años, etc, nos hemos encontrado con los números de forma natural; por eso a este conjunto de números así aprendidos se les denomina números
Expresiones Algebraicas en los Números Reales
Operaciones con en los Números Reales Carlos A. Rivera-Morales Álgebra Tabla de Contenido Contenido Operaciones con Operaciones con : Contenido Operaciones con Discutiremos: qué es una: expresión algebraica
BLOQUE V. CONTROL Y PROGRAMACIÓN DE SISTEMAS AUTOMÁTICOS
Bloque V. Control y programación de sistemas automáticos pág. 1 Bloque V. Control y programación de sistemas automáticos pág. 2 BLOQUE V. CONTROL Y PROGRAMACIÓN DE SISTEMAS AUTOMÁTICOS 1. LA INFORMACIÓN
BLOQUE V. CONTROL Y PROGRAMACIÓN DE SISTEMAS AUTOMÁTICOS
Bloque V. Control y programación de sistemas automáticos pág. 1 BLOQUE V. CONTROL Y PROGRAMACIÓN DE SISTEMAS AUTOMÁTICOS 1. LA INFORMACIÓN BINARIA 1.1. Sistemas de numeración y códigos Def. Sistema de
Operaciones Aritméticas en Números con Signo
Operaciones Aritméticas en Números con Signo M. en C. Erika Vilches Parte 3 Multiplicación sin Signo Reglas básicas para multiplicar bits: 0x0 = 0 0x1 = 0 1x0 = 0 1x1 = 1 Ejemplos en números sin signo:
Álgebra de Boole A p u n te N 3
Álgebra de Boole Apunte N 3 G e o r g e B o o l e y C l a u d e S h a n n o n La finalidad de la Electrónica Digital es procesar la información. Para ello utiliza las operaciones definidas por George Boole
Electrónica Digital - Guión
Electrónica Digital - Guión 1. Introducción. 2. El álgebra de Boole. 3. Propiedades del álgebra de Boole. 4. Concepto de Bit y Byte. 5. Conversión del sistema decimal en binario y viceversa. 6. Planteamiento
Partes de un monomio
Monomios Un monomio es una epresión algebraica en la que la únicas operaciones que afectan a las letras son la multiplicación y la potencia de eponente natural. Son monomios: NO son monomios: 1 yz 1 abc
RESUMEN DE ALGEBRA. CONCEPTO: El pensador principal del algebra es Al-Hwarizmi; es de origen árabe.
RESUMEN DE ALGEBRA CONCEPTO: El pensador principal del algebra es Al-Hwarizmi; es de origen árabe. El álgebra es la rama del conocimiento de la matemática; es decir se desprende de ella. Estudia realidades
Si un objeto x es elemento de un conjunto A, se escribe: x A.
Conjuntos. Dentro de la teoría se consideran como primitivos o términos no definidos los conjuntos y los elementos. En general, se designan los conjuntos usando letras latinas mayúsculas y los elementos
OPERACIONES CON NÚMEROS BINARIOS
OPERACIONES CON NÚMEROS BINARIOS Centro CFP/ES SUMA BINARIA La información tenemos que transformarla, compararla y procesarla. Para ello empleamos la aritmética binaria, es decir, procesos matemáticos
Expresiones algebraicas. Copyright 2013, 2009, 2006 Pearson Education, Inc. 1
Expresiones algebraicas Copyright 2013, 2009, 2006 Pearson Education, Inc. 1 Variables Álgebra utiliza letras como x & y para representar números. Si una letra se utiliza para representar varios números,
Arquitectura de Computadoras Algebra de Boole Basadas en las Notas de Teórico Versión 1.0 del Dpto. de Arquitectura-InCo-FIng
Basadas en las Versión.0 del Dpto. de Arquitectura-InCo-FIng ALGEBRA DE BOOLE Introducción. El álgebra de Boole es una herramienta de fundamental importancia en el mundo de la computación. Las propiedades
Tipos de Datos y Representaciones. Circuitos Digitales, 2º de Ingeniero de Telecomunicación. EITE ULPGC.
Tipos de Datos y Representaciones Circuitos Digitales, 2º de Ingeniero de Telecomunicación. EITE ULPGC. Índice 1. Sistemas numéricos posicionales 2. Números octales y hexadecimales 3. Conversiones entre
Algebra de Boole y simplificación de funciones lógicas. Capítulo 4
Algebra de Boole y simplificación de funciones lógicas Capítulo 4 Contenido 1. Expresiones y operaciones Booleanas 2. Propiedades y Reglas del Algebra de Boole 3. Teoremas de DeMorgan 4. Análisis booleano
Números reales Conceptos básicos Algunas propiedades
Números reales Conceptos básicos Algunas propiedades En álgebra es esencial manejar símbolos con objeto de transformar o reducir expresiones algebraicas y resolver ecuaciones algebraicas. Debido a que
TEMA 6 UNIDAD ARITMÉTICO LÓGICA
FUNDMENTOS DE TEM 6 UNIDD RITMÉTICO LÓGIC. OPERDORES LÓGICOS. 2. PROPIEDDES DE L UL. 3. OPERDORES DE DESPLZMIENTO. Desplazamientos lógicos. Desplazamientos circulares. Desplazamientos aritméticos. 4. OPERCIONES
POLINOMIOS Y DIVISIÓN DE POLINOMIOS MATEMÁTICAS 3º ESO
POLINOMIOS Y DIVISIÓN DE POLINOMIOS MATEMÁTICAS 3º ESO Dado que los polinomios se utilizan para describir curvas de diferentes tipos, la gente los utiliza en el mundo real para dibujar curvas. Por ejemplo,
RECONOCER EL GRADO, EL TÉRMINO Y LOS COEFICIENTES DE UN POLINOMIO
OBJETIVO RECONOCER EL GRADO, EL TÉRMINO Y LOS COEICIENTES DE UN POLINOMIO NOMBRE: CURSO: ECHA: Un polinomio es una expresión algebraica formada por la suma de monomios, que son los términos del polinomio.
