MATEMÁTICAS ÁLGEBRA (TIC)
|
|
|
- Rosario Robles Márquez
- hace 9 años
- Vistas:
Transcripción
1 COLEGIO COLOMBO BRITÁNICO Formación en la Libertad y para la Libertad MATEMÁTICAS ÁLGEBRA (TIC) GRADO:8 O A, B DOCENTE: Nubia E. Niño C. FECHA: 23 / 02 / 15 GUÍA UNIFICADA: # 1 5; # 1-6 y 1-7 DESEMPEÑOS: * Reconoce y aplica el teorema de Pitágoras.* Reconoce expresiones algebraicas. * Clasifica expresiones algebraicas y halla el valor numérico. * Determina el grado de un polinomio. * Identifica y simplifica términos semejantes en un polinomio. * Efectúa sumas y restas de expresiones algebraicas y las aplica en la solución de diversas situaciones aritméticas, geométricas y algebraicas. APRENDE: Teorema de Pitágoras: solamente se aplica en los triángulos rectángulos, el cuadrado de la hipotenusa (el lado de mayor longitud del triángulo rectángulo) es igual a la suma de los cuadrados de los catetos EXPRESIONES ALGEBRAICAS: Una expresión algebraica es: una combinación de letras y números unidos por los signos de las operaciones: suma, resta, multiplicación, división y potenciación. A las letras se les denomina variables o incógnitas, suelen representar cantidades desconocidas. A los números se les denomina constante. Ejemplos: 5xy 2 ; 7m 3 2m +1; Expresiones algebraicas comunes: El doble o duplo de un número: 2x La mitad de un número: x/2 El triple de un número: 3x Un tercio de un número: x/3 El cuádruplo de un número: 4x Un cuarto de un número: x/4 Un número al cuadrado: x² Un número al cubo: x³ Un número par: 2x Un número impar: 2x + 1 Dos números consecutivos: x y x + 1
2 Elementos de un término algebraico: Se llama término a toda expresión algebraica cuyas partes no están separadas por los signos + o Ejemplo: xy 2 es un término algebraico. En todo término algebraico pueden distinguirse cuatro elementos: el signo, el coeficiente, la parte literal y el grado. Signo: es el símbolo que indica si el término es positivo (+) o negativo ( ); antecede a todo término. Ejemplos: 16m 2 positivo 19wz negativo Coeficiente: es el número que aparece multiplicando a las variables. 9x 3 y 2 Ejemplos: 3m el coeficiente es 3 2z 2 el coeficiente es 9 2 Parte literal: está constituida por las letras y sus exponentes. 1 Ejemplos: 7abc la parte literal es abc 2 xy2 la parte literal es xy 2 Grado o exponente: puede ser de dos clases: absoluto y en relación con una letra (relativo). Clasificación de las expresiones algebraicas por su número de términos: Monomios: es una expresión algebraica que consta de un solo término, en la que números y letras están unidos por la operación multiplicar. El coeficiente es un número R y los exponentes no pueden ser Z Grado relativo: es el exponente de la variable. Ejemplo: 3 5 x 3 z 8 grado de x=3 y de z=8 Grado absoluto: es la suma de los exponentes de su parte literal. Ejemplos: 7a 5 bc 3 grado absoluto 9 = m 4 x 5 grado absoluto 9 Son monomios homogéneos Valor numérico: para un determinado valor, es el número que se obtiene al sustituir en l a (s) variable (s) por valor numérico dado y realizar las operaciones indicadas. Ejemplos: Para m = 4 hallar 5m 5(4) = 20 Para x = 3, y = 2, z = 4 hallar 7x 2 y 3 z = = 2016
3 Polinomios: es una expresión algebraica con dos o más términos. Recibe el nombre según la cantidad de términos que tiene. Nombre: Número de términos: binomio 2 trinomio 3 polinomio + de 3 Grado de un polinomio: Grado absoluto: es el mayor grado absoluto de los monomios que lo conforman. Ejemplo: 2m 4 n 2 + 7mn 3 3m 5 n 2 grado absoluto 7 = 5+2 Grado relativo con respecto a una variable: es el mayor exponente que tiene la variable en el polinomio. Ejemplo: 5a 2 b 9ab 4 grado de a =2; grado de b = 4 Tipos de polinomios: Polinomio ordenado: Un polinomio está ordenado con respecto a una variable, si los monomios que lo forman están escritos de mayor a menor grado o viceversa. Ejemplo: P(x) = 2x 3 z + 5xz 2 3 ordenado en forma descendente con relación a la variable x. Polinomio completo: si al con respecto a una variable aparecen sus exponentes en forma consecutiva, desde