Expresiones algebraicas
|
|
|
- Daniel Marín Martínez
- hace 9 años
- Vistas:
Transcripción
1 Polinomios
2 Expresiones algebraicas Una expresión algebraica es cualquier combinación de números y letras relacionados por operaciones aritméticas: suma, resta, producto, división y potenciación. Ejemplos Volumen del cubo de arista a Área del círculo de radio r a 3 πr 2 Diagonal de un rectángulo de lados a y b a 2 + b 2 Cada una de las variables que intervienen en la expresión algebraica se denomina variable o indeterminada.
3 Acerca de las expresiones algebraicas Cuando en una expresión algebraica no hay operación entre dos letras o un número y una letra, se entenderá que hay una producto. Los signos + y en una expresión algebraica indican una operación no el signo de la expresión. Las propiedades de las operaciones que aparecen en una expresión algebraica tienen las mismas propiedades que las de los números que representan.
4 Valor numérico El valor obtenido al evaluar una expresión numérica al sustituir cada una de sus valores se denomina valor numérico de la expresión para dichos valores. Dos expresiones algebraicas son equivalentes cuando tienen el mismo valor numérico para cualquier valor numérico asignado a las variables.
5 Ejemplos Volumen del cubo de arista 2 cm Volumen=a 3 = 2 3 = 8 cm 3 Área del círculo de radio 5 m Área = πr 2 = π5 2 = 25π metros cuadrados Diagonal de un rectángulo de lados 2 mm y 3mm d = a 2 + b 2 = = = 13mm 2
6 Monomios Un monomio es una expresión algebraica en el que las únicas operaciones con letras que intervienen son el producto y la potenciación de exponente natural. 2a 3 b 2 2a Son monomios: 2 3 yx3 No son monomios: 3 2x 3y ab 3 ab
7 Elementos de un monomio Un monomio está formado por: Coeficiente Parte numérica del monomio Parte literal formada por las letras junto con sus exponentes. El grado de un monomio es la suma de los exponentes de su parte literal. El grado de un monomio respecto de una variable es el grado de la variable.
8 Ejemplos 2a 3 b 2 Coeficiente 2 Parte literal a 3 b 2 Grado 5 Grado respecto de la variable a 3 Grado respecto de la variable b 2 7x 3 Coeficiente 7 Parte literal x 3 Grado 3 Grado respecto de la variable x 3
9 Monomios semejantes Dos monomios son semejantes cuando tienen la misma parte literal. Los monomios semejantes que tienen igual coeficiente son iguales. Los monomios semejantes que tienen coeficientes opuestos se dicen que son opuestos.
10 Ejemplos 2a 3 b 2 y 5a 3 b 2 son semejantes 2b 2 a 3 y 7a 3 b 2 son semejantes 2b 3 a 2 y 7a 3 b 2 NO son semejantes 7x 3 y 5x 3 son semejantes x 3 y 5x 2 NO son semejantes
11 Polinomios Un polinomio es una expresión algebraica compuesta por la suma o diferencia de dos o más monomios. Ejemplos 2a 3 b 2 5b 2 + 3ab Polinomio compuesto de 3 monomios 2x Polinomio compuesto de 2 monomios
12 Definiciones Término cada uno de los monomios que componen un polinomio. Grado mayor grado de los términos que lo componen. Término independiente término de grado cero de un polinomio, de existir, se trata de un número. Si el polinomio únicamente tiene una variable: Término principal término de mayor grado del polinomio. Coeficiente principal coeficiente del término de mayor grado. Coeficiente de grado n número que pertenece al término de grado n del polinomio.
13 Ejemplos 2a 3 b 2 ab + 6 Términos : De grado 5, 2a 3 b 2 De grado 2, ab De grado 0, 6 Grado 5 Términos : De grado 3, 2x 3 De grado 1, 3x De grado 0, 6 Grado 3 2x 3 + 3x + 6-4t 4 + 3t 2 + t 2 Términos De grado 4, 4t 4 De grado 2, 3t 2 De grado 1, t De grado 0, -2 Grado 4
14 Valor numérico de un polinomio El valor numérico de un polinomio se obtiene al sustituir cada una de sus variables por un valor. Ejemplo P(t) = -4t 4 + 3t 2 t 2 P(2) = = = 56 P(-2) = -4 ( 2) ( 2) = = 52
15 Suma (o resta) de monomios Son semejantes La suma (o resta) es otro monomio semejante. El coeficiente del monomio resultante es la suma (o resta) de los coeficientes de los monomios. Ejemplos 2a 3 b 2 + 5a 3 b 2 = a 3 b 2 = a 3 b 2 No son semejantes La suma (o resta) es un polinomio formado por la suma (o resta) de ambos monomios. Ejemplos 2a 2 b 2 + 5a 3 b 3 2x 3-5x 3 = 2 5 x 3 = 3x 3 2x 3-5x 2 2t 2 + 2t 2 = ( 2 + 2)t 2 = =0t 2 = 0
