TEMA II.- ÁLGEBRA DE BOOLE

Tamaño: px
Comenzar la demostración a partir de la página:

Download "TEMA II.- ÁLGEBRA DE BOOLE"

Transcripción

1 TEMA II.- ÁLGEBRA DE BOOLE UN SISTEMA DE ELEMENTOS B Y DOS OPERACIONES BINARIAS CERRA- DAS ( ) Y (+) SE DENOMINA ALGEBRA DE BOOLE SIEMPRE Y CUANDO SE CUMPLAN LAS SIGUIENTES PROPIEDADES: PROPIEDAD CONMUTATIVA: A + B = B + A A B = B A PROPIEDAD DISTRIBUTIVA: A + (B C) = (A + B) (A + C) A (B + C) = A B + A C ELEMENTOS NEUTROS DIFERENTES: A + 0 = A A 1 = A SIEMPRE EXISTE EL COMPLEMENTO DE A, DENOMINADO A O A A + A = 1 A A = 0

2 PRINCIPIO DE DUALIDAD: CUALQUIER TEOREMA O IDENTIDAD ALGEBRAICA DEDU- CIBLE DE LOS POSTULADOS ANTERIORES PUEDE TRANSFORMARSE EN UN SEGUNDO TEOREMA O IDENTIDAD VÁLIDA SUSTITU- YENDO 1 S POR 0 S Y (+) POR ( ) CONSTANTE: CUALQUIER ELEMENTO DEL CONJUNTO B VARIABLE: SÍMBOLO QUE REPRESENTA UN ELEMENTO ARBITRARIO DEL ÁLGEBRA, YA SEA CONSTANTE O UNA FÓRMULA TEOREMA 1: EL ELEMENTO COMPLEMENTO, A, ES ÚNICO TEOREMA DE LOS ELEMENTOS NULOS: PARA CADA ELEMENTO DE B, SE VERIFICA: A + 1 = 1 A 0 = 0 TEOREMA 3: CADA ELEMENTO IDENTIDAD ES EL COMPLEMENTO DEL OTRO TEOREMA DE IDEMPOTENCIA: PARA CADA ELEMETO DE B, SE VERIFICA: A + A = A A A = A

3 TEOREMA DE INVOLUCIÓN: PARA CADA ELEMENTO DE B, SE VERIFICA: (A ) = A TEOREMA DE ABSORCIÓN: PARA CADA PAREJA DE ELEMENTOS DE B, SE VERI- FICA: A + A B = A A (A + B) = A TEOREMA 7: PARA CADA PAREJA DE ELE- MENTOS DE B, SE VERIFICA: A + A B = A + B A (A + B) = A B LEYES DE DEMORGAN: PARA CADA PAREJA DE ELEMENTOS DE B, SE VERIFICA: (A + B) = A B (A B) = A + B LEYES DE DEMORGAN GENERALIZADAS: PARA CADA CONJUNTO DE B, SE VERIFICA (A+B+...+Q) = A B... Q (A B... Q) = A +B +...+Q TEOREMA DE ASOCIATIVIDAD: CADA UNO DE LOS OPERADORES BINARIOS (+) Y ( ) CUMPLEN LA PROPIEDAD ASOCIATIVA A+(B+C) = (A+B)+C A (B C) = (A B) C

4 ÁLGEBRA DE CONMUTACIÓN: UN SISTEMA DE ELEMENTOS B={0,1} Y LOS OPERADO- RES DEFINIDOS DE LA SIGUIENTE FORMA A B A+B A B A ES UN ÁLGEBRA DE BOOLE OPERADOR + --> OPERADOR OR OPERADOR --> OPERADOR AND OPERADOR --> OPERADOR NOT FUNCIÓN COMPLETA: UNA FUNCIÓN QUE SE ENCUENTRA DEFINIDA PARA TODAS LAS COMBINACIONES DE LAS VARIABLES DE ENTRADA TABLA DE COMBINACIONES: FORMA DE REPRESENTAR FUNCIONES X 1 X 0 F(X 1,X 0 ) 0 0 F(0,0) 0 1 F(0,1) 1 0 F(1,0) 1 1 F(1,1)

5 FÓRMULAS DE CONMUTACIÓN: EXPRESIÓN DE UNA FUNCIÓN DE CONMU- TACIÓN. 1 Y 0 SON FÓRMULAS DE CONMUTACIÓN X I ES UNA FÓRMULA SI PERTENECE A {0,1} SI A ES UNA FÓRMULA, A TAMBIÉN LO ES SI A Y B SON FÓRMULAS, A+B Y A B LO SON NADA MÁS ES UNA FÓRMULA A MENOS QUE SIGAN LOS PUNTOS ANTERIORES EN UN NÚMERO FINITO DE PASOS. TEOREMA 11: CADA FÓRMULA DESCRIBE UNA ÚNICA FUNCIÓN DOS FÓRMULAS, A Y B, SON EQUIVALENTES (A=B) SI DESCRIBEN LA MISMA FUNCIÓN DE CONMUTACIÓN TÉRMINO PRODUCTO: OPERACIÓN AND DE UN NÚMERO DE LITERALES FÓRMULA NORMAL DISYUNTIVA: SUMA DE TÉRMINOS PRODUCTOS

6 TÉRMINO SUMA: OPERACIÓN OR DE UN NÚMERO DE LITERALES FÓRMULA NORMAL CONJUNTIVA: PRODUCTO DE TÉRMINOS SUMA MINTÉRMINO (m i ): TÉRMINO PRODUCTO EN EL QUE APARECEN TODAS LAS VARIABLES, YA SEAN COMPLEMENTADAS O SIN COMPLEMENTAR FÓRMULA CANÓNICA DISYUNTIVA O DE MINTÉRMINOS: SUMA DE MIN- TÉRMINOS TEOREMA 12: DADA LA LISTA COMPLETA DE MINTÉRMINOS Y ASIG- NANDO 1 S Y 0 S ARBITRARIAMENTE A LAS VARIABLES, SIEMPRE HAY UN Y SÓLO UN MINTÉRMINO QUE TOMA EL VALOR 1. TEOREMA 13: LA FÓRMULA COMPUESTA POR TODOS LOS MINTÉRMINOS SERÁ IDÉNTICAMENTE 1.