Algebra de Boole y puertas lógicas
Algebra de Boole y puertas lógicas Luis Entrena, Celia López, Mario García, Enrique San Millán Universidad Carlos III de Madrid 1 Índice Postulados y propiedades fundamentales del Álgebra de Boole Funciones
Algebras booleanas. B2) Leyes Distributivas. Cada operación es distributiva con respecto a la otra:
Algebras booleanas AXIOMAS DEL ALGEBRA DE BOOLE Sea B un conjunto en el cual se han definido dos operaciones binarias, + y * (En algunos casos se definen en términos de y respectivamente), y una operación
2-Funciones y representaciones booleanas
2-Funciones y representaciones booleanas 2.1 Lógica y álgebra de Boole 2.2 Funciones booleanas 2.3 Representaciones de funciones booleanas. 2.4 Funciones de varias variables. 2: Funciones booleanas 1 Lógica
TEMA 3. Álgebra de Boole
Fundamentos de los Computadores. Álgebra de oole. T3-1 INDICE: TEM 3. Álgebra de oole EL ÁLGER DE OOLE TEOREMS DEL ÁLGER DE OOLE REPRESENTCIÓN DE FUNCIONES LÓGICS o TL DE VERDD o FORMS CNÓNICS o CONVERSIÓN
Fundamentos de Informática E.U.P. Universidad de Sevilla
rea de Arquitectura y Teoría de Computadores Fundamentos de Informática E.U.P. Universidad de Sevilla Capítulo : INTRODUCCIÓN A LA INFORMÁTICA epartamento de Álgebra. INDICE INFORMÁTICA E INGENIERÍA DEFINICIÓN
LECCIÓN Nº 01 SISTEMAS COMBINACIONALES
LECCIÓN Nº 01 SISTEMAS COMBINACIONALES 1. GENERALIDADES PUERTAS LOGICAS Una puerta lógica es un elemento que recibe varias entradas binarias (variables) y, dependiendo del estado de las entradas, su salida
SISTEMAS Y CÓDIGOS DE NUMERACIÓN
INTRODUCCIÓN SISTEMAS Y CÓDIGOS DE NUMERACIÓN Una señal analógica es aquella que puede tomar infinitos valores para representar la información. En cambio, en una señal digital se utiliza sólo un número
Descripción en VHDL de arquitecturas para implementar el algoritmo CORDIC
Anexo B Funciones booleanas El álgebra de Boole provee las operaciones las reglas para trabajar con el conjunto {0, 1}. Los dispositivos electrónicos pueden estudiarse utilizando este conjunto las reglas
CURSO DE MATEMÁTICA BÁSICA: ÁLGEBRA
http:/// CURSO DE MATEMÁTICA BÁSICA: ÁLGEBRA DESARROLLA EN FORMA RESUMIDA CADA UNIDAD CON: I. GUIONES DE CONFERENCIAS II. FICHAS DE ESTUDIO III. LABORATORIOS DE EJERCICIOS Trata las unidades siguientes:
Aritmética de Enteros
Aritmética de Enteros La aritmética de los computadores difiere de la aritmética usada por nosotros. La diferencia más importante es que los computadores realizan operaciones con números cuya precisión
ALGEBRA BOOLEANA. CONMUTATIVO. Se dice que un operador binario º es conmutativo si A º B = B º A para todos los posibles valores de A y B.
ÁLGEBRA BOOLEANA UNEFA NUCLEO ZULIA El álgebra booleana es un sistema matemático deductivo centrado en los valores cero y uno (falso y verdadero). Un operador binario º definido en éste juego de valores
Álgebra Booleana y Circuitos Lógicos. UCR ECCI CI-1204 Matemáticas Discretas Prof. M.Sc. Kryscia Daviana Ramírez Benavides
Álgebra Booleana Circuitos Lógicos UCR ECCI CI-1204 Matemáticas Discretas Prof. M.Sc. Krscia Daviana Ramíre Benavides Álgebra Booleana Tanto los conjuntos como las proposiciones tienen propiedades similares.