16 Suma (o resta) de polinomios La suma (o resta) de polinomios, es otro polinomio, formado por los monomios semejantes que han sido reducidos y el resto de monomios no semejantes. Ejemplo P(t) = -4t 4 + 3t 2 t 2 Q(t) = 2t 4 + 3t+5 P(t) + Q(t) = (-4 + 2)t 4 + 3t t = 2t 4 + 3t 2 + 2t + 3
17 Ejemplos P(x) = 2x 2 5x + 1 Q(x) = x 2 7x 3 P(x) - Q(x) = x 2 + 2x + 4 R(x) = 3x 2 1 S(x) = x 3 7x 5x 2 3 R(x) + S(x) = x 3 2x 2 7x 4 T(x) = 3x 2 x 3 U(x) = x 3 5x 2 + x 3 T(x) + U(x) = 2x 2 + x 3
18 Producto de monomios El producto de dos monomios es otro monomio que: Como coeficiente el producto de los coeficientes La parte literal estará compuesto por las partes literales de los monomios, los exponentes de las variables que comparten ambos monomios se habrán sumado. Ejemplo -2xy 2 t 4 3xt 2 = 6x 2 y 2 t 6 2x 4 5x 2 = 10x xy2 3 3 x = 5 20 x2 y 2
19 Producto de polinomios El producto de dos polinomios es otro polinomio que resulta de multiplicar cada uno de los términos del primero por cada uno de los términos del segundo, reduciendo luego los términos semejante. Ejemplos 3x x 2y x 2 3x 1 = 3x 2 6xy = 3x 3 x 2 2xy 3x 2 3x + 2y = 6x 2 y + 4xy 2 9x 3 6x 2 y = 4xy 2 9x 3
20 Ejemplos P(x) = 2x 3 5x + 1 Q(x) = x 2 7x 3 2x 3 5x +1 x 2 7x 3 Cuando los polinomios tienen muchos términos, podemos realizar el producto utilizando la siguiente disposición. 2x 5 14x 4 6x 3 +15x +35x 2 7x 5x 3 +x 2 3 2x 5 14x 4 11x 3 +36x 2 +8x 3
21 Productos notables a + b 2 = a 2 + b 2 + 2ab x + 2y 2 = x 2 + 4y 2 + 4xy 3x + 2y 2 2 = 9x 2 + 4y xy 4 a b 2 = a 2 + b 2 2ab x 2y 2 = x 2 + 4y 2 4xy 3x 2y 2 2 = 9x 2 + 4y 4 12xy 4 a + b a b = a 2 b 2 x + 2y x 2y = x 2 4y 2 3x 2y 2 3x + 2y 2 = 9x 2 4y 4
22 DIVISIÓN DE POLINOMIOS. RAÍCES DE UN POLINOMIO
23 Cociente de monomios El cociente de monomios no siempre es un monomio (puede resultar una fracción algebraica). La división se realiza como un cociente de números y aplicando la propiedad del cociente de potencias de la misma base. Ejemplos 12x 2 y 3 4xy 2 = 12 4 x2 x y3 6x y2 = 3xy 2 t 3 y 4xt 5 y 2 = 6 4 x2 x t3 y t5 y 2 = 3x 2t 2 y 2t 2 y 2 4y 2 = 2 4 t2 y2 y 2 = 1 2 t2 2t 2 y 2 4t 2 y 5 = 1 2 t2 y2 t2 y 5 = 1 2y 3
24 División de un polinomio por un monomio El cociente de un polinomio por un monomio, no siempre es un polinomio (puede resultar una fracción algebraica) La división resulta de aplicar la propiedad distributiva. Ejemplos 12x 2 y 3 + 4x 2 y 2 4xy 2 = 12x2 y 3 4xy 2 + 4x2 y 2 4xy 2 = 3xy + x 12x 2 y 3 + 4x 2 y 2 4x 2 y 3 = 12x2 y 3 4x 2 y 3 + 4x2 y 2 4x 2 y 3 = y
25 División entera de polinomios en una variable Dados los polinomios dividendo (D(x)) y divisor (d(x)), se trata de encontrar un polinomio cociente (c(x)) y otro resto (r(x)) de tal forma que cumplan las siguientes condiciones: D x = d x c x + r x y grado (r(x)) < grado (d(x)) El procedimiento para la división de polinomios es similar al utilizado para dividir números enteros.
26 Ejemplo 6x 4 + 5x 3 7x 2 + 3x + 2 2x 2 + 3x 1 6x 4 + 9x 3 3x 2 4x 3 4x 2 + 3x + 2 4x 3 6x 2 + 2x 2x 2 + x + 2 2x 2 + 3x 1 3x 2 2x + 1 El procedimiento para determinar cada término del polinomio cociente consiste en conseguir que el término principal de divisor por el término a calcular del cociente sea el término principal de los sucesivos dividendos. 2x + 3
27 Factorización y teorema del resto El valor numérico de un polinomio P(x), para x=a coincide con el resto de la división del polinomio P(x) por el binomio x a. Las raíces de un polinomio son aquellos valores numéricos para los que el valor numérico del polinomio es 0. Un polinomio tiene como factor el binomio x a si el valor numérico de dicho polinomio para x = a es cero.
28 Ejemplo 3x 3 4x 2 9x +15 x 2 3x 3 6x 2 3x 2 + 2x 5 2x 2 9x x 2 4x 5x x P x = Q x C x + R x = 3x 3 4x 2 9x + 15 = 3x 2 + 2x 5 x P 2 = = = = 5
29 Cálculo de las raíces de un polinomio Cualquier polinomio de grado n tiene n raíces reales o complejas (teorema fundamental del álgebra) Las raíces de un polinomio de grado 1 o 2 pueden calcularse a partir de la ecuación (de primer o segundo grado) que resulta de igualarlo a cero. Las raíces enteras de un polinomio son divisores del término independiente. Las raíces de un polinomio nos permiten factorizarlo.