el 0 hasta el mayor exponente de la variable. Ejemplo: P(x) = 2x 3 + 3x 2 + 5x 3 Polinomio opuesto: el opuesto de un polinomio se obtiene estableciendo el opuesto de los coeficientes de sus términos. Ejemplo: 3 4 mn2 21mn opuesto = 3 4 mn2 + 21mn 3 6 Valor numérico de un polinomio: Es el resultado que obtenemos al sustituir las variables por valores numéricos dados y resolver las operaciones indicadas. Ejemplo: P(x) = 2x 3 + 5x 3 x = 1 P (1) = = = 4 Términos semejantes: dos o más términos de un polinomio son semejantes cuando su parte literal es la misma, es decir, cuando las variables de los términos, con sus respectivos grados relativos, son exactamente iguales. Ejemplo: 3x 4 + 5x 3 9 2x 3 los términos semejantes son 5x 3 y 2x 3 tienen igual la parte literal. OPERACIONES ENTRE EXPRESIONES ALGEBRAICAS: Suma y resta de monomios: Suma: Sólo podemos sumar monomios semejantes. La suma de los monomios es otro monomio que tiene la misma parte literal y cuyo coeficiente es la suma de los coeficientes. Ejemplo: 2x 2 y 3 z + 3x 2 y 3 z = (2 + 3) x 2 y 3 z = 5x 2 y 3 z Resta: Sólo podemos restar monomios semejantes. Para restar monomios se restan los coeficientes y se deja la misma parte literal. Ejemplos: 7m 4 n 2 x 5 16m 4 n 2 x 5 = 9m 4 n 2 x 5 Restar 3ab 2 c 3 de la suma de 5ab 2 c 3 y 3ab 2 c 3 5ab 2 c 3 + 3ab 2 c 3 = 8 ab 2 c 3 8 ab 2 c 3 ( 3ab 2 c 3 ) = 8 ab 2 c 3 + 3ab 2 c 3 = 11ab 2 c 3
4 Suma y resta de polinomios: Suma: Para sumar dos o más polinomios se suman los coeficientes de los términos del mismo grado. 1 Ordenamos los polinomios, si no lo están. Ejemplo: P(x) = 2x 3 + 5x 3 Q(x) = 4x 3x 2 + 2x 3 P(x) + Q(x) = (2x 3 + 5x 3) + (2x 3 3x 2 + 4x) 2 Agrupamos los monomios del mismo grado. P(x) + Q(x) = 2x 3 + 2x 3 3 x 2 + 5x + 4x 3 3 Sumamos los monomios semejantes. P(x) + Q(x) = 2x 3 + 2x 3 3 x 2 + 5x + 4x 3 También podemos sumar polinomios escribiendo uno debajo del otro, de forma que los monomios semejantes queden en columnas y se puedan sumar. Ejemplo: P(x) = 7x 4 + 4x 2 + 7x + 2 Q(x) = 6x 3 + 8x +3 R/. P(x) + Q(x) = 7x 4 + 6x 3 + 4x x + 5 Resta: La resta de polinomios consiste en sumar al minuendo el opuesto o inverso aditivo del sustraendo, reduciendo términos semejantes. Ejemplo: P(x) Q(x) = (2x 3 + 5x 3) (2x 3 3x 2 + 4x) P(x) Q(x) = 2x 3 + 5x 3 2x 3 + 3x 2 4x P(x) Q(x) = 2x 3 2x 3 + 3x 2 + 5x 4x 3 P(x) Q(x) = 3x 2 + x 3 También podemos restar polinomios escribiendo el opuesto o inverso aditivo del sustraendo, uno debajo del otro, de forma que los monomios semejantes queden en columnas y se puedan sumar. P(x) = 7x 4 + 4x 2 + 7x + 2 Q(x) = 6x 3 + 8x +3 P(x) Q(x) =?
5 Fuentes Bibliográficas: * * * * * * Nubia Esmeralda Niño C. * * * * * * * -sumar-restar.html * * Imágenes de: * * * * Vuela tan alto como puedas. se tú mismo Anónimo
MONOMIOS Y POLINOMIOS
Trabajar en álgebra consiste en manejar relaciones numéricas en las que una o más cantidades son desconocidas. Estas cantidades se llaman variables, incógnitas o indeterminadas y se representan por letras.
EXPRESIONES ALGEBRAICAS. POLINOMIOS
Unidad didáctica 5 EXPRESIONES ALGEBRAICAS. POLINOMIOS. EXPRESIONES ALGEBRAICAS. Estas expresiones del área son expresiones algebraicas, ya que además de números aparecen letras. Son también expresiones
Apuntes de matemáticas 2º ESO Curso 2013-2014. Lenguaje algebraico.
Lenguaje algebraico. Expresiones algebraicas Trabajar en álgebra consiste en manejar relaciones numéricas en las que una o más cantidades son desconocidas. Estas cantidades se llaman variables, incógnitas
1. EXPRESIONES ALGEBRAICAS.
TEMA 3: POLINOMIOS 1. EXPRESIONES ALGEBRAICAS. Trabajar en álgebra consiste en manejar relaciones numéricas en las que una o más cantidades son desconocidas. Estas cantidades se llaman variables, incógnitas
UNIDAD 5: ÁLGEBRA. Nacho Jiménez ANT ÍNDICE SIG
UNIDAD 5: ÁLGEBRA Nacho Jiménez 0. Conceptos previos ÍNDICE 1. Para qué sirve el álgebra? 2. Expresiones algebraicas 2.1 Monomios 2.2 Suma y resta de monomios 2.3 Multiplicación de monomios 2.4 División
TEMA 4: EXPRESIONES ALGEBRAICAS.