7 TEOREMA 14: CADA FUNCIÓN PUEDE EXPREASRSE COMO SUMA DE MIN- TÉRMINOS TEOREMA 15: LA FÓRMULA DE MINTÉRMINOS ES ÚNICA PRIMER TEOREMA DE EXPANSIÓN: SIEMPRE SE VERIFICA: F(X 1,...,X N ) = X 1 F(1,...,X N ) + X 1 F(0,...,X N ) TEOREMA 17: CADA FUNCIÓN COMPLETA PUEDE EXPRESARSE COMO: F(X 1,...,X N ) = Σ i F(i) m i (X 1,...,X N ) F(X,Y,Z) = X Y Z+X Y Z +X Y Z = m 7 + m 2 + m 0 MAXTÉRMINO (M I ): TÉRMINO SUMA EN EL QUE APARECEN TODAS LAS VARIABLES, YA SEAN COMPLEMENTADAS O SIN COMPLEMENTAR FÓRMULA CANÓNICA CONJUNTIVA O DE MAXTÉRMINOS: PRODUCTO DE MAXTÉRMINOS

8 TEOREMA 18: DADA LA LISTA COMPLETA DE MAXTÉRMINOS Y ASIG- NANDO 0 S Y 1 S ARBITRARIAMENTE A LAS VARIABLES, SIEMPRE HAY UN Y SÓLO UN MAXTÉRMINO QUE TOMA EL VALOR 0. TEOREMA 19: LA FÓRMULA COMPUESTA POR TODOS LOS MAXTÉRMINOS SERÁ IDÉNTICAMENTE 0. TEOREMA 20: CADA FUNCIÓN PUEDE EXPRESARSE COMO PRODUCTO DE MAXTÉRMINOS TEOREMA 21: LA FÓRMULA DE MAXTÉRMINOS ES ÚNICA SEGUNDO TEOREMA DE EXPANSIÓN: SIEMPRE SE VERFICA: F(X 1,...,X N )=[X 1 +F(0,...,X N )] [X 1 +F(1,...,X N )] TEOREMA 23: CADA FUNCIÓN COMPLETA PUEDE ESCRIBIRSE COMO: F(X 1,...,X N ) = Π i [F(i)+M(X 1,...,X N )] F(X,Y,Z) = (X +Y +Z ) (X+Y +Z) (X+Y+Z) = M 7 M 2 M 0

9 TEOREMA 24: EL COMPLEMENTO DE UNA FÓRMULA DE MINTÉRMINOS ESTÁ FORMADO POR LA SUMA DE LOS MINTÉRMINOS QUE NO APARECEN TEOREMA 25: EL COMPLEMENTO DE UNA FÓRMULA DE MÁXTERMINOS ESTÁ FORMADO POR EL PRODUCTO DE LOS MAXTÉRMINOS QUE NO APA- RECEN TEOREMA 26: m i = M i Y M i = m i LA TRANSFORMACIÓN DE UNA FÓRMULA DE MINTÉRMINOS (EN GENERAL DISYUNTIVA) EN OTRA DE MAXTÉRMINOS (EN GENERAL CONJUNTVA) SE BASA EN LA DOBLE COMPLEMENTACIÓN, (F ) = F CRITERIOS DE MINIMALIDAD: MENOR NÚMERO DE VARIABLES MENOR NÚMERO DE TÉRMINOS MENOR VALOR ASOCIADO: Nº TÉRMINOS + Nº VARIABLES - Nº TÉRMINOS CON UN SOLO LITERAL -1

10 FUNCIONES INCOMPLETAS: FUNCIONES QUE NO ESTÁN DEFINIDAS PARA TODAS LAS COMBINACIONES DE LAS VARIABLES DE ENTRADA FUNCIÓN COMPLETA CON TODAS LAS INESPECIFICACIONES A 0 FUNCIÓN INESPECIFICACIÓN COMPLEMENTO DE UNA FUNCIÓN INCOMPLETA: OTRA FUNCIÓN INCOM- PLETA CON LA MISMA FUNCIÓN INESPECIFIFCACIÓN Y EL COMPLE- MENTO DE LA FUNCIÓN COMPLETA LAS FÓRMULAS DE MINTÉRMINOS Y MAXTÉRMINOS DE LAS FUNCIONES INCOMPLETAS NO SON ÚNICAS

11 ARITMÉTICA BINARIA SUMA BINARIA: A B SUMA ACARREO <-- ACARREO > > > RESTA BINARIA: A B RESTA DESBORDAMIENTO > <-- DESBORDAMIENTO >

12 COMPLEMENTO A DOS: NÚMERO BINARIO NEGA- TIVO INVERSIÓN DEL NÚMERO Y SUMAR 1 2 (1011) --> = 0101 DESDE LA DERECHA, BUSCAR EL PRIMER 1, Y A PARTIR DEL SIGUIENTE INVERTIR EL RESTO DE BITS. 2 (1011) --> 0101 OPERACIONES DE DESPLAZAMIENTO DESPLAZAMIENTO DE N DÍGITOS A LA IZQUIERDA (AÑADIENDO CEROS EN CASO NECESARIO) ES IGUAL QUE MULTIPLICAR POR 2 N DESPLAZAMIENTO DE N DÍGITOS A LA DERE- CHA (AÑADIENDO CEROS EN CASO NECESA- RIO) ES IGUAL QUE MULTIPLICAR POR 2 -N O DIVIDIR POR 2 N MULTIPLICACIÓN BINARIA: A B A B SE MULTIPLICA DÍGITO A DÍGITO Y SE REALI- ZAN LAS SUMAS SUCESIVAS:

13 DIVISIÓN BINARIA: MEDIANTE ALGORITMO ALINEAR EL DIVISOR CON LA PARTE MÁS IZQUIERDA DEL DIVIDENDO (QUE SEA MAYOR QUE EL DIVISOR) AL COCIENTE SE LE AÑADE UN 1. BAJA EL SIGUIENTE DÍGITO DEL DIVIDENDO AL RESULTADO DE LA RESTA 0 < RESTA < : AL COCIENTE SE LE AÑADE UN 0. BAJA EL SIGUIENTE DÍGITO DEL DIVIDENDO AL RESULTADO DE LA RESTA ANTERIOR

Fundamentos de Computadores. Álgebra de Conmutación

Fundamentos de Computadores. Álgebra de Conmutación Fundamentos de Computadores Álgebra de Conmutación Objetivos Conceptuales: Conocer el Álgebra de Boole y el Álgebra de Conmutación como caso especial de aquella Propiedades del Álgebra de Boole Representación

Más detalles

Álgebra Booleana. Suma Booleana. El término suma es 1 si al menos uno de sus literales son 1. El término suma es 0 solamente si cada literal es 0.