30 Ejemplo 1 (raíces) Cálculo de las raíces de un polinomio de grado 2 y factorización del polinomio: P x = x 2 + 5x + 6 Calculamos los valores que anulan el polinomio (resolvemos una ecuación de segundo grado): x 2 + 5x + 6 = 0 x = 5 ± = 5 ± 1 2 = x = 3 x = 2 Podemos factorizar el polinomio como: P x = x 2 + 5x + 6 = x + 3 x + 2
31 Ejemplo 2 (raíces) Cálculo de las raíces de un polinomio de grado mayor que 2 y factorización del polinomio: P x = x 3 + 2x 2 x 2 Las posibles raíces enteras son los divisores del término independiente, son candidatos los valores ±1 y ± 2 P 1 = = 0 P 1 = = 0 P 2 = = 12 0 P 2 = = 0 Por tanto, las raíces son: 1, -1 y -2 y el polinomio lo podemos factorizar como: P x = x 3 + 2x 2 x 2 = x 1 x + 1 x + 2
32 Ejemplo 3 (raíces) Cálculo de las raíces de un polinomio de grado mayor que 2 y factorización del polinomio: P x = x 4 + 3x 3 x 2 3x Este polinomio no tiene término independiente. Lo igualamos a cero: x 4 + 3x 3 x 2 3x = 0 Sacamos factor común x: x 3 + 3x 2 x 3 x = 0 Una raíz es 0, el resto se obtiene de factorizar un polinomio un grado menor = = = 0 Las raíces del polinomio x 3 + 3x 2 x 3 son -1, 1 y -3 El polinomio queda factorizado como: x x + 1 x 1 x + 3
33 Regla de Ruffini Cuando se ha de realizar una división de polinomios en la que el divisor tiene la forma x±a, se puede utilizar la regla de Ruffini. Ejemplo: x 4 20x : x + 4 Coeficientes del polinomio dividendo (0 por cada término que falte) x x Coeficientes del polinomio cociente en orden decreciente x 3 4x 2 4x + 16 Resto de la división
POLINOMIOS Y DIVISIÓN DE POLINOMIOS MATEMÁTICAS 3º ESO
POLINOMIOS Y DIVISIÓN DE POLINOMIOS MATEMÁTICAS 3º ESO Dado que los polinomios se utilizan para describir curvas de diferentes tipos, la gente los utiliza en el mundo real para dibujar curvas. Por ejemplo,
Tema 2 Algebra. Expresiones algebraicas Índice
Tema 2 Algebra. Expresiones algebraicas Índice 1. Expresiones algebraicas comunes... 2 2. Valor numérico de una expresión algebraica... 2 3. Tipos de expresiones algebraicas... 2 4. Monomios... 2 4.1.
Expresiones algebraicas
Expresiones algebraicas Trabajar en álgebra consiste en manejar relaciones numéricas en las que una o más cantidades son desconocidas. Estas cantidades se llaman variables, incógnitas o indeterminadas
EXPRESIÓN ALGEBRAICA Monomios, Polinomios
EXPRESIÓN ALGEBRAICA Monomios, Polinomios CPR. JORGE JUAN Xuvia-Narón Se denomina expresión algebraica a toda combinación de números reales y letras ligadas por las operaciones aritméticas de, adición,
3º ESO PMAR POLINOMIOS DEPARTAMENTO DE MATEMÁTICAS. SAGRADO CORAZÓN COPIRRAI_Julio César Abad Martínez-Losa POLINOMIOS
º ESO PMAR POLINOMIOS DEPARTAMENTO DE MATEMÁTICAS. POLINOMIOS 1.- POLINOMIOS Una expresión algebraica está formada por números y letras asociados por medio de las operaciones aritméticas (suma, resta,
1. EXPRESIONES ALGEBRAICAS.
TEMA 3: POLINOMIOS 1. EXPRESIONES ALGEBRAICAS. Trabajar en álgebra consiste en manejar relaciones numéricas en las que una o más cantidades son desconocidas. Estas cantidades se llaman variables, incógnitas
POLINOMIOS. OPERACIONES CON POLINOMIOS: 1.- Suma y resta de polinomios: Sumando o restando los monomios que sean semejantes.
Recordemos previamente algunos conceptos: POLINOMIOS MONOMIO: expresión algebraica de la forma a x n, siendo a un número real y n un número natural. ( a se llama coeficiente, x n es la parte literal y
POLINOMIOS Y FRACCIONES ALGEBRAICAS
POLINOMIOS Y FRACCIONES ALGEBRAICAS Monomio: Monomio es una expresión algebraica en la que las únicas operaciones que aparecen entre las variables son el producto y la potencia de exponente natural. 2x
OPERACIONES CON MONOMIOS Y POLINOMIOS. Suma de monomios
OPERACIONES CON MONOMIOS Y POLINOMIOS Suma de monomios Sólo podemos sumar monomios semejantes. La suma de los monomios es otro monomio que tiene la misma parte literal y cuyo coeficiente es la suma de
POLINOMIOS. El grado de un monomio es la suma de todos los exponentes de las letras o variables.
RESUMEN Expresiones algebraicas Trabajar en álgebra consiste en manejar relaciones numéricas en las que una o más cantidades son desconocidas. Estas cantidades se llaman variables, incógnitas o indeterminadas
3º ESO POLINOMIOS DEPARTAMENTO DE MATEMÁTICAS. SAGRADO CORAZÓN COPIRRAI_Julio César Abad Martínez-Losa POLINOMIOS
º ESO POLINOMIOS DEPARTAMENTO DE MATEMÁTICAS. POLINOMIOS 1.- POLINOMIOS Una expresión algebraica está formada por números y letras asociados por medio de las operaciones aritméticas (suma, resta, multiplicación,
Ejercicios de Polinomios y Fracciones Algebráicas
Matemáticas 1º Bach CCSS. Ejercicios Tema 2. Polinomios y Fracciones Algebráicas. Pág 1/12 1. Dados los polinomios: Ejercicios de Polinomios y Fracciones Algebráicas 1. P(x) = 4x 2 1 2. Q(x) = x 3 3x 2
TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS
TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS 1.- POLINOMIOS Recordemos que un monomio es una expresión algebraica (combinación de letras y números) en la que las únicas operaciones que aparecen entre las
OBJETIVOS CONTENIDOS PROCEDIMIENTOS
Polinomios INTRODUCCIÓN Son múltiples los contextos en los que aparecen los polinomios: fórmulas económicas, químicas, físicas, de ahí la importancia de comprender el concepto de polinomio y otros asociados
POLINOMIOS En esta unidad aprenderás a:
POLINOMIOS En esta unidad aprenderás a: Reconocer polinomios y calcular su valor numérico Realizar operaciones con polinomios. Manejar la regla de Ruffini y el teorema del resto para encontrar las raíces
53 ESO ÍNDICE: 1. EXPRESIONES ALGEBRAICAS 2. MONOMIOS 3. POLINOMIOS 4. IDENTIDADES 5. DIVISIÓN DE POLINOMIOS 6. FRACCIONES ALGEBRAICAS
53 ESO ÍNDICE: 1. EXPRESIONES ALGEBRAICAS. MONOMIOS 3. POLINOMIOS 4. IDENTIDADES 5. DIVISIÓN DE POLINOMIOS 6. FRACCIONES ALGEBRAICAS El lenguaje algebraico 5. 1 1. EXPRESIONES ALGEBRAICAS LENGUAJE ALGEBRAICO
TEMA 5 EXPRESIONES ALGEBRAICAS
5.1 Monomios TEMA 5 EXPRESIONES ALGEBRAICAS Di si las siguientes expresiones matemáticas son monomios o no. En caso de serlo, determina su parte literal, su coeficiente y su grado. 6x 4 6 1 x 4 6 x 4 no
RECONOCER EL GRADO, EL TÉRMINO Y LOS COEFICIENTES DE UN POLINOMIO
OBJETIVO RECONOCER EL GRADO, EL TÉRMINO Y LOS COEICIENTES DE UN POLINOMIO NOMBRE: CURSO: ECHA: Un polinomio es una expresión algebraica formada por la suma de monomios, que son los términos del polinomio.