TEMA 4: EXPRESIONES ALGEBRAICAS. Segundo Curso de Educación Secundaria Obligatoria. I.E.S de Fuentesaúco. Manuel González de León. CURSO 2011-2012 Página 1 de 14 Profesor: Manuel González de León Curso
LOS NUMEROS IRRACIONALES Y SU REPRESENTACIÓN EN LA RECTA NUMERICA
GUIA Nº 1: LOS NÚMEROS REALES 1 GRADO: 8º PROFESORA: Eblin Martínez M. ESTUDIANTE: PERIODO: I DURACIÓN: 20 Hrs LOGRO: Realizo operaciones con números naturales, enteros, racionales e irracionales. INDICADORES
La suma de los monomios es otro monomio que tiene la misma parte literal y cuyo coeficiente es la suma de los coeficientes.
Suma de monomios Sólo podemos sumar monomios semejantes. La suma de los monomios es otro monomio que tiene la misma parte literal y cuyo coeficiente es la suma de los coeficientes. ax n + bx n = (a + b)x
COLEGIO EL LIMONAR. MÁLAGA DEPARTAMENTO DE MÁTEMÁTICAS RELACIONES DE EJERCICIOS. 1º ESO
COLEGIO EL LIMONAR. MÁLAGA DEPARTAMENTO DE MÁTEMÁTICAS RELACIONES DE EJERCICIOS. º ESO RELACIÓN 5: ALGEBRA Lenguaje algebraico, monomios polinomios EXPRESIÓN ALGEBRAICA Es un conjunto de números letras
Ámbito Científico-Tecnológico Módulo III Bloque 3 Unidad 3 Las letras y los números: un cóctel perfecto
Ámbito Científico-Tecnológico Módulo III Bloque 3 Unidad 3 Las letras y los números: un cóctel perfecto En esta unidad vas a comenzar el estudio del álgebra, el lenguaje de las matemáticas. Vas a aprender
Introducción al Álgebra
Capítulo 3 Introducción al Álgebra L a palabra álgebra deriva del nombre del libro Al-jebr Al-muqābāla escrito en el año 825 D.C. por el matemático y astrónomo musulman Mohamad ibn Mūsa Al-Khwārizmī. El
INSTITUCION EDUCATIVA LA PRESENTACION
INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMATICAS ASIGNATURA: MATEMATICAS DOCENTE: HUGO HERNAN BEDOYA Y LUIS LOPEZ TIPO DE GUIA: NIVELACION PERIODO GRADO FECHA DURACION 8 A/B Abril
I.E.S. Tierra de Ciudad Rodrigo Departamento de Matemáticas TEMA 6. POLINOMIOS
TEMA 6. POLINOMIOS Una expresión algebraica es un conjunto de letras y números unidos por los signos matemáticos. Las expresiones algebraicas surgen de traducir al lenguaje matemático enunciados en los
FICHAS REPASO 3º ESO. Para restar números enteros, se suma al minuendo el opuesto del sustraendo y después se aplican las reglas de la suma.
FICHAS REPASO º ESO OPERACIONES CON NÚMEROS ENTEROS El valor absoluto de un número entero es el número natural que resulta al prescindir del signo. Por ejemplo, el valor absoluto de es y el valor absoluto
TEMA 5. Expresiones Algebraicas
TEMA 5 Expresiones Algebraicas 5.1.- Lenguaje Algebraico El lenguaje numérico sirve para expresar operaciones utilizando solamente números. El lenguaje algebraico sirve para expresar situaciones reales
Coeficiente Parte literal Coeficiente Parte literal 5 x 6 am 2. El grado de un monomio es la suma de los exponentes de las letras que lo forman:
1 Monomios Un monomio es una expresión algebraica formada por: - una parte numérica, llamada coeficiente, y - una parte literal, formada por letras y sus exponentes. Coeficiente Parte literal Coeficiente
Guía Nº 1(B) ALGEBRA
Liceo Industrial Benjamín Dávila Larraín Unidad Técnica Pedagógica Guía Nº (B) ALGEBRA I. Identificación Docente Verónica Moya R. Claudia Paez Subsector/Módulo Matemática Email docente Aprendizaje Esperado
UNIDAD I FUNDAMENTOS BÁSICOS
República Bolivariana de Venezuela Universidad Alonso de Ojeda Administración Mención Gerencia y Mercadeo UNIDAD I FUNDAMENTOS BÁSICOS Elaborado por: Ing. Ronny Altuve Ciudad Ojeda, Mayo 2016 ÁLGEBRA Es
Ficha de Repaso: Lenguaje Algebraico
Ficha de Repaso: Lenguaje Algebraico 1º) Traduce las siguientes afirmaciones al lenguaje algebraico: a) El doble de un número b) El cubo de un número c) El cuadrado de un número menos su doble d) Un número
EXPRESIONES ALGEBRAICAS EXPRESIONES ALGEBRAICAS Y POLINOMIOS
EXPRESIONES ALGEBRAICAS Trabajar en álgebra consiste en manejar relaciones numéricas en las que una o más cantidades son desconocidas. Estas cantidades se llaman VARIABLES, INCÓGNITAS o INDETERMINADAS
1. OPERATORIA ALGEBRAICA 1.1 TÉRMINOS SEMEJANTES
MATEMÁTICA MÓDULO 1 Eje temático: Álgebra 1. OPERATORIA ALGEBRAICA 1.1 TÉRMINOS SEMEJANTES Se denominan términos semejantes a aquellos que tienen la misma parte literal. Por ejemplo: -2a 2 b y 5a 2 b son
UNIDAD: ÁLGEBRA Y FUNCIONES ÁLGEBRA DE POLINOMIOS
C u r s o : Matemática Material N 15 UNIDAD: ÁLGEBRA Y FUNCIONES ÁLGEBRA DE POLINOMIOS GUÍA TEÓRICO PRÁCTICA Nº 1 EVALUACIÓN DE EXPRESIONES ALGEBRAICAS Evaluar una expresión algebraica consiste en sustituir
cómo expresarías?. ÁLGEBRA Álgebra Unidad 4. El lenguaje algebraico. TEMA 4: POLINOMIOS Grupo: 3º A Expresiones algebraicas Álgebra vs Aritmética
16/01/01 ÁLGEBRA Álgebra Unidad 4. El lenguaje algebraico. TEMA 4: POLINOMIOS Grupo: º A cómo expresarías?. La altura de mi hermano si te digo que mide 10 cm más que mi hermana: El perímetro de un triángulo
DESARROLLO D) 4. para a = 1 y b = 2 (a 2 + b 2 )(2a 3b 2 ) es:
ENCUENTRO # 10 TEMA:Operaciones con polinomios CONTENIDOS: 1. Multiplicación de polinomios. 2. Productos notables. DESARROLLO Ejercicio Reto x 2 1. Al racionalizar el denominador de la fracción 3 + se
EJERCICIOS PROPUESTOS. Escribe las expresiones algebraicas correspondientes. a) Tres números consecutivos. b) Tres números pares consecutivos.