Álgebra Booleana. Suma Booleana. El término suma es 1 si al menos uno de sus literales son 1. El término suma es 0 solamente si cada literal es 0. Álgebra Booleana El álgebra de Boole son las matemáticas de los sistemas digitales. En el nivel de lógica digital de una computadora, lo que comúnmente se llama hardware y que está formado por los componentes

Más detalles

TEMA 3 ÁLGEBRA DE CONMUTACIÓN

TEMA 3 ÁLGEBRA DE CONMUTACIÓN TEMA 3 ÁLGEBRA DE CONMUTACIÓN TEMA 3: Álgebra de Boole ÍNDICE. POSTULADOS DEL ÁLGEBRA DE CONMUTACIÓN 2. ÁLGEBRA DE BOOLE BIVALENTE O ÁLGEBRA DE CONMUTACIÓN 2. Teoremas del álgebra de conmutación 3. VARIABLES

Más detalles

GUIA 4: ALGEBRA DE BOOLE

GUIA 4: ALGEBRA DE BOOLE GUIA 4: ALGEBRA DE BOOLE En 1854 George Boole introdujo una notación simbólica para el tratamiento de variables cuyo valor podría ser verdadero o falso (variables binarias) Así el álgebra de Boole nos

Más detalles

Circuitos Electrónicos Digitales. Tema II Parte II. Álgebra de Conmutación

Circuitos Electrónicos Digitales. Tema II Parte II. Álgebra de Conmutación Circuitos Electrónicos Digitales Tema II Parte II Álgebra de Conmutación Índice 1.Álgebra de Conmutación 2.Funciones combinacionales 3.Formas normalizadas Álgebra de Conmutación Álgebra de Conmutación

Más detalles

Tema 3.1 Introducción a los circuitos combinacionales. Algebra de Boole

Tema 3.1 Introducción a los circuitos combinacionales. Algebra de Boole Tema 3.1 Introducción a los circuitos combinacionales. Algebra de Boole Índice Algebra de Boole. Definición. Operaciones lógicas: OR, AND, XOR y NOT Puertas lógicas Algebra de Boole Postulados Teoremas

Más detalles

Álgebra Booleana. Álgebra Booleana. Definiciones. Definiciones. Definiciones. Definiciones. Sistemas Digitales Mario Medina 1

Álgebra Booleana. Álgebra Booleana. Definiciones. Definiciones. Definiciones. Definiciones. Sistemas Digitales Mario Medina 1 Álgebra Booleana Álgebra Booleana Mario Medina C. [email protected] Postulados y axiomas Lemas y teoremas Referencias a otras álgebras Álgebra de Boole: estructura algebraica definida sobre un conjunto

Más detalles

Álgebra de Boole. Valparaíso, 1 er Semestre Prof. Rodrigo Araya E.

Álgebra de Boole. Valparaíso, 1 er Semestre Prof. Rodrigo Araya E. Prof. Rodrigo Araya E. [email protected] Universidad Técnica Federico Santa María Departamento de Informática Valparaíso, 1 er Semestre 2006 1 2 3 4 Contenido En 1815 George Boole propuso una herramienta

Más detalles

ALGEBRA BOOLEANA (ALGEBRA LOGICA)

ALGEBRA BOOLEANA (ALGEBRA LOGICA) ALGEBRA BOOLEANA Un sistema axiomático es una colección de conocimientos ordenados jerárquica-mente mediante reglas o leyes lógicas aplicadas a un número limitado de conceptos o principios básicos. Un

Más detalles

Álgebra de Boole. Adición booleana. Multiplicación booleana. Escuela Politécnica Superior

Álgebra de Boole. Adición booleana. Multiplicación booleana. Escuela Politécnica Superior Álgebra de Boole El Álgebra de Boole es una forma muy adecuada para expresar y analizar las operaciones de los circuitos lógicos. Se puede considerar las matemáticas de los sistemas digitales. Operaciones

Más detalles

TEMA II: ÁLGEBRA DE CONMUTACIÓN

TEMA II: ÁLGEBRA DE CONMUTACIÓN TEMA II: ÁLGEBRA DE CONMUTACIÓN En este capítulo veremos los métodos matemáticos que se disponen para las operaciones relacionadas con los circuitos digitales, así como las funciones más básicas de la

Más detalles

03. Introducción a los circuitos lógicos

03. Introducción a los circuitos lógicos 03. Introducción a los circuitos lógicos 1. LÓGICA DE PROPOSICIONES...2 PROPOSICIÓN...2 CONECTORES U OPERADORES LÓGICOS...2 Tablas de...2 Tautología...2 Contradicción...2 2. ÁLGEBRA DE BOOLE...3 AXIOMAS

Más detalles

Centro Asociado Palma de Mallorca. Tutor: Antonio Rivero Cuesta

Centro Asociado Palma de Mallorca. Tutor: Antonio Rivero Cuesta Centro Asociado Palma de Mallorca Arquitectura de Ordenadores Tutor: Antonio Rivero Cuesta Unidad Didáctica 1 Representación de la Información y Funciones Lógicas Tema 3 Algebra Booleana y Puertas Lógicas

Más detalles

2. ÁLGEBRA DE BOOLE OPERACIONES BÁSICAS DEL ÁLGEBRA DE BOOLE. OPERACIONES LÓGICAS.

2. ÁLGEBRA DE BOOLE OPERACIONES BÁSICAS DEL ÁLGEBRA DE BOOLE. OPERACIONES LÓGICAS. 2. ÁLGEBRA DE BOOLE 2..- Definición. 2.2.- Operaciones básicas. 2.3.- Propiedades o teoremas del álgebra de Boole. 2.4.- Función Booleana / Lógica. 2.5.- Representación de función Booleana. 2.6.- Formas

Más detalles

Sistemas informáticos industriales. Algebra de Boole

Sistemas informáticos industriales. Algebra de Boole Sistemas informáticos industriales 2016 lgebra de oole lgebra oole Se denomina así en honor a George oole (1815-1864). El algebra de oole se emplea en sistema de control digitales, desde los sistemas de

Más detalles

Organización del Computador 1 Lógica Digital 1: álgebra de Boole y

Organización del Computador 1 Lógica Digital 1: álgebra de Boole y Introducción Circuitos Bloques Organización del Computador 1 Lógica Digital 1: álgebra de Boole y compuertas Departamento de Computación Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires

Más detalles

Organización del Computador 1 Lógica Digital 1: álgebra de Boole y compuertas

Organización del Computador 1 Lógica Digital 1: álgebra de Boole y compuertas Organización del Computador 1 Lógica Digital 1: álgebra de Boole y compuertas Dr. Marcelo Risk Departamento de Computación Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires 2017 Lógica

Más detalles

Suma Resta Multiplica. División Alg. Boole Tbla Verdad Circuitos Karnaugh

Suma Resta Multiplica. División Alg. Boole Tbla Verdad Circuitos Karnaugh Sistemas de Numeración Operaciones Aritméticas Con SIGNO 2007-0808 Sistemas de Numeración 1 Suma SUMA: Cuatro posibles casos: AyBsonpositivos => >A+B> >= 0 A y B son negativos => A+B < 0 A positivo y B

Más detalles

Operaciones con números racionales. SUMA/RESTA.