I.E.S. Tierra de Ciudad Rodrigo Departamento de Matemáticas TEMA 6. POLINOMIOS
TEMA 6. POLINOMIOS Una expresión algebraica es un conjunto de letras y números unidos por los signos matemáticos. Las expresiones algebraicas surgen de traducir al lenguaje matemático enunciados en los
Coeficiente Parte literal Coeficiente Parte literal 5 x 6 am 2. El grado de un monomio es la suma de los exponentes de las letras que lo forman:
1 Monomios Un monomio es una expresión algebraica formada por: - una parte numérica, llamada coeficiente, y - una parte literal, formada por letras y sus exponentes. Coeficiente Parte literal Coeficiente
MONOMIOS Y POLINOMIOS
Trabajar en álgebra consiste en manejar relaciones numéricas en las que una o más cantidades son desconocidas. Estas cantidades se llaman variables, incógnitas o indeterminadas y se representan por letras.
TEMA 2. POLINOMIOS Y FRACCIONES ALGEBRAICAS
TEMA. POLINOMIOS Y FRACCIONES ALGEBRAICAS.. Repaso de polinomios - Epresión algebraica. Valor numérico - Polinomios. Operaciones con polinomios.. Identidades notables - Cuadrado de una suma de una diferencia
Tema 3: Expresiones algebraicas
Tema 3: Expresiones algebraicas Monomios y polinomios Un monomio es una expresión algebraica en las que las únicas operaciones que aparecen son la multiplicación y la potenciación de exponente natural.
TEMA: 5 ÁLGEBRA 3º ESO
TEMA: 5 ÁLGEBRA 3º ESO 1. MONOMIO Un monomio es una expresión algebraica en la que las únicas operaciones que aparecen entre las variables son el producto y la potencia de exponente natural. Ejemplo: x
Álgebra vs Aritmética. ÁLGEBRA Álgebra Unidad 4. El lenguaje algebraico. TEMA 4: Polinomios. Expresiones algebraicas. Álgebra elemental.
16/01/01 ÁLGEBRA Álgebra Unidad 4. El lenguaje algebraico. TEMA 4: olinomios Álgebra vs Aritmética La Aritmética siempre opera sobre números concretos. El Álgebra hace cálculos simbólicos en los que las
EJERCICIOS PROPUESTOS. Escribe las expresiones algebraicas correspondientes. a) Tres números consecutivos. b) Tres números pares consecutivos.
EJERCICIOS PROPUESTOS 4.1 Relaciona cada enunciado con su expresión algebraica. Múltiplo de 3. Número par. El cuadrado de un número más 3. Un número más 5. El triple de un número más 7. 2x x 5 3x x 2 3
EJERCICIOS PROPUESTOS. Escribe las expresiones algebraicas correspondientes. a) Tres números consecutivos. b) Tres números pares consecutivos.
EJERCICIOS PROPUESTOS 4.1 Relaciona cada enunciado con su expresión algebraica. Múltiplo de 3. Número par. El cuadrado de un número más 3. Un número más 5. El triple de un número más 7. 2x x 5 3x x 2 3
TEMA 3. POLINOMIOS Y FRACCIONES ALGEBRAICAS. Ficha 0
Ficha 0 Un monomio es una expresión algebraica formada por el producto de un número, llamado coeficiente, por una o más variables con exponente natural o cero, llamadas parte literal. El grado es la suma
5.- Potencia de 1 Un número racional elevado a 1 es igual a sí mismo.
POTENCIAS DE EXPONENTE ENTERO Y BASE RACIONAL 1.- 2.- 3.- PROPIEDADES DE LAS POTENCIAS DE NÚMEROS RACIONALES Pulsa en las siguientes pestañas para analizar cada una de las propiedades de la multiplicación:
MATERIALES: Cuaderno de 100h cuadriculado, block de hojas milimetradas, calculadora, lápiz, borrador, lapicero de color verde
MATERIALES: Cuaderno de 00h cuadriculado, block de hojas milimetradas, calculadora, lápiz, borrador, lapicero de color verde FACTORIZACION - Casos de Factorización - Factor común - Factor común por agrupación
Polinomios: Definición: Se llama polinomio en "x" de grado "n" a una expresión del tipo
Polinomios: Definición: Se llama polinomio en "x" de grado "n" a una expresión del tipo P (x) = a 0 x n + a 1 x n 1 +... + a n Donde n N (número natural) ; a 0, a 1, a 2,..., a n son coeficientes reales
Raíces de polinomios
Raíces de polinomios En ésta página podrás conocer las herramientas necesarias para poder encontrar las raíces de polinomios de una variable con coeficientes enteros. Para ello hemos dividido esta página
Tema 4. Polinomios Operaciones
Tema 4. Polinomios Operaciones 1. Expresiones algebraicas. Identidades y ecuaciones.. Monomios.1. Definiciones.. Operaciones con monomios. Polinomios.1. Definiciones.. Operaciones con polinomios Tema.