EJERCICIOS PROPUESTOS 4.1 Relaciona cada enunciado con su expresión algebraica. Múltiplo de 3. Número par. El cuadrado de un número más 3. Un número más 5. El triple de un número más 7. 2x x 5 3x x 2 3
Expresiones algebraicas
Epresiones algebraicas Matemáticas I 1 Epresiones algebraicas Epresiones algebraicas. Monomios y polinomios. Monomios y polinomios. Una epresión algebraica es una combinación de letras, números y signos
; En este término algebraico, tenemos que 3 es el factor numérico y el coeficiente literal.
Álgebra Término algebraico: es el producto y/o división de una o más variables (factor literal) y un coeficiente o factor numérico. Por ejemplo: el cálculo del área de un triángulo la rapidez media ; En
POLINOMIOS Y FRACCIONES ALGEBRAICAS
POLINOMIOS Y FRACCIONES ALGEBRAICAS Monomio: Monomio es una expresión algebraica en la que las únicas operaciones que aparecen entre las variables son el producto y la potencia de exponente natural. 2x
RECONOCER EL GRADO, EL TÉRMINO Y LOS COEFICIENTES DE UN POLINOMIO
OBJETIVO RECONOCER EL GRADO, EL TÉRMINO Y LOS COEICIENTES DE UN POLINOMIO NOMBRE: CURSO: ECHA: Un polinomio es una expresión algebraica formada por la suma de monomios, que son los términos del polinomio.
Expresiones Algebraicas en los Números Reales
Operaciones con en los Números Reales Carlos A. Rivera-Morales Álgebra Tabla de Contenido Contenido Operaciones con Operaciones con : Contenido Operaciones con Discutiremos: qué es una: expresión algebraica
Expresiones algebraicas
Expresiones algebraicas Una expresión algebraica es una combinación de letras y números relacionadas por los signos de las operaciones: adición, sustracción, multiplicación, división y potenciación. Las
UNIDAD DE APRENDIZAJE I
UNIDAD DE APRENDIZAJE I Saberes procedimentales Interpreta y utiliza correctamente el lenguaje simbólico para el manejo de expresiones algebraicas. 2. Identifica operaciones básicas con expresiones algebraicas.
Representación Gráfica (recta numérica)
NÚMEROS NATURALES ( N ) Representación Gráfica (recta numérica) 0 1 2 3 4 R Mediante un punto negro representamos el 1, el 3 y el 4 NÚMEROS ENTEROS ( Z ) - 2-1 0 1 2 R Mediante un punto negro representamos
RESUMEN DE CONCEPTOS
RESUMEN DE CONCEPTOS 1º ESO MATEMÁTICAS NÚMEROS NATURALES (1) Múltiplo de un número: Un número es múltiplo de otro si el segundo está contenido en el primero un número exacto de veces. Ejemplo: 16 es múltiplo
CURSO PROPEDEUTICO DEALGEBRA PARA BQFT QUÍMICO FARMACEÚTICO BIOTECNÓLOGO CURSO PROPEDEUTICO AGOSTO 2013 ELABORÓ ALEJANDRO JAIME CARRETO SOSA
QUÍMICO FARMACEÚTICO BIOTECNÓLOGO CURSO PROPEDEUTICO AGOSTO 201 ELABORÓ ALEJANDRO JAIME CARRETO SOSA 1 Operaciones entre Quebrados (Fracciones) Sumar quebrados o fracciones: se calcula el común denominador,
Alumno Fecha Actividad 13 Expresiones algebraicas 1º ESO
Alumno Fecha Actividad 1 Expresiones algebraicas 1º ESO Las expresiones que resultan de combinar números y letras relacionándolos con las operaciones habituales se llaman expresiones algebraicas y se utilizan
TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS
TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS 1.- POLINOMIOS Recordemos que un monomio es una expresión algebraica (combinación de letras y números) en la que las únicas operaciones que aparecen entre las
2. EXPRESIONES ALGEBRAICAS
2. EXPRESIONES ALGEBRAICAS Tales como, 2X 2 3X + 4 ax + b Se obtienen a partir de variables como X, Y y Z, constantes como -2, 3, a, b, c, d y cobinadas utilizando la suma, resta, multiplicación, división
MATE IV Serie Álgebra 2015/01/26 NOMENCLATURA ALGEBRAICA
NOMENCLATURA ALGEBRAICA Definición (Término). Es una expresión algebraica que consta de un solo símbolo o de varios símbolos no separados entre sí por el signo + o -. Por ejemplo a, 3b, xy, son términos.