Operaciones con números racionales. SUMA/RESTA. http//www.colegiovirgendegracia.org/eso/dmate.htm ARITMÉTICA Números racionales.9. Operaciones con números racionales. SUMA/RESTA. (A) Reducción a común denominador 4 y 7 4 4 y 7 6 y 4 80 80 80 80 (B)

Más detalles

k k N b Sistemas Númericos Sistemas con Notación Posicional (1) Sistemas con Notación Posicional (2) Sistemas Decimal

k k N b Sistemas Númericos Sistemas con Notación Posicional (1) Sistemas con Notación Posicional (2) Sistemas Decimal Sistemas con Notación Posicional (1) Sistemas Númericos N b = a n-1 *b n-1 + a n-2 *b n-2 +... + a 0 *b 0 +a -1 *b - 1 + a -2 *b -2 +... + a -m *b -m Sistemas con Notación Posicional (2) N b : Número en

Más detalles

Suma Resta Multiplica. División Alg. Boole Tbla Verdad Circuitos Karnaugh

Suma Resta Multiplica. División Alg. Boole Tbla Verdad Circuitos Karnaugh Funciones Lógicas 2009-20102010 Sistemas de Numeración 1 Suma Algebra de Boole: Desarrollada en 1947 por George Boole y se usa para resolver problemas lógico-resolutivos. Son las matemáticas de los sistemas

Más detalles

Unidad IV. Teorema 1: Multiplicación por cero (identidad) Es el factor neutro: Suma: a+1=! producto: a0=0

Unidad IV. Teorema 1: Multiplicación por cero (identidad) Es el factor neutro: Suma: a+1=! producto: a0=0 Unidad IV Algebra Booleana 4.1 Teoremas y postulados. Teoremas Teorema 1: Multiplicación por cero (identidad) Es el factor neutro: Suma: a+1=!--------producto: a0=0 Teorema 2: Absorción En la suma se identifica

Más detalles

ESTRUCTURA Y TECNOLOGÍA DE LOS COMPUTADORES I. TEMA 4 Algebra booleana y puertas lógicas

ESTRUCTURA Y TECNOLOGÍA DE LOS COMPUTADORES I. TEMA 4 Algebra booleana y puertas lógicas ESTRUCTURA Y TECNOLOGÍA DE LOS COMPUTADORES I TEMA 4 Algebra booleana y puertas lógicas TEMA 4. Algebra booleana y puertas lógicas 4.1 Definición de álgebra de Boole 4.2 Teoremas del álgebra de Boole 4.3

Más detalles

Conceptos previos. Revisión de Sistemas Lógicos Formatos Numéricos. Dpto. Ingeniería Electrónica y Comunicaciones

Conceptos previos. Revisión de Sistemas Lógicos Formatos Numéricos. Dpto. Ingeniería Electrónica y Comunicaciones Conceptos previos Revisión de Sistemas Lógicos Formatos Numéricos Revisión de Sistemas Lógicos Álgebra de Boole Base matemática de la Electrónica Digital Consta de dos elementos: 0 lógico y 1 lógico Tecnología

Más detalles

Algebra de Boole: Teoremas

Algebra de Boole: Teoremas Teorema 1: A + A = A Teorema 2: A A = A Teorema 3: A + 0 = A Teorema 4: A 1 = A Teorema 5: A 0 = 0 Teorema 6: A + 1 = 1 Teorema 7: (A + B) = A B Teorema 8: (A B) = A + B Teorema 9: A + A B = A Teorema

Más detalles

Compuertas Lógicas, Algebra Booleana

Compuertas Lógicas, Algebra Booleana Compuertas Lógicas, Algebra Booleana Representación de números negativos Herramientas para conversión y operaciones aritméticas Evaluación BIN DEC DEC Revisión Evaluación Compuertas lógicas Algebra Booleana

Más detalles

I UNIDAD ÁLGEBRA BOOLEANA Y COMPUERTAS LÓGICAS

I UNIDAD ÁLGEBRA BOOLEANA Y COMPUERTAS LÓGICAS I UNIDAD ÁLGEBRA BOOLEANA Y COMPUERTAS LÓGICAS 1.1 Electrónica Digital Obviamente es una ciencia que estudia las señales eléctricas, pero en este caso son señales discretas, es decir, están bien identificadas,

Más detalles

Álgebra Booleana circuitos lógicos

Álgebra Booleana circuitos lógicos Álgebra Booleana y circuitos lógicos OBJETIVO GENERAL Teniendo en cuenta que los circuitos digitales o lógicos operan de forma binaria, emplear el álgebra booleana como fundamento teórico para el análisis,

Más detalles

Fundamentos de los Computadores. Álgebra de Boole. 1 3. ÁLGEBRA DE BOOLE

Fundamentos de los Computadores. Álgebra de Boole. 1 3. ÁLGEBRA DE BOOLE Fundamentos de los Computadores. Álgebra de oole. 1 3. ÁLGER DE OOLE Un sistema de elementos y dos operaciones binarias cerradas ( ) y (+) se denomina LGER de OOLE siempre y cuando se cumplan las siguientes

Más detalles

ÁLGEBRAS DE BOOLE. En un álgebra de Boole (B, +,, ) se cumplen las siguientes propiedades, para todo x, y, z B: Doble Complemento

ÁLGEBRAS DE BOOLE. En un álgebra de Boole (B, +,, ) se cumplen las siguientes propiedades, para todo x, y, z B: Doble Complemento ÁLGEBRAS DE BOOLE CARACTERIZACIÓN DE UN ÁLGEBRA DE BOOLE Un álgebra de Boole (o álgebra booleana) consiste en un conjunto B = {0, 1}, operadores binarios + y en S y un operador unario en S. Estas operaciones

Más detalles

ALGEBRA DE BOOLE George Boole C. E. Shannon E. V. Hungtington [6]

ALGEBRA DE BOOLE George Boole C. E. Shannon E. V. Hungtington [6] ALGEBRA DE BOOLE El álgebra booleana, como cualquier otro sistema matemático deductivo, puede definirse con un conjunto de elementos, un conjunto de operadores y un número de axiomas no probados o postulados.

Más detalles

El álgebra booleana fue estudiada por Pitágoras y George Boole.

El álgebra booleana fue estudiada por Pitágoras y George Boole. ALGEBRA DE BOOLE Centro CFP/ES ALGEBRA DE BOOLE El álgebra booleana fue estudiada por Pitágoras y George Boole. Con el álgebra booleana, partiendo de una serie de sentencias lógicas iniciales verdaderas

Más detalles

Algebra de Boole. » a + a = 1» a a = 0

Algebra de Boole. » a + a = 1» a a = 0 Algebra de Boole Dos elementos: 0 y 1 Tres operaciones básicas: producto ( ) suma ( + ) y negación ( ` ) Propiedades. Siendo a, b, c números booleanos, se cumple: Conmutativa de la suma: a + b = b + a

Más detalles

Tema 1: Circuitos Combinacionales

Tema 1: Circuitos Combinacionales Tema : Circuitos Combinacionales Contenidos. Introducción. Aritmética. Álgebra de Boole Señales Sistemas. Introducción Entrada Ecitación Sistema Salida Respuesta Un sistema es un conjunto de partes o elementos

Más detalles

ANALÓGICO vs. DIGITAL

ANALÓGICO vs. DIGITAL ANALÓGICO vs. DIGITAL Una señal analógica se caracteriza por presentar un numero infinito de valores posibles. Continuo Posibles valores: 1.00, 1.01, 200003,, infinitas posibilidades Una señal digital

Más detalles

Tema 2. Funciones Lógicas. Algebra de Conmutación. Representación de circuitos digitales. Minimización de funciones lógicas.