Expresiones algebraicas
Epresiones algebraicas Matemáticas I 1 Epresiones algebraicas Epresiones algebraicas. Monomios y polinomios. Monomios y polinomios. Una epresión algebraica es una combinación de letras, números y signos
Representación Gráfica (recta numérica)
NÚMEROS NATURALES ( N ) Representación Gráfica (recta numérica) 0 1 2 3 4 R Mediante un punto negro representamos el 1, el 3 y el 4 NÚMEROS ENTEROS ( Z ) - 2-1 0 1 2 R Mediante un punto negro representamos
RESUMEN DE CONCEPTOS
RESUMEN DE CONCEPTOS 1º ESO MATEMÁTICAS NÚMEROS NATURALES (1) Múltiplo de un número: Un número es múltiplo de otro si el segundo está contenido en el primero un número exacto de veces. Ejemplo: 16 es múltiplo
EXPRESIONES ALGEBRAICAS.
EXPRESIONES ALGEBRAICAS. Se dice expresión algebraica aquella que está formada por números y letras unidos mediante signos. 4x 2 + 1 2 3y Observa que existen dos variables x e y. En la siguiente expresión
Q(x,t) = -2x 2 t 3 - xt x 5-3x 3 + 4x 2 +2x- 7 22/03/2016. División de polinomios. P(x) = -x 4 + 3x 2-5 R(x) = 5x 4-2x 3 + 3x
S Escribe un polinomio que cumpla las siguientes condiciones: A)Se llama P(x, y) B)Tiene 5 términos C)Es de grado seis D)No tiene término independiente S Escribe un polinomio que cumpla las siguientes
RESUMEN DE ALGEBRA. CONCEPTO: El pensador principal del algebra es Al-Hwarizmi; es de origen árabe.
RESUMEN DE ALGEBRA CONCEPTO: El pensador principal del algebra es Al-Hwarizmi; es de origen árabe. El álgebra es la rama del conocimiento de la matemática; es decir se desprende de ella. Estudia realidades
CEPA Rosalía de Castro. Fundamentos de Matemáticas Tema 4: Expresiones algebraicas
TEMA 4. Expresiones algebraicas: 1. Una expresión algebraica es una expresión formada por operadores algebraicos que combinan operandos que pueden ser letras o números. Las letras se llaman variables y
UNIDAD: ÁLGEBRA Y FUNCIONES ÁLGEBRA DE POLINOMIOS
C u r s o : Matemática Material N 15 UNIDAD: ÁLGEBRA Y FUNCIONES ÁLGEBRA DE POLINOMIOS GUÍA TEÓRICO PRÁCTICA Nº 1 EVALUACIÓN DE EXPRESIONES ALGEBRAICAS Evaluar una expresión algebraica consiste en sustituir
EXPRESIONES ALGEBRAICAS. POLINOMIOS
Unidad didáctica 5 EXPRESIONES ALGEBRAICAS. POLINOMIOS. EXPRESIONES ALGEBRAICAS. Estas expresiones del área son expresiones algebraicas, ya que además de números aparecen letras. Son también expresiones
Apuntes de matemáticas 2º ESO Curso 2013-2014. Lenguaje algebraico.
Lenguaje algebraico. Expresiones algebraicas Trabajar en álgebra consiste en manejar relaciones numéricas en las que una o más cantidades son desconocidas. Estas cantidades se llaman variables, incógnitas
UNIDAD DIDÁCTICA #5 CONTENIDO I. PRODUCTOS NOTABLES III. DIVISIÓN DE POLINOMIOS II. CUBO DE LA SUMA O DIFERENCIA DE DOS CANTIDADES
UNIDAD DIDÁCTICA #5 CONTENIDO I. PRODUCTOS NOTABLES II. CUBO DE LA SUMA O DIFERENCIA DE DOS CANTIDADES III. DIVISIÓN DE POLINOMIOS IV. FACTORIZACIÓN DE EXPRESIONES ALGEBRAICAS I. PRODUCTOS NOTABLES Los
EXPRESIONES ALGEBRAICAS EXPRESIONES ALGEBRAICAS Y POLINOMIOS
EXPRESIONES ALGEBRAICAS Trabajar en álgebra consiste en manejar relaciones numéricas en las que una o más cantidades son desconocidas. Estas cantidades se llaman VARIABLES, INCÓGNITAS o INDETERMINADAS
EJERCICIOS DE POLINOMIOS
EJERCICIOS DE POLINOMIOS NOMBRE:... Nº:... º....- Escribe el grado, el número de términos y el nombre (monomio, binomio, trinomio, polinomio) que recibe cada una de las siguientes expresiones algebraicas:
Suma, diferencia y producto de polinomios
I, Polinomios Suma, diferencia y producto de polinomios Un monomio es una expresión algebraica donde los números (coeficientes) y las letras (parte literal) están separados por el signo de la multiplicación.
Se dice que dos monomios son semejantes cuando tienen la misma parte literal
Expresiones algebraicas 1 MONOMIOS Conceptos Un monomio es una expresión algebraica en la que las únicas operaciones que aparecen entre las variables son el producto y la potencia de exponente natural.