Curso º ESO. UNIDADES 6 Y 7: EXPRESIONES ALGEBRAICAS Y ECUACIONES Departamento de Matemáticas IES Fray Bartolomé de las Casas de Morón
2º ESO UNIDADES 6 Y 7: EXPRESIONES ALGEBRAICAS Y ECUACIONES Departamento de Matemáticas IES Fray Bartolomé de las Casas de Morón OBJETIVOS CONTENIDOS PROCEDIMIENTOS Lenguaje algebraico. Normas y Traducción
Polinomios Primero que todo vamos a definirlos como aquella expresión algebraica de la forma: P(x) = a n x n + a n - 1 x n - 1 + a n - 2 x n - 2 +...
Polinomios Primero que todo vamos a definirlos como aquella expresión algebraica de la forma: P(x) = a n x n + a n - 1 x n - 1 + a n - 2 x n - 2 +... + a 1 x 1 + a 0 Siendo a n, a n -1... a 1, a o números,
Se dice que dos monomios son semejantes cuando tienen la misma parte literal
Expresiones algebraicas 1 MONOMIOS Conceptos Un monomio es una expresión algebraica en la que las únicas operaciones que aparecen entre las variables son el producto y la potencia de exponente natural.
TEMA 2. POLINOMIOS Y FRACCIONES ALGEBRAICAS
TEMA. POLINOMIOS Y FRACCIONES ALGEBRAICAS.. Repaso de polinomios - Epresión algebraica. Valor numérico - Polinomios. Operaciones con polinomios.. Identidades notables - Cuadrado de una suma de una diferencia
Mó duló 04: Á lgebra Elemental I
INTERNADO MATEMÁTICA 016 Guía para el Estudiante Mó duló 04: Á lgebra Elemental I Objetivo: Identificar y utilizar conceptos matemáticos asociados al estudio del álgebra elemental. Problema 1 La edad de
Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio
TRABAJO PRÁCTICO Nº 5. MONOMIOS Y POLINOMIOS TEORÍA Y PRÁCTICA Monomios Un monomio es una expresión algebraica formada por: - una parte numérica, llamada coeficiente, y - una parte literal, formada por
Expresiones algebraicas (1º ESO)
Epresiones algebraicas (º ESO) Lenguaje numérico y lenguaje algebraico. El lenguaje en el que intervienen números y signos de operaciones se denomina lenguaje numérico. Lenguaje usual Lenguaje numérico
TRABAJO DE MATEMÁTICAS. PENDIENTES DE 1º ESO. (2ª parte)
TRABAJO DE MATEMÁTICAS PENDIENTES DE 1º ESO. (2ª parte) NÚMEROS RACIONALES REDUCCIÓN DE FRACCIONES AL MISMO DENOMINADOR Para reducir varias fracciones al mismo denominador se siguen los siguientes pasos:
OPERACIONES CON POLINOMIOS
4. 1 UNIDAD 4 OPERACIONES CON POLINOMIOS Objetivo general. Al terminar esta Unidad resolverás ejercicios y problemas en los que apliques las operaciones de suma, resta, multiplicación y división de polinomios.
APÉNDICE MATEMÁTICO DEL MÓDULO DE: GESTIÓN FINANCIERA
APÉNDICE MATEMÁTICO DEL MÓDULO DE: GESTIÓN FINANCIERA 1º CURSO DEL CICLO DE GRADO SUPERIOR DE ADMINISTRACIÓN Y FINANZAS. CONTENIDO: Números enteros Fracciones Potencias Igualdades algebraicas notables
RESUMEN DE CONCEPTOS TEÓRICOS MATEMÁTICAS 1º ESO. CURSO
RESUMEN DE CONCEPTOS TEÓRICOS MATEMÁTICAS 1º ESO. CURSO 2015-2016 UNIDAD 1: NÚMEROS NATURALES (1) Múltiplo de un número: Un número es múltiplo de otro si el segundo está contenido en el primero un número
Contenido. 1. Definiciones. 2. Operaciones Algebraicas 2.1 Suma y resta 2.2 Multiplicación 2.3 Productos Notables 2.4 Factorización 2.