Tema 2. Funciones Lógicas. Algebra de Conmutación. Representación de circuitos digitales. Minimización de funciones lógicas. Tema 2. Funciones Lógicas Algebra de Conmutación. Representación de circuitos digitales. Minimización de funciones lógicas. Álgebra de conmutación Algebra de Conmutación: Postulados y Teoremas. Representación

Más detalles

Álgebra Booleana y Diseño Lógico. Circuitos Digitales, 2º de Ingeniero de Telecomunicación. EITE ULPGC.

Álgebra Booleana y Diseño Lógico. Circuitos Digitales, 2º de Ingeniero de Telecomunicación. EITE ULPGC. Álgebra Booleana y Diseño Lógico Circuitos Digitales, 2º de Ingeniero de Telecomunicación. EITE ULPGC. Índice 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. Propiedades algebraicas Definición axiomática de álgebra

Más detalles

ÁLGEBRA BOOLEANA. INTRODUCCIÓN AL ÁLGEBRA DE BOOLE

ÁLGEBRA BOOLEANA. INTRODUCCIÓN AL ÁLGEBRA DE BOOLE ÁLGEBRA BOOLEANA. INTRODUCCIÓN AL ÁLGEBRA DE BOOLE En 1854, George Boole publicó un libro titulado Investigación sobre las leyes del pensamiento, formulando un método simbólico para el estudio de las relaciones

Más detalles

Expresiones algebraicas

Expresiones algebraicas Polinomios Expresiones algebraicas Una expresión algebraica es cualquier combinación de números y letras relacionados por operaciones aritméticas: suma, resta, producto, división y potenciación. Ejemplos

Más detalles

UNIDAD 4. Álgebra Booleana

UNIDAD 4. Álgebra Booleana UNIDAD 4 Álgebra Booleana ÁLGEBRA BOOLEANA El Álgebra Booleana se define como una retícula: Complementada: existe un elemento mínimo 0 y un elemento máximo I de tal forma que si a esta en la retícula,

Más detalles

Introducción volts.

Introducción volts. Constantes y Variables Booleanas Tabla de Verdad. Funciones lógicas (AND, OR, NOT) Representación de las funciones lógicas con compuerta lógicas básicas (AND, OR, NOT) Formas Canónicas y Standard (mini

Más detalles

I. ALGEBRA DE BOOLE. c) Cada operación es distributiva con respecto a la otra: a. ( b + c) = a. b + a. c a + ( b. c ) = ( a + b ).

I. ALGEBRA DE BOOLE. c) Cada operación es distributiva con respecto a la otra: a. ( b + c) = a. b + a. c a + ( b. c ) = ( a + b ). I. I.1 DEFINICION. El Algebra de Boole es toda clase o conjunto de elementos que pueden tomar dos valores perfectamente diferenciados, que designaremos por 0 y 1 y que están relacionados por dos operaciones

Más detalles

Ampliación Matemática Discreta. Justo Peralta López

Ampliación Matemática Discreta. Justo Peralta López Justo Peralta López UNIVERSIDAD DE ALMERíA DEPARTAMENTO DE ÁGEBRA Y ANÁLISIS MATEMÁTICO 1 Introducción 2 Definición semántica de las proposiciones 3 Diagrama de valores de certeza 4 Evaluación de fórmulas.

Más detalles

EL LENGUAJE DE LAS COMPUTADORAS

EL LENGUAJE DE LAS COMPUTADORAS EL LENGUAJE DE LAS COMPUTADORAS AUTORÍA ANGEL MANUEL RUBIO ORTEGA TEMÁTICA ELECTRICIDAD, ELECTRÓNICA ETAPA ESO, BACHILLERATO Resumen Actualmente nos encontramos rodeados dispositivos digitales. Por ello

Más detalles

ÁLGEBRA BOOLEANA El álgebra booleana es un sistema matemático deductivo centrado en los valores cero y uno (falso y verdadero). Un operador binario "

ÁLGEBRA BOOLEANA El álgebra booleana es un sistema matemático deductivo centrado en los valores cero y uno (falso y verdadero). Un operador binario ÁLGEBRA BOOLEANA El álgebra booleana es un sistema matemático deductivo centrado en los valores cero y uno (falso y verdadero). Un operador binario " " definido en éste juego de valores acepta un par de

Más detalles

5.3. Álgebras de Boole y de conmutación. Funciones lógicas

5.3. Álgebras de Boole y de conmutación. Funciones lógicas 5.3. Álgebras de Boole y de conmutación. Funciones lógicas 5.3.1. Algebra de conmutación o algebra booleana 5.3.1.1. Axiomas [ Wakerly 4.1.1 pág. 195] 5.3.1.2. Teoremas de una sola variable [ Wakerly 4.1.2

Más detalles

ÁLGEBRA DE BOOLE. 1.- Postulados de HUNTINGTON

ÁLGEBRA DE BOOLE. 1.- Postulados de HUNTINGTON ÁLGEBRA DE BOOLE El Algebra de Boole es importante pues permite representar matemáticamente el funcionamiento de los circuitos digitales. Los circuitos digitales son capaces de permanecer en 2 estados,

Más detalles

UNIDAD 4. Algebra de Boole

UNIDAD 4. Algebra de Boole UNIDAD 4 Algebra de Boole Introducción a la unidad La tecnología nos permite construir compuertas digitales a través de transistores y mediante las compuertas diseñamos los circuitos digitales empleados

Más detalles

Álgebra Booleana y Circuitos Lógicos. UCR ECCI CI-0111 Estructuras Discretas Prof. Kryscia Daviana Ramírez Benavides

Álgebra Booleana y Circuitos Lógicos. UCR ECCI CI-0111 Estructuras Discretas Prof. Kryscia Daviana Ramírez Benavides Álgebra Booleana y Circuitos Lógicos UCR ECCI CI-0111 Estructuras Discretas Prof. Kryscia Daviana Ramírez Benavides Álgebra Booleana Tanto los conjuntos como las proposiciones tienen propiedades similares.