Expresiones algebraicas
Expresiones algebraicas Una expresión algebraica es una combinación de letras y números relacionadas por los signos de las operaciones: adición, sustracción, multiplicación, división y potenciación. Las
Polinomios y Fracciones algebraicas
Polinomios y Fracciones algebraicas 1. Polinomios 1.1. Expresiones algebraicas: Polinomios y elementos de un polinomio. 1.2. Valor numérico de un polinomio. 1.3. Operaciones con polinomios: suma, resta,
Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio
TRABAJO PRÁCTICO Nº 5. MONOMIOS Y POLINOMIOS TEORÍA Y PRÁCTICA Monomios Un monomio es una expresión algebraica formada por: - una parte numérica, llamada coeficiente, y - una parte literal, formada por
Tema 3: Expresiones algebraicas
.1 Polinomios Tema : Expresiones algebraicas Determina cuáles de las siguientes expresiones son polinomios. Cuando lo sean, dí cuáles son sus monomios(términos), su grado, término principal, término independiente,
POLINOMIOS Y FRACCIONES ALGEBRAICAS
POLINOMIOS Y FRACCIONES ALGEBRAICAS Definición de monomio. Expresión algebraica formada por el producto de un número finito de constantes y variables con exponente natural. Al producto de las constantes
Resumen anual de Matemática 1ª Convocatoria: jueves 24 de noviembre, 2016 Octavo nivel 2ª Convocatoria: miércoles 1 de febrero, 2017 broyi.jimdo.
Resumen anual de Matemática 1ª Convocatoria: jueves 4 de noviembre, 016 Octavo nivel ª Convocatoria: miércoles 1 de febrero, 017 broyi.jimdo.com Contenidos Los números... Objetivo 1... El conjunto de los
UNIDAD 4. POLINOMIOS. (PÁGINA 263)
UNIDAD 4. POLINOMIOS. (PÁGINA 263) LENGUAJE ALGEBRAICO Una expresión algebraica es aquella que combina: números, operaciones y letras. Ejemplos de expresiones algebraicas: 3 + x x 2 y x + y x 2 y LENGUAJE
Unidad 2: Ecuaciones, inecuaciones y sistemas.
Unidad 2: Ecuaciones, inecuaciones y sistemas 1 Unidad 2: Ecuaciones, inecuaciones y sistemas. 1.- Factorización de polinomios. M. C. D y m.c.m de polinomios. Un número a es raíz de un polinomio es 0.
El cuadrado de la suma de dos números es igual al cuadrado del primero más el cuadrado del segundo más el doble producto del primero por el segundo.
IDENTIDADES NOTABLES Definición Qué es una identidad notable? Es una identidad algebraica que, por su relevancia y por la gran cantidad de veces que se usa en las operaciones matemáticas, recibe el nombre
TEMA 5. FACTORIZACIÓN DE POLINOMIOS.
TEMA 5. FACTORIZACIÓN DE POLINOMIOS. 1. SACAR FACTOR COMÚN Cuando todos los términos de un polinomio, P(x), son múltiplos de un mismo monomio, M(x), podemos extraer M(x) como factor común. Por ejemplo:
CURSO DE MATEMÁTICA BÁSICA: ÁLGEBRA
http:/// CURSO DE MATEMÁTICA BÁSICA: ÁLGEBRA DESARROLLA EN FORMA RESUMIDA CADA UNIDAD CON: I. GUIONES DE CONFERENCIAS II. FICHAS DE ESTUDIO III. LABORATORIOS DE EJERCICIOS Trata las unidades siguientes:
Ejercicio 1 Completa: Monomio Coeficiente Parte literal Grado
Soluciones a los ejercicios de Álgebra, primera parte: Ejercicio 1 Completa: Monomio Coeficiente Parte literal Grado 3xz 3 xz 3 1x zy 1 4 abc 1 5 x 5 3 x zy 6 4 abc 6 x 1 Ejercicio Halla el valor numérico
Factorización de polinomios FACTORIZACIÓN DE POLINOMIOS
FACTORIZACIÓN DE POLINOMIOS 1. Polinomios Un monomio es el producto de un número real por una o más letras que pueden estar elevadas a exponentes que sean números naturales. La suma de los exponentes de
Contenido. 1. Definiciones. 2. Operaciones Algebraicas 2.1 Suma y resta 2.2 Multiplicación 2.3 Productos Notables 2.4 Factorización 2.