Contenido 1. Definiciones 1.1 Término algebraico 1.2 Expresión algebraica 1.3 términos semejantes 2. Operaciones Algebraicas 2.1 Suma y resta 2.2 Multiplicación 2.3 Productos Notables 2.4 Factorización
GUIA ALGEBRA PARTE I. Ejercicios básicos de aritmética EJERCICIOS
1 GUIA ALGEBRA PARTE I Ejercicios básicos de aritmética QUEBRADOS Fracciones mixtas ejemplo 3 4/5 Una fracción mixta es un número entero y una fracción combinados, como 1 3 / 4. Fracciones propias ejemplo
GUIA ALGEBRA PARTE I. Ejercicios básicos de aritmética QUEBRADOS
1 GUIA ALGEBRA PARTE I Ejercicios básicos de aritmética QUEBRADOS Fracciones mixtas ejemplo 3 4/5 Una fracción mixta es un número entero y una fracción combinados, como 1 3 / 4. Fracciones propias ejemplo
lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas
º ESO 1. Expresiones algebraicas En matemáticas es muy común utilizar letras para expresar un resultado general. Por ejemplo, el área de un b h triángulo es base por altura dividido por dos y se expresa
Matemáticas Universitarias
Matemáticas Universitarias 1 Sesión No. 2 Nombre: Expresiones algebraicas y sus operaciones Objetivo de la asignatura: En esta sesión el estudiante aplicará las operaciones básicas como suma, resta, multiplicación
POLINOMIOS En esta unidad aprenderás a:
POLINOMIOS En esta unidad aprenderás a: Reconocer polinomios y calcular su valor numérico Realizar operaciones con polinomios. Manejar la regla de Ruffini y el teorema del resto para encontrar las raíces
Centro Regional Universitario De Bocas del Toro
Centro Regional Universitario De Bocas del Toro Nociones Fundamentales del Álgebra El Álgebra es una rama de la matemática que se ocupa de las cantidades más generales y para representarla utiliza letras,
EL LENGUAJE ALGEBRAICO
TEMA 5 EL LENGUAJE ALGEBRAICO ÁLGEBRA, EL ARTE DE LA COSA Como casi todas las palabras actuales que empiezan por al, el término álgebra tiene origen árabe. Se lo debemos a un matemático llamado Al-Khwarizmi,
Operaciones con monomios y polinomios
Operaciones con monomios y polinomios Para las operaciones algebraicas se debe de tener en cuenta que existen dos formas para representar cantidades las cuales son números o letras. Al representar una
EL LENGUAJE ALGEBRAICO
LENGUAJE ALGEBRAICO Guillermo Ruiz Varela - PT EL LENGUAJE ALGEBRAICO Hasta ahora siempre hemos trabajado en matemáticas con números y signos, es lo que se llama lenguaje numérico. A partir de ahora, vamos
Universidad de Puerto Rico en Arecibo Departamento de Matemáticas Sec. 5.1: Polinomios
Universidad de Puerto Rico en Arecibo Departamento de Matemáticas Sec. 5.1: Polinomios Prof. Caroline Rodríguez Martínez Polinomios Un polinomio es un solo término o la suma de dos o más términos se compone
UNIDAD DOS FACTORIZACIÓN
UNIDAD DOS FACTORIZACIÓN Factorizar quiere decir descomponer en factores, los factores son divisores de una expresión que, multiplicados entre sí, dan como resultado la primera expresión. FACTOR COMÚN
Tema 6 Lenguaje Algebraico. Ecuaciones
Tema 6 Lenguaje Algebraico. Ecuaciones 1. El álgebra El álgebra es una rama de las matemáticas que emplea números y letras con las operaciones aritméticas de sumar, restar, multiplicar, dividir, potencias
Al término de esta lección podrás: Conocer los productos notables más comunes. Reducir expresiones por medio de la factorización.
04 Álgebra I Al término de esta lección podrás: Entender el origen del algebra en su utilidad en el desarrollo de problemas Desarrollar ejercicios de mayor complejidad usando estrategias que Álgebra nos
Unidad 1: Los números enteros Pag. 3 Unidad 2: Potencias y raíces.pag. 33 Unidad 3: Fracciones y decimales..pag. 64 Unidad 4: Expresiones algebraicas
Unidad 1: Los números enteros Pag. 3 Unidad 2: Potencias y raíces.pag. 33 Unidad 3: Fracciones y decimales..pag. 64 Unidad 4: Expresiones algebraicas Pag. 91 Unidad 5: Ecuaciones Pag. 130 Los números enteros
RESUMEN ALGEBRA BÁSICA
RESUMEN ALGEBRA BÁSICA TERMINO ALGEBRAICO: Es una expresión matemática que consta de un producto (o cociente) de un número con una variable elevado a un exponente (o con varias variables). TÉRMINO ALGEBRAICO
EXPRESIONES ALGEBRAICAS. POLINOMIOS
EXPRESIONES ALGEBRAICAS. POLINOMIOS 1. EXPRESIONES ALGEBRAICAS. Estas expresiones del área son expresiones algebraicas, ya que además de números aparecen letras. Son también expresiones algebraicas: bac,
Aquí encontrará todas las asignaciones del tema de Expresiones Algebraicas y polinomios.
Aquí encontrará todas las asignaciones del tema de Expresiones Algebraicas y polinomios. Sitio: Cursos en Línea de la UPRA Curso: Mate0006-10-II Desarrollo de Destrezas Básicas en Matemáticas Libro: Asignaciones
Una expresión algebraica es una combinación de números y letras combinados mediante las operaciones matemáticas.