Más detalles

Operaciones Booleanas y Compuertas Básicas

Operaciones Booleanas y Compuertas Básicas Álgebra de Boole El álgebra booleana es la teoría matemática que se aplica en la lógica combinatoria. Las variables booleanas son símbolos utilizados para representar magnitudes lógicas y pueden tener

Más detalles

1.1 Circuitos Digitales

1.1 Circuitos Digitales TEMA III Circuitos Digitales Electrónica II 27. Circuitos Digitales Del mundo analógico al digital. Ventajas de la señal digital. Inconvenientes de la señal digital. Algebra de Boole. Puertas Lógicas.

Más detalles

Números Naturales. Cero elemento neutro: = 12 Sucesión fundamental : se obtiene el siguiente número = 9

Números Naturales. Cero elemento neutro: = 12 Sucesión fundamental : se obtiene el siguiente número = 9 Números Naturales Cuando comenzamos a contar los objetos, los años, etc, nos hemos encontrado con los números de forma natural; por eso a este conjunto de números así aprendidos se les denomina números

Más detalles

Expresiones Algebraicas en los Números Reales

Expresiones Algebraicas en los Números Reales Operaciones con en los Números Reales Carlos A. Rivera-Morales Álgebra Tabla de Contenido Contenido Operaciones con Operaciones con : Contenido Operaciones con Discutiremos: qué es una: expresión algebraica

Más detalles

BLOQUE V. CONTROL Y PROGRAMACIÓN DE SISTEMAS AUTOMÁTICOS

BLOQUE V. CONTROL Y PROGRAMACIÓN DE SISTEMAS AUTOMÁTICOS Bloque V. Control y programación de sistemas automáticos pág. 1 Bloque V. Control y programación de sistemas automáticos pág. 2 BLOQUE V. CONTROL Y PROGRAMACIÓN DE SISTEMAS AUTOMÁTICOS 1. LA INFORMACIÓN

Más detalles

BLOQUE V. CONTROL Y PROGRAMACIÓN DE SISTEMAS AUTOMÁTICOS

BLOQUE V. CONTROL Y PROGRAMACIÓN DE SISTEMAS AUTOMÁTICOS Bloque V. Control y programación de sistemas automáticos pág. 1 BLOQUE V. CONTROL Y PROGRAMACIÓN DE SISTEMAS AUTOMÁTICOS 1. LA INFORMACIÓN BINARIA 1.1. Sistemas de numeración y códigos Def. Sistema de

Más detalles

Operaciones Aritméticas en Números con Signo

Operaciones Aritméticas en Números con Signo Operaciones Aritméticas en Números con Signo M. en C. Erika Vilches Parte 3 Multiplicación sin Signo Reglas básicas para multiplicar bits: 0x0 = 0 0x1 = 0 1x0 = 0 1x1 = 1 Ejemplos en números sin signo:

Más detalles

Álgebra de Boole A p u n te N 3

Álgebra de Boole A p u n te N 3 Álgebra de Boole Apunte N 3 G e o r g e B o o l e y C l a u d e S h a n n o n La finalidad de la Electrónica Digital es procesar la información. Para ello utiliza las operaciones definidas por George Boole

Más detalles

Electrónica Digital - Guión

Electrónica Digital - Guión Electrónica Digital - Guión 1. Introducción. 2. El álgebra de Boole. 3. Propiedades del álgebra de Boole. 4. Concepto de Bit y Byte. 5. Conversión del sistema decimal en binario y viceversa. 6. Planteamiento

Más detalles

Partes de un monomio

Partes de un monomio Monomios Un monomio es una epresión algebraica en la que la únicas operaciones que afectan a las letras son la multiplicación y la potencia de eponente natural. Son monomios: NO son monomios: 1 yz 1 abc

Más detalles

RESUMEN DE ALGEBRA. CONCEPTO: El pensador principal del algebra es Al-Hwarizmi; es de origen árabe.

RESUMEN DE ALGEBRA. CONCEPTO: El pensador principal del algebra es Al-Hwarizmi; es de origen árabe. RESUMEN DE ALGEBRA CONCEPTO: El pensador principal del algebra es Al-Hwarizmi; es de origen árabe. El álgebra es la rama del conocimiento de la matemática; es decir se desprende de ella. Estudia realidades

Más detalles

Si un objeto x es elemento de un conjunto A, se escribe: x A.

Si un objeto x es elemento de un conjunto A, se escribe: x A. Conjuntos. Dentro de la teoría se consideran como primitivos o términos no definidos los conjuntos y los elementos. En general, se designan los conjuntos usando letras latinas mayúsculas y los elementos

Más detalles

OPERACIONES CON NÚMEROS BINARIOS

OPERACIONES CON NÚMEROS BINARIOS OPERACIONES CON NÚMEROS BINARIOS Centro CFP/ES SUMA BINARIA La información tenemos que transformarla, compararla y procesarla. Para ello empleamos la aritmética binaria, es decir, procesos matemáticos

Más detalles

Expresiones algebraicas. Copyright 2013, 2009, 2006 Pearson Education, Inc. 1

Expresiones algebraicas. Copyright 2013, 2009, 2006 Pearson Education, Inc. 1 Expresiones algebraicas Copyright 2013, 2009, 2006 Pearson Education, Inc. 1 Variables Álgebra utiliza letras como x & y para representar números. Si una letra se utiliza para representar varios números,

Más detalles

Arquitectura de Computadoras Algebra de Boole Basadas en las Notas de Teórico Versión 1.0 del Dpto. de Arquitectura-InCo-FIng

Arquitectura de Computadoras Algebra de Boole Basadas en las Notas de Teórico Versión 1.0 del Dpto. de Arquitectura-InCo-FIng Basadas en las Versión.0 del Dpto. de Arquitectura-InCo-FIng ALGEBRA DE BOOLE Introducción. El álgebra de Boole es una herramienta de fundamental importancia en el mundo de la computación. Las propiedades

Más detalles

Tipos de Datos y Representaciones. Circuitos Digitales, 2º de Ingeniero de Telecomunicación. EITE ULPGC.