Contenido 1. Definiciones 1.1 Término algebraico 1.2 Expresión algebraica 1.3 términos semejantes 2. Operaciones Algebraicas 2.1 Suma y resta 2.2 Multiplicación 2.3 Productos Notables 2.4 Factorización
UNIDAD DOS FACTORIZACIÓN
UNIDAD DOS FACTORIZACIÓN Factorizar quiere decir descomponer en factores, los factores son divisores de una expresión que, multiplicados entre sí, dan como resultado la primera expresión. FACTOR COMÚN
Matemáticas B 4º E.S.O. Polinomios y fracciones algebraicas. 1. x 5x 2 6 5
Matemáticas B 4º E.S.O. Polinomios y fracciones algebraicas. 1 POLINOMIOS Y FRACCIONES ALGEBRAICAS.1 COCIENTE DE POLINOMIOS COCIENTE DE MONOMIOS El cociente de un monomio entre otro monomio de grado igual
1. Expresiones polinómicas con una indeterminada
C/ Francisco García Pavón, 16 Tomelloso 1700 (C. Real) Teléfono Fa: 96 51 9 9 Polinomios 1. Epresiones polinómicas con una indeterminada 1.1. Los monomios Un monomio es una epresión algebraica con una
BOLETÍN REPASO MATEMÁTICAS 3º ESO - 2ª PARTE
BOLETÍN REPASO MATEMÁTICAS 3º ESO - ª PARTE Una expresión algebraica es toda combinación de números y letras unidos por los signos de las operaciones aritméticas: adición, sustracción, multiplicación,
(a+b) (a b)=a 2 b 2 OBJETIVOS CONTENIDOS PROCEDIMIENTOS
Polinomios INTRODUCCIÓN Son múltiples los contextos en los que aparecen los polinomios: fórmulas económicas, químicas, físicas, de ahí la importancia de comprender el concepto de polinomio y otros asociados
Comprueba que 5 2 es una raíz del polinomio 2x3 9x x 5. EJERCICIO RESUELTO. Entonces: x 3 + 2x x + 3 = ( x + 1) ( x 2 + x + 3)
Polinomios 7. Teorema del resto. Factorización Polinomios Actividades Aprenderás a Identificar el resto de la división de un polinomio por un binomio de la forma a como el valor numérico para = a. Aplicar
CURSO CERO DE MATEMATICAS. Apuntes elaborados por Domingo Pestana Galván. y José Manuel Rodríguez García
INGENIEROS INDUSTRIALES Y DE TELECOMUNICACIONES CURSO CERO DE MATEMATICAS Apuntes elaborados por Domingo Pestana Galván y José Manuel Rodríguez García UNIVERSIDAD CARLOS III DE MADRID Escuela Politécnica
Viernes 14 evaluación ÁLGEBRA II. Propiedad Intelectual Propiedad Cpech Intelectual Cpech
Viernes 14 evaluación ÁLGEBRA II Álgebra II Propiedad Intelectual Propiedad Cpech Intelectual Cpech Aprendizajes esperados Reconocer y resolver productos notables. Interpretar geométricamente productos
Matemáticas Universitarias
Matemáticas Universitarias 1 Sesión No. 2 Nombre: Expresiones algebraicas y sus operaciones Objetivo de la asignatura: En esta sesión el estudiante aplicará las operaciones básicas como suma, resta, multiplicación
EXPRESIONES ALGEBRAICAS
EXPRESIONES ALGEBRAICAS Trabajar en álgebra consiste en manejar relaciones numéricas en las que una o más cantidades son desconocidas. Estas cantidades se llaman V A R I A B L ES, I N C Ó G N I T A S o
SERIE INTRODUCTORIA. REPASO DE ALGEBRA.
SERIE INTRODUCTORIA. REPASO DE ALGEBRA. 1.- REDUCCION DE TÉRMINOS SEMEJANTES. Recuerde que los términos semejantes son aquellos que tienen las mismas letras con los mismos exponentes. Ejemplos: *7m; 5m
EJERCICIOS DE VERANO MATEMÁTICAS 3º ESO
EJERCICIOS DE VERANO MATEMÁTICAS 3º ESO Página 1 de 12 Entregar el día del examen de recuperación de matemáticas. Será condición indispensable para aprobar la asignatura. 1. Calcula: NUMEROS ENTEROS. FRACCIONES.
Polinomios Primero que todo vamos a definirlos como aquella expresión algebraica de la forma: P(x) = a n x n + a n - 1 x n - 1 + a n - 2 x n - 2 +...
Polinomios Primero que todo vamos a definirlos como aquella expresión algebraica de la forma: P(x) = a n x n + a n - 1 x n - 1 + a n - 2 x n - 2 +... + a 1 x 1 + a 0 Siendo a n, a n -1... a 1, a o números,
TEMA 6: DIVISIÓN DE POLINOMIOS RAÍCES MATEMÁTICAS 3º ESO
TEMA 6: DIVISIÓN DE POLINOMIOS RAÍCES MATEMÁTICAS 3º ESO 1. División de polinomios Dados dos polinomios P (el dividendo) y D (el divisor), dividir P entre D es encontrar dos polinomios Q (el cociente)
TEMA 4: EXPRESIONES ALGEBRAICAS.
TEMA 4: EXPRESIONES ALGEBRAICAS. Segundo Curso de Educación Secundaria Obligatoria. I.E.S de Fuentesaúco. Manuel González de León. CURSO 2011-2012 Página 1 de 14 Profesor: Manuel González de León Curso
4º ESO ACADÉMICAS POLINOMIOS DEPARTAMENTO DE MATEMÁTICAS. SAGRADO CORAZÓN COPIRRAI_Julio César Abad Martínez-Losa POLINOMIOS
POLINOMIOS 1.- POLINOMIOS Una epresión algebraica está formada por números y letras asociados por medio de las operaciones aritméticas (suma, resta, multiplicación, división y potenciación). 1 t Ejemplo:
TEMA 3. POLINOMIOS Y FRACCIONES ALGEBRAICAS. Ficha 1. P x
Ficha. Dados los siguientes polinomios, ordenarlos en orden decreciente, indicar cuál es su grado, decir cuántos términos tiene, señalar cuál es el término independiente, calcular su valor numérico para
1 Unidad II. Tópicos del algebra
Unidad II. Tópicos del algebra. Expresiones algebraicas Una expresión algebraica es una expresión matemática abstracta como 5xy 4 z 2 + 2 x2 y 0 Cada expresión algebraica está constituida por elementos
Reducción de dos términos semejantes del mismo signo P r o c e d i m i e n t o
. Definición: Dos o más términos son semejantes cuando tienen las mismas letras y afectadas por el mismo exponente. Reducción de dos términos semejantes del mismo signo P r o c e d i m i e n t o Para reducir
EXPRESIONES ALGEBRAICAS
EXPRESIONES ALGEBRAICAS EXPRESIONES ALGEBRAICAS Una epresión algebraica es aquella en la que se operan números conocidos y números desconocidos representados por las letras a, b, c,, y, z,..., que se denominan
Matemáticas II CC II PARCIAL INBAC UNIDAD DIDÁTICA #3
UNIDAD DIDÁTICA #3 INDICE PÁGINA Las Letras Como Números Generalizadores -----------------------------------------------------2 Clasificación de las expresiones algebraicas------------------------------------------------------4
Partes de un monomio
Monomios Un monomio es una epresión algebraica en la que la únicas operaciones que afectan a las letras son la multiplicación y la potencia de eponente natural. Son monomios: NO son monomios: 1 yz 1 abc
1 MÓDULO INSTRUCCIONAL DE MATEMÁTICAS
1 MÓDULO INSTRUCCIONAL DE MATEMÁTICAS II TRIMESTRE - UNIDAD DE APRENDIZAJE # (EXPRESIONES ALGEBRAICAS) PROFESOR: AQUILINO MIRANDA (COLEGIO DANIEL O CRESPO) LOGROS DE APRENDIZAJE Conoce el concepto de expresión
Tema 3. Polinomios y fracciones algebraicas
Tema. Polinomios y fracciones algebraicas. Monomios.. Definiciones.. Operaciones con monomios. Polinomios.. Definiciones.. Operaciones con polinomios. Factorización de un polinomio.. Teorema del resto.