TEMA 6 EXPRESIONES ALGEBRAICAS Una expresión algebraica es una combinación de números y letras combinados mediante las operaciones matemáticas. Ejemplo: 2 x, 2 a + 3, m (n - 3),... Usamos las expresiones
Guía de Estudios de Algebra
Guía de Estudios de Algebra Licenciatura en Optometría ALTUZAR INGENERIA Índice Presentación... 3 Propósito... 3 Criterios de Evaluación... 3 Bloque Uno: Fundamentos algebraicos... 4 Propósito... 4 Actividades
Matemáticas 2º E.S.P.A. Pág.1 C.E.P.A. Plus Ultra. Logroño
ALGEBRA 1. LETRAS EN VEZ DE NÚMEROS En muchas tareas de las matemáticas es preciso trabajar con números de valor desconocido o indeterminado. En esos casos, los números se representan por letras y se operan
Qué diferencia observas entre los primeros cinco ejemplos que son polinomios y estos dos que no lo son?
POLINOMIOS Definición: Un polinomio en la variable x es una expresión algebraica formada solamente por la suma de términos de la forma ax n, donde a es cualquier número y n es un número entero no negativo.
UNIVERSIDAD AUTÓNOMA DE QUERÉTARO FACULTAD DE CONTADURÍA Y ADMINISTRACIÓN CURSO PROPEDEÚTICO ÁREA: MATEMÁTICAS
UNIVERSIDAD AUTÓNOMA DE QUERÉTARO FACULTAD DE CONTADURÍA Y ADMINISTRACIÓN CURSO PROPEDEÚTICO ÁREA: MATEMÁTICAS TEMA 1. ÁLGEBRA Parte de las Matemáticas que se dedica en sus aspectos más elementales. A
SERIE INTRODUCTORIA. REPASO DE ALGEBRA.
SERIE INTRODUCTORIA. REPASO DE ALGEBRA. 1.- REDUCCION DE TÉRMINOS SEMEJANTES. Recuerde que los términos semejantes son aquellos que tienen las mismas letras con los mismos exponentes. Ejemplos: *7m; 5m
Números enteros (Z) En la multiplicación de dos números enteros, se multiplican sus valores absolutos y, después, se aplica la regla de los signos.
Números enteros (Z) Suma de números enteros (+) + (+8) = (+1) ( ) + ( ) = ( 11) (+) + ( 7) = ( ) (+10) + ( 7) = (+) La suma de n os enteros del mismo signo se obtiene sumando los valores absolutos de dichos
Banco de reactivos de Álgebra I
Banco de reactivos de Álgebra I Compilación: Ochoa Cruz Rita Julio de 006 Temario. Unidad I: El campo de los números reales. Conjunto y conjuntos de números. Orden y distancia. Valor absoluto 4. Operaciones
NÚMEROS ENTEROS. En la recta numérica se pueden representar los números naturales, el cero y los números negativos.
NÚMEROS ENTEROS El conjunto de los números enteros está formado por: Los números positivos (1, 2, 3, 4, 5, ) Los números negativos ( El cero (no tiene signo) Recta numérica En la recta numérica se pueden
Universidad de Puerto Rico en Arecibo Departamento de Matemáticas Polinomios
Universidad de Puerto Rico en Arecibo Departamento de Matemáticas Polinomios Prof. Glorymill Santiago Labrador Adaptado por: Prof. Anneliesse Sánchez, Prof. Caroline Rodríguez Polinomios Definición: Un
Contenido: 1. Definición y clasificación. Polinomios.
Polinomios. Contenido:. Definición y clasificación.. Operaciones.. Simplificación. 4. Productos notables.. Factorización. 6. Completar cuadrados. 7. Nociones de despeje.. Definición y clasificación Definición.
Un monomio es el producto indicado de un número por una o varias letras GRADO 4º
TEMA. POLINOMIOS OPERACIONES. MONOMIOS Un monomio es el producto indicado de un número por una o varias letras GRADO º COEFICIENTE PARTE LITERAL. VALOR NUMÉRICO DE UN MONOMIO Es el resultado que se obtiene
UNA ECUACIÓN es una igualdad de dos expresiones algebraicas.
UNA EXPRESIÓN ALGEBRAICA es una combinación de números, variables (o símbolos) y operaciones como la suma, resta, multiplicación, división, potenciación y radicación. Ejemplos. UNA ECUACIÓN es una igualdad
CONCRECIÓN DE LOS CRITERIOS DE EVALUACIÓN Curso: PRIMERO de BACHILLERATO CIENCIAS Asignatura: MATEMÁTICAS I Profesor: ALFONSO BdV
CONCRECIÓN DE LOS CRITERIOS DE EVALUACIÓN Curso: PRIMERO de BACHILLERATO CIENCIAS Asignatura: MATEMÁTICAS I Profesor: ALFONSO BdV 1. Números reales. Aritmética y álgebra 1.1. Operar con fracciones de números
Números Naturales. Cero elemento neutro: = 12 Sucesión fundamental : se obtiene el siguiente número = 9
Números Naturales Cuando comenzamos a contar los objetos, los años, etc, nos hemos encontrado con los números de forma natural; por eso a este conjunto de números así aprendidos se les denomina números
Capítulo 1. Numeración 1 Variables... 2 Números naturales... 2 Números enteros... 3 Números reales Ejercicios Orden y valor absoluto...