Tipos de Datos y Representaciones. Circuitos Digitales, 2º de Ingeniero de Telecomunicación. EITE ULPGC. Tipos de Datos y Representaciones Circuitos Digitales, 2º de Ingeniero de Telecomunicación. EITE ULPGC. Índice 1. Sistemas numéricos posicionales 2. Números octales y hexadecimales 3. Conversiones entre

Más detalles

Algebra de Boole y simplificación de funciones lógicas. Capítulo 4

Algebra de Boole y simplificación de funciones lógicas. Capítulo 4 Algebra de Boole y simplificación de funciones lógicas Capítulo 4 Contenido 1. Expresiones y operaciones Booleanas 2. Propiedades y Reglas del Algebra de Boole 3. Teoremas de DeMorgan 4. Análisis booleano

Más detalles

Números reales Conceptos básicos Algunas propiedades

Números reales Conceptos básicos Algunas propiedades Números reales Conceptos básicos Algunas propiedades En álgebra es esencial manejar símbolos con objeto de transformar o reducir expresiones algebraicas y resolver ecuaciones algebraicas. Debido a que

Más detalles

TEMA 6 UNIDAD ARITMÉTICO LÓGICA

TEMA 6 UNIDAD ARITMÉTICO LÓGICA FUNDMENTOS DE TEM 6 UNIDD RITMÉTICO LÓGIC. OPERDORES LÓGICOS. 2. PROPIEDDES DE L UL. 3. OPERDORES DE DESPLZMIENTO. Desplazamientos lógicos. Desplazamientos circulares. Desplazamientos aritméticos. 4. OPERCIONES

Más detalles

POLINOMIOS Y DIVISIÓN DE POLINOMIOS MATEMÁTICAS 3º ESO

POLINOMIOS Y DIVISIÓN DE POLINOMIOS MATEMÁTICAS 3º ESO POLINOMIOS Y DIVISIÓN DE POLINOMIOS MATEMÁTICAS 3º ESO Dado que los polinomios se utilizan para describir curvas de diferentes tipos, la gente los utiliza en el mundo real para dibujar curvas. Por ejemplo,

Más detalles

RECONOCER EL GRADO, EL TÉRMINO Y LOS COEFICIENTES DE UN POLINOMIO

RECONOCER EL GRADO, EL TÉRMINO Y LOS COEFICIENTES DE UN POLINOMIO OBJETIVO RECONOCER EL GRADO, EL TÉRMINO Y LOS COEICIENTES DE UN POLINOMIO NOMBRE: CURSO: ECHA: Un polinomio es una expresión algebraica formada por la suma de monomios, que son los términos del polinomio.

Más detalles

Algebra de Boole y puertas lógicas

Algebra de Boole y puertas lógicas Algebra de Boole y puertas lógicas Luis Entrena, Celia López, Mario García, Enrique San Millán Universidad Carlos III de Madrid 1 Índice Postulados y propiedades fundamentales del Álgebra de Boole Funciones

Más detalles

Algebras booleanas. B2) Leyes Distributivas. Cada operación es distributiva con respecto a la otra:

Algebras booleanas. B2) Leyes Distributivas. Cada operación es distributiva con respecto a la otra: Algebras booleanas AXIOMAS DEL ALGEBRA DE BOOLE Sea B un conjunto en el cual se han definido dos operaciones binarias, + y * (En algunos casos se definen en términos de y respectivamente), y una operación

Más detalles

2-Funciones y representaciones booleanas

2-Funciones y representaciones booleanas 2-Funciones y representaciones booleanas 2.1 Lógica y álgebra de Boole 2.2 Funciones booleanas 2.3 Representaciones de funciones booleanas. 2.4 Funciones de varias variables. 2: Funciones booleanas 1 Lógica

Más detalles

TEMA 3. Álgebra de Boole

TEMA 3. Álgebra de Boole Fundamentos de los Computadores. Álgebra de oole. T3-1 INDICE: TEM 3. Álgebra de oole EL ÁLGER DE OOLE TEOREMS DEL ÁLGER DE OOLE REPRESENTCIÓN DE FUNCIONES LÓGICS o TL DE VERDD o FORMS CNÓNICS o CONVERSIÓN

Más detalles

Fundamentos de Informática E.U.P. Universidad de Sevilla

Fundamentos de Informática E.U.P. Universidad de Sevilla rea de Arquitectura y Teoría de Computadores Fundamentos de Informática E.U.P. Universidad de Sevilla Capítulo : INTRODUCCIÓN A LA INFORMÁTICA epartamento de Álgebra. INDICE INFORMÁTICA E INGENIERÍA DEFINICIÓN

Más detalles

LECCIÓN Nº 01 SISTEMAS COMBINACIONALES

LECCIÓN Nº 01 SISTEMAS COMBINACIONALES LECCIÓN Nº 01 SISTEMAS COMBINACIONALES 1. GENERALIDADES PUERTAS LOGICAS Una puerta lógica es un elemento que recibe varias entradas binarias (variables) y, dependiendo del estado de las entradas, su salida

Más detalles

SISTEMAS Y CÓDIGOS DE NUMERACIÓN

SISTEMAS Y CÓDIGOS DE NUMERACIÓN INTRODUCCIÓN SISTEMAS Y CÓDIGOS DE NUMERACIÓN Una señal analógica es aquella que puede tomar infinitos valores para representar la información. En cambio, en una señal digital se utiliza sólo un número

Más detalles

Descripción en VHDL de arquitecturas para implementar el algoritmo CORDIC

Descripción en VHDL de arquitecturas para implementar el algoritmo CORDIC Anexo B Funciones booleanas El álgebra de Boole provee las operaciones las reglas para trabajar con el conjunto {0, 1}. Los dispositivos electrónicos pueden estudiarse utilizando este conjunto las reglas

Más detalles

CURSO DE MATEMÁTICA BÁSICA: ÁLGEBRA

CURSO DE MATEMÁTICA BÁSICA: ÁLGEBRA http:/// CURSO DE MATEMÁTICA BÁSICA: ÁLGEBRA DESARROLLA EN FORMA RESUMIDA CADA UNIDAD CON: I. GUIONES DE CONFERENCIAS II. FICHAS DE ESTUDIO III. LABORATORIOS DE EJERCICIOS Trata las unidades siguientes:

Más detalles

Aritmética de Enteros

Aritmética de Enteros Aritmética de Enteros La aritmética de los computadores difiere de la aritmética usada por nosotros. La diferencia más importante es que los computadores realizan operaciones con números cuya precisión

Más detalles

ALGEBRA BOOLEANA. CONMUTATIVO. Se dice que un operador binario º es conmutativo si A º B = B º A para todos los posibles valores de A y B.

ALGEBRA BOOLEANA. CONMUTATIVO. Se dice que un operador binario º es conmutativo si A º B = B º A para todos los posibles valores de A y B. ÁLGEBRA BOOLEANA UNEFA NUCLEO ZULIA El álgebra booleana es un sistema matemático deductivo centrado en los valores cero y uno (falso y verdadero). Un operador binario º definido en éste juego de valores

Más detalles

Álgebra Booleana y Circuitos Lógicos. UCR ECCI CI-1204 Matemáticas Discretas Prof. M.Sc. Kryscia Daviana Ramírez Benavides

Álgebra Booleana y Circuitos Lógicos. UCR ECCI CI-1204 Matemáticas Discretas Prof. M.Sc. Kryscia Daviana Ramírez Benavides Álgebra Booleana Circuitos Lógicos UCR ECCI CI-1204 Matemáticas Discretas Prof. M.Sc. Krscia Daviana Ramíre Benavides Álgebra Booleana Tanto los conjuntos como las proposiciones tienen propiedades similares.