Profesor Rubén Martín Pérez ELECTRÓNICA DIGITAL. TECNOLOGÍA 4º ESO ELECTRÓNICA DIGITAL
INDICE: ELECTRÓNICA DIGITAL. INTRODUCCIÓN.. TIPOS DE SEÑALES. 2. REPRESENTACIÓN DE LAS SEÑALES DIGITALES. 3. SISTEMA BINARIO. 4. FUNCIONES BÁSICAS. 5. COMBINACIONES ENTRE FUNCIONES BÁSICAS. 6. PROPIEDADES
TEMA PUERTAS LÓGICAS. TÉCNICAS DE DISEÑO Y SIMPLIFICACIÓN DE FUNCIONES LÓGICAS.
PUERTAS LÓGICAS. TÉCNICAS DE DISEÑO Y SIMPLIFICACIÓN DE FUNCIONES LÓGICAS. ÍNDICE.- INTRODUCCIÓN... 2.- ELECTRÓNICA DIGITAL... 3.. SISTEMAS DE NUMERACIÓN... 3.2. SEÑAL DIGITAL BINARIA... 3.3. SISTEMAS
CIRCUITOS ELECTRÓNICOS DIGITALES BOLETÍN DE PROBLEMAS 4
CIRCUITOS ELECTRÓNICOS DIGITALES GRADO EN INGENIERÍA INFORMÁTICA TECNOLOGÍAS INFORMÁTICAS BOLETÍN DE PROBLEMAS 4 1.- Indique cuántos bits son necesarios, como mínimo, para representar cada uno de los siguientes
EL ALGEBRA COMO ARITMETICA GENERALIZADA
EL ALGEBRA COMO ARITMETICA GENERALIZADA LEYES QUE GOBIERNAN LOS NUMEROS Un conjunto de números u objetos por si solos pueden no significar nada, son las relaciones entre ellos lo que le da estructura y
OPERACIÓN CON NÚMEROS ENTEROS(Z)
OPERACIÓN CON NÚMEROS ENTEROS(Z) Imagina que un día estas de visita en un apartamento de unos amigos, al despedirte bajas al sótano 2 a buscar tu carro y te das cuenta que dejaste las llaves en casa de
CIRCUITOS DIGITALES -
CIRCUITOS DIGITALES - INTRODUCCIÓN CIRCUITOS DIGITALES CIRCUITOS DIGITALES SON LOS QUE COMUNICAN Y PROCESAN INFORMACIÓN DIGITAL SEÑAL DIGITAL: SOLO PUEDE TOMAR UN NÚMERO FINITO DE VALORES. EN BINARIO:
Circuitos Electrónicos Digitales
Circuitos Electrónicos Digitales Bloque 1: Circuitos Electrónicos y familias lógicas Tema 3: Familias lógicas Guión del tema Algebra de conmutación. Variables y operadores lógicos. Ejemplo de puertas lógicas.
Álgebra Booleana y Circuitos Lógicos. UCR ECCI CI-1204 Matemáticas Discretas Prof. Kryscia Daviana Ramírez Benavides
Álgebra Booleana y Circuitos Lógicos UCR ECCI CI-1204 Matemáticas Discretas Prof. Kryscia Daviana Ramírez Benavides Álgebra Booleana Tanto los conjuntos como las proposiciones tienen propiedades similares.
MONOMIOS Y POLINOMIOS
Trabajar en álgebra consiste en manejar relaciones numéricas en las que una o más cantidades son desconocidas. Estas cantidades se llaman variables, incógnitas o indeterminadas y se representan por letras.
1. EXPRESIONES ALGEBRAICAS.
TEMA 3: POLINOMIOS 1. EXPRESIONES ALGEBRAICAS. Trabajar en álgebra consiste en manejar relaciones numéricas en las que una o más cantidades son desconocidas. Estas cantidades se llaman variables, incógnitas
Introducción a la Matemática Discreta
Introducción a la Matemática Discreta Lógica proposicional y Álgebras de Boole Luisa María Camacho Camacho Introd. a la Matemática Discreta 1 / 25 Introducción a la Matemática Discreta Temario Tema 1.
MATEMÁTICAS DISCRETAS. UNIDAD 2 Algebras Booleanas y Circuitos Combinatorios
MATEMÁTICAS DISCRETAS UNIDAD 2 Algebras Booleanas y Circuitos Combinatorios 2.1 CIRCUITOS COMBINATORIOS Inicie dando lectura a la subunidad 11.1, deténgase en el ejemplo 11.1.4, compare las tablas de los
Álgebra y Trigonometría
Álgebra y Trigonometría Conceptos fundamentales del Álgebra Universidad de Antioquia Departamento de Matemáticas 1. Números Reales El conjunto de los números reales está constituido por diferentes clases
3º ESO POLINOMIOS DEPARTAMENTO DE MATEMÁTICAS. SAGRADO CORAZÓN COPIRRAI_Julio César Abad Martínez-Losa POLINOMIOS
º ESO POLINOMIOS DEPARTAMENTO DE MATEMÁTICAS. POLINOMIOS 1.- POLINOMIOS Una expresión algebraica está formada por números y letras asociados por medio de las operaciones aritméticas (suma, resta, multiplicación,