ÍNDICE Capítulo 1. Numeración 1 Variables... 2 Números naturales... 2 Números enteros... 3 Números reales... 3 Ejercicios... 5 Orden y valor absoluto... 6 Ejercicios... 7 Suma de números reales... 9 Reglas
ALGEBRA. Término algebraico Coeficiente numérico Parte literal
ALGEBRA La importancia del álgebra radica en que constituye el cimiento de casi todas las ramas de la matemática; es una poderosa herramienta para desarrollar el pensamiento analítico. Con la ayuda del
Universidad de Puerto Rico en Arecibo Departamento de Matemáticas Expresiones Algebraicas y Polinomios
Universidad de Puerto Rico en Arecibo Departamento de Matemáticas Expresiones Algebraicas y Polinomios Prof. Glorymill Santiago Labrador Editado por: Prof. Anneliesse Sánchez, Prof. Caroline Rodríguez
UNIDAD DIDÁCTICA V POLINOMIOS Y ECUACIONES ALGEBRAICAS RACIONALES
UNIDAD DIDÁCTICA V POLINOMIOS Y ECUACIONES ALGEBRAICAS RACIONALES Temario: Definición de epresiones algebraicas y clasificación. Polinomio, grado. Operaciones. Regla de Ruffini. Factorización de Polinomios.
Productos notables - Wikipedia, la enciclopedia libre
Page 1 of 6 Productos notables De Wikipedia, la enciclopedia libre Productos notables es el nombre que reciben aquellas multiplicaciones con expresiones algebraicas cuyo resultado puede ser escrito por
EXPRESIONES ALGEBRAICAS
EXPRESIONES ALGEBRAICAS EXPRESIONES ALGEBRAICAS Una epresión algebraica es aquella en la que se operan números conocidos y números desconocidos representados por las letras a, b, c,, y, z,..., que se denominan
COLEGIO INTERNACIONAL TORREQUEBRADA. Departamento de matemáticas. CUADERNO DE VERANO MATEMÁTICAS 1º ESO ALUMNO: Cuaderno de Verano Matemáticas 1ºESO
CUADERNO DE VERANO MATEMÁTICAS 1º ESO ALUMNO: OPERACIONES COMBINADAS: En estas operaciones en caso que haya paréntesis o corchetes, deberás realizar primero las operaciones indicadas dentro de ellos. Seguirás
Trabajo de Matemáticas AMPLIACIÓN 3º ESO
Trabajo de Matemáticas AMPLIACIÓN º ESO ACTIVIDADES DE AMPLIACIÓN TEMA : NÚMEROS FRACCIONARIOS O RACIONALES Problema nº Un grifo tarda en llenar un depósito horas y otro tarda en llenar el mismo depósito
OPERACIONES ALGEBRAICAS FUNDAMENTALES
OPERACIONES ALGEBRAICAS FUNDAMENTALES Monomio Un monomio es la representación algebraica más elemental sus componentes son: signo, coeficiente, literal (o literales exponente ( o exponentes, cada literal
Preparación para Álgebra 1 de Escuela Superior
Preparación para Álgebra 1 de Escuela Superior Este curso cubre los conceptos mostrados a continuación. El estudiante navega por trayectos de aprendizaje basados en su nivel de preparación. Usuarios institucionales
DEL LENGUAJE DE LOS NÚMEROS AL LEGUAJE ALGEBRAICO.
DEL LENGUAJE DE LOS NÚMEROS AL LEGUAJE ALGEBRAICO. En ocasiones, en matemáticas, necesitamos operar con números desconocidos. Para ello, se toman letras para representar esas cantidades desconocidas o
SESIÓN 2 EXPRESIONES ALGEBRAICAS, REDUCCIÓN DE TÉRMINOS SEMEJANTES, SUMA Y RESTA ALGEBRAICAS
SESIÓN 2 EXPRESIONES ALGEBRAICAS, REDUCCIÓN DE TÉRMINOS SEMEJANTES, SUMA Y RESTA ALGEBRAICAS I. CONTENIDOS: 1. Conceptos básicos de álgebra. 2. Clasificación de expresiones algebraicas. 3. Reducción de
Tutorial MT-b6. Matemática 2006. Tutorial Nivel Básico. Álgebra
12345678901234567890 M ate m ática Tutorial MT-b6 Matemática 2006 Tutorial Nivel Básico Álgebra Matemática 2006 Tutorial Álgebra Marco teórico: 1. Término algebraico El término algebraico es la unidad
Productos notables. Se les llama productos notables (también productos especiales) precisamente porque son muy utilizados en los ejercicios.
Productos notables Sabemos que se llama producto al resultado de una multiplicación. También sabemos que los valores que se multiplican se llaman factores. Se llama productos notables a ciertas expresiones
Polinomios. Un polinomio tiene la siguiente forma general: Donde: y las potencias de las variables descienden en valor
Polinomios Polinomios Definición: Un polinomio es una expresión algebraica que cumple con las siguientes condiciones: Ningún término de la expresión tiene un denominador que contiene variables Ningún término
3º ESO GUÍA DEL BLOQUE ÁLGEBRA
Lenguaje Ecuaciones Sistemas C ontenidos E jercicios C ompetencias Expresiones algebraicas. Monomios, polinomios, identidades y ecuaciones. Valor numérico de un polinomio. Operaciones con monomios. Polinomios.
EJERCICIOS DE EXPRESIONES ALGEBRAICAS
EJERCICIOS DE EXPRESIONES ALGEBRAICAS Ejercicio nº.- Epresa en lenguaje algebraico cada uno de los siguientes enunciados: a El 0% de un número. b El área de un rectángulo de base cm y altura desconocida.