Más detalles

Profesor Rubén Martín Pérez ELECTRÓNICA DIGITAL. TECNOLOGÍA 4º ESO ELECTRÓNICA DIGITAL

Profesor Rubén Martín Pérez ELECTRÓNICA DIGITAL. TECNOLOGÍA 4º ESO ELECTRÓNICA DIGITAL INDICE: ELECTRÓNICA DIGITAL. INTRODUCCIÓN.. TIPOS DE SEÑALES. 2. REPRESENTACIÓN DE LAS SEÑALES DIGITALES. 3. SISTEMA BINARIO. 4. FUNCIONES BÁSICAS. 5. COMBINACIONES ENTRE FUNCIONES BÁSICAS. 6. PROPIEDADES

Más detalles

TEMA PUERTAS LÓGICAS. TÉCNICAS DE DISEÑO Y SIMPLIFICACIÓN DE FUNCIONES LÓGICAS.

TEMA PUERTAS LÓGICAS. TÉCNICAS DE DISEÑO Y SIMPLIFICACIÓN DE FUNCIONES LÓGICAS. PUERTAS LÓGICAS. TÉCNICAS DE DISEÑO Y SIMPLIFICACIÓN DE FUNCIONES LÓGICAS. ÍNDICE.- INTRODUCCIÓN... 2.- ELECTRÓNICA DIGITAL... 3.. SISTEMAS DE NUMERACIÓN... 3.2. SEÑAL DIGITAL BINARIA... 3.3. SISTEMAS

Más detalles

CIRCUITOS ELECTRÓNICOS DIGITALES BOLETÍN DE PROBLEMAS 4

CIRCUITOS ELECTRÓNICOS DIGITALES BOLETÍN DE PROBLEMAS 4 CIRCUITOS ELECTRÓNICOS DIGITALES GRADO EN INGENIERÍA INFORMÁTICA TECNOLOGÍAS INFORMÁTICAS BOLETÍN DE PROBLEMAS 4 1.- Indique cuántos bits son necesarios, como mínimo, para representar cada uno de los siguientes

Más detalles

EL ALGEBRA COMO ARITMETICA GENERALIZADA

EL ALGEBRA COMO ARITMETICA GENERALIZADA EL ALGEBRA COMO ARITMETICA GENERALIZADA LEYES QUE GOBIERNAN LOS NUMEROS Un conjunto de números u objetos por si solos pueden no significar nada, son las relaciones entre ellos lo que le da estructura y

Más detalles

OPERACIÓN CON NÚMEROS ENTEROS(Z)

OPERACIÓN CON NÚMEROS ENTEROS(Z) OPERACIÓN CON NÚMEROS ENTEROS(Z) Imagina que un día estas de visita en un apartamento de unos amigos, al despedirte bajas al sótano 2 a buscar tu carro y te das cuenta que dejaste las llaves en casa de

Más detalles

CIRCUITOS DIGITALES -

CIRCUITOS DIGITALES - CIRCUITOS DIGITALES - INTRODUCCIÓN CIRCUITOS DIGITALES CIRCUITOS DIGITALES SON LOS QUE COMUNICAN Y PROCESAN INFORMACIÓN DIGITAL SEÑAL DIGITAL: SOLO PUEDE TOMAR UN NÚMERO FINITO DE VALORES. EN BINARIO:

Más detalles

Circuitos Electrónicos Digitales

Circuitos Electrónicos Digitales Circuitos Electrónicos Digitales Bloque 1: Circuitos Electrónicos y familias lógicas Tema 3: Familias lógicas Guión del tema Algebra de conmutación. Variables y operadores lógicos. Ejemplo de puertas lógicas.

Más detalles

Álgebra Booleana y Circuitos Lógicos. UCR ECCI CI-1204 Matemáticas Discretas Prof. Kryscia Daviana Ramírez Benavides

Álgebra Booleana y Circuitos Lógicos. UCR ECCI CI-1204 Matemáticas Discretas Prof. Kryscia Daviana Ramírez Benavides Álgebra Booleana y Circuitos Lógicos UCR ECCI CI-1204 Matemáticas Discretas Prof. Kryscia Daviana Ramírez Benavides Álgebra Booleana Tanto los conjuntos como las proposiciones tienen propiedades similares.

Más detalles

MONOMIOS Y POLINOMIOS

MONOMIOS Y POLINOMIOS Trabajar en álgebra consiste en manejar relaciones numéricas en las que una o más cantidades son desconocidas. Estas cantidades se llaman variables, incógnitas o indeterminadas y se representan por letras.

Más detalles

1. EXPRESIONES ALGEBRAICAS.

1. EXPRESIONES ALGEBRAICAS. TEMA 3: POLINOMIOS 1. EXPRESIONES ALGEBRAICAS. Trabajar en álgebra consiste en manejar relaciones numéricas en las que una o más cantidades son desconocidas. Estas cantidades se llaman variables, incógnitas

Más detalles

Introducción a la Matemática Discreta

Introducción a la Matemática Discreta Introducción a la Matemática Discreta Lógica proposicional y Álgebras de Boole Luisa María Camacho Camacho Introd. a la Matemática Discreta 1 / 25 Introducción a la Matemática Discreta Temario Tema 1.

Más detalles

MATEMÁTICAS DISCRETAS. UNIDAD 2 Algebras Booleanas y Circuitos Combinatorios

MATEMÁTICAS DISCRETAS. UNIDAD 2 Algebras Booleanas y Circuitos Combinatorios MATEMÁTICAS DISCRETAS UNIDAD 2 Algebras Booleanas y Circuitos Combinatorios 2.1 CIRCUITOS COMBINATORIOS Inicie dando lectura a la subunidad 11.1, deténgase en el ejemplo 11.1.4, compare las tablas de los

Más detalles

Álgebra y Trigonometría

Álgebra y Trigonometría Álgebra y Trigonometría Conceptos fundamentales del Álgebra Universidad de Antioquia Departamento de Matemáticas 1. Números Reales El conjunto de los números reales está constituido por diferentes clases

Más detalles

3º ESO POLINOMIOS DEPARTAMENTO DE MATEMÁTICAS. SAGRADO CORAZÓN COPIRRAI_Julio César Abad Martínez-Losa POLINOMIOS

3º ESO POLINOMIOS DEPARTAMENTO DE MATEMÁTICAS. SAGRADO CORAZÓN COPIRRAI_Julio César Abad Martínez-Losa POLINOMIOS º ESO POLINOMIOS DEPARTAMENTO DE MATEMÁTICAS. POLINOMIOS 1.- POLINOMIOS Una expresión algebraica está formada por números y letras asociados por medio de las operaciones aritméticas (suma, resta, multiplicación,

Más detalles