MATEMÁTICAS ÁLGEBRA (TIC)
COLEGIO COLOMBO BRITÁNICO Formación en la Libertad y para la Libertad MATEMÁTICAS ÁLGEBRA (TIC) GRADO:8 O A, B DOCENTE: Nubia E. Niño C. FECHA: 23 / 02 / 15 GUÍA UNIFICADA: # 1 5; # 1-6 y 1-7 DESEMPEÑOS:
GUÍA DE APRENDIZAJE. PROCESO: Prestación del Servicio / Educación Superior
GUÍA UNIDAD No. 04 Programa: Procesos Aduaneros Semestre: Primero 2012 Asignatura: Matemáticas Básicas Nombre Unidad: Factorización Subtemas: Casos de factorización Metodología de Formación: Presencial
Tema 3. Polinomios y fracciones algebraicas
Tema. Polinomios y fracciones algebraicas. Monomios.. Definiciones.. Operaciones con monomios. Polinomios.. Definiciones.. Operaciones con polinomios. Factorización de un polinomio.. Teorema del resto.
FICHAS REPASO 3º ESO. Para restar números enteros, se suma al minuendo el opuesto del sustraendo y después se aplican las reglas de la suma.
FICHAS REPASO º ESO OPERACIONES CON NÚMEROS ENTEROS El valor absoluto de un número entero es el número natural que resulta al prescindir del signo. Por ejemplo, el valor absoluto de es y el valor absoluto
Un monomio es el producto indicado de un número por una o varias letras GRADO 4º
TEMA. POLINOMIOS OPERACIONES. MONOMIOS Un monomio es el producto indicado de un número por una o varias letras GRADO º COEFICIENTE PARTE LITERAL. VALOR NUMÉRICO DE UN MONOMIO Es el resultado que se obtiene
Colegio San Patricio Matemática 3 año Prof. Selva Hernández Trabajo Práctico N 9 : Factorización de polinomios.
Colegio San Patricio Matemática 3 año - 2015 Prof. Selva Hernández Trabajo Práctico N 9 : Factorización de polinomios. Factorizar un polinomio es escribirlo como producto de factores irreducibles. El concepto
RESUMEN DE CONCEPTOS TEÓRICOS MATEMÁTICAS 1º ESO. CURSO
RESUMEN DE CONCEPTOS TEÓRICOS MATEMÁTICAS 1º ESO. CURSO 2015-2016 UNIDAD 1: NÚMEROS NATURALES (1) Múltiplo de un número: Un número es múltiplo de otro si el segundo está contenido en el primero un número
Dado el cubo de la figura siguiente, halla su área y su volumen en función de x. Solución: Solución: a) 5x 3, 9x 3,x 3 b) 7x 2,8x 2 c) 7x, 9x
7 Polinomios 1. Lenguaje algebraico Dado el cubo de la figura siguiente, halla su área y su volumen en función de x P I E N S A Y C A L C U L A A(x) = 6x V(x) = x 3 x x x Carné calculista 36 : 0,79 C =
cómo expresarías?. ÁLGEBRA Álgebra Unidad 4. El lenguaje algebraico. TEMA 4: POLINOMIOS Grupo: 3º A Expresiones algebraicas Álgebra vs Aritmética
16/01/01 ÁLGEBRA Álgebra Unidad 4. El lenguaje algebraico. TEMA 4: POLINOMIOS Grupo: º A cómo expresarías?. La altura de mi hermano si te digo que mide 10 cm más que mi hermana: El perímetro de un triángulo
UNIDAD DIDÁCTICA V POLINOMIOS Y ECUACIONES ALGEBRAICAS RACIONALES
UNIDAD DIDÁCTICA V POLINOMIOS Y ECUACIONES ALGEBRAICAS RACIONALES Temario: Definición de epresiones algebraicas y clasificación. Polinomio, grado. Operaciones. Regla de Ruffini. Factorización de Polinomios.
Indica el coeficiente, parte literal y grado de estos monomios.
Polinomios EJERCICIOS 001 Indica el coeficiente, parte literal y grado de estos monomios. a) y z 4 b) 5b c c) 15 y d) y 5 a) Coeficiente: Parte literal: y z 4 Grado: + + 4 9 b) Coeficiente: 5 Parte literal:
5 EXPRESIONES ALGEBRAICAS
5 EXPRESIONES ALGEBRAICAS EJERCICIOS Si en una librería, el precio de un libro es x euros y el de cada bolígrafo es 7 menos, expresa algebraicamente lo que cuestan: a) Cuatro libros. b) Diez bolígrafos.
Ámbito Científico-Tecnológico Módulo III Bloque 3 Unidad 3 Las letras y los números: un cóctel perfecto
Ámbito Científico-Tecnológico Módulo III Bloque 3 Unidad 3 Las letras y los números: un cóctel perfecto En esta unidad vas a comenzar el estudio del álgebra, el lenguaje de las matemáticas. Vas a aprender
