EL LENGUAJE ALGEBRAICO
|
|
|
- Francisco Calderón Farías
- hace 9 años
- Vistas:
Transcripción
1 TEMA 5 EL LENGUAJE ALGEBRAICO ÁLGEBRA, EL ARTE DE LA COSA Como casi todas las palabras actuales que empiezan por al, el término álgebra tiene origen árabe. Se lo debemos a un matemático llamado Al-Khwarizmi, que vivió en el siglo IX. Escribió una obra que ha servido a los matemáticos occidentales durante años. Ese libro se llamaba Al Chéber u Almocábala (algo así como Restauración y oposición) De la primera palabra, Al Chéber, viene álgebra. Este mismo matemático designaba la incógnita con el nombre de sahy (que significa la cosa ). Los algebristas italianos usaban la palabra cosa, y los alemanes llamaban a la incógnita coss. Con estos orígenes no es raro que durante una época el álgebra, es decir, las operaciones para LA EDAD DEL SABIO Cuentan que en la tumba de Diofanto de Alejandría (un matemático que vivió en el siglo IV y al que se considera padre del álgebra) había una inscripción que explicaba, en forma de problema, la edad que tenía el sabio cuando murió. Decía esto: Esta tumba contiene a Diofanto. Oh gran maravilla! Y la tumba dice con arte la medida de su vida. Dios hizo que fuera niño una sexta parte de su vida. Añadiendo un doceavo, las mejillas tuvieron la primera barba. Le encendió el fuego nupcial después de un séptimo, y en el quinto año después de la boda le concedió un hijo. Pero, ay!, niño tardío y desgraciado, en la mitad de la medida de la vida de su padrelo arrebató la helada tumba. Después de consolar su pena cuatro años con esta ciencia del cálculo, llegó al término de su vida [Escribir texto] Página 63
2 TEMA 5. EL LENGUAJE ALGEBRAICO 1. EXPRESIONES ALGEBRAICAS Trabajar en álgebra consiste en manejar relaciones numéricas en las que una o más cantidades son desconocidas. Estas cantidades se llaman variables, incógnitas o indeterminadas y se representan por letras Al traducir el lenguaje algebraico los términos de un problema, se obtienen expresiones algebraicas: - Un número entero, el anterior y el siguiente: n-1, n y n+1 - Dos números pares consecutivos: n, n+ - la suma de tres enteros consecutivos es 33: n+(n+1)+(n+)=33. Ejemplos: 1. La edad de Ángel, dentro de 5 años, será el doble de la que entonces tenga Isabel: AHORA DENTRO DE 5 AÑOS EDAD DE ÁNGEL x x+ 5 EDAD DE ISABEL y y + 5 Condición del problema: x + 5 = (y + 5). MONOMIOS Un monomio es: GRADO 4º 3 x 4 COEFICIENTE PARTE LITERAL Un monomio tiene un valor numérico dependiendo del valor que tenga la incógnita, por tanto podremos sumar y restar polinomios semejantes (que tengan el mismo grado e igual parte literal) y dividir y multiplicar, como si de números se tratara. IVIDADES: [Escribir texto] Página 64
3 1. Cuál es el grado de cada uno de los siguientes monomios? (el grado de un monomio es el número de factores que forman su parte literal) a) ab c 3 7 b) -3xy c) 4 3 x y 5 z. Halla el valor numérico de los monomios siguientes para x=3, y=-, z=5. a) -6x yz b) 3x c) 4xy d) -5x y z e) yz f) -xz 3 3. Efectúa las siguientes sumas de monomios: a) 5x 3x + 4x 11x + x = b) 3x y 5x y + x y + x y= [Escribir texto] Página 65
4 c) 7x 3 11x 3 + 3y 3 y 3 + y 3 = 4. Escribe dos monomios semejantes a cada uno de los siguientes: a) - 5ab c 3 b) 11x 4 c) x 4. POLINOMIOS. Un polinomio es la suma de dos o más monomios: GRADO DEL POLINOMIO TÉRMINO INDEPENDIENTE 7x 3-3x + 4x 5 TÉRMINO PRINCIPAL Para sumar polinomios lo tenemos que hacer sumando los monomios semejantes y para multiplicar lo haremos como si multiplicamos números. Si sumamos los siguientes polinomios: A(x) = 3x + 5x y B(x) = x 3 + 4x -5 A(x) = 3x + 5x [Escribir texto] Página 66
5 + B(x) = x 3 + 4x -5 A(x) +B(x) = x 3 + 7x + 5x - 9 O lo que es lo mismo: (3x + 5x )+(x 3 + 4x -5) = x 3 + 7x + 5x - 9 Para restar polinomios: A(x) = 3x + 5x - B(x) = -x 3-4x +5 A(x) (B(x) = -x 3 x + 5x +3 O bien: (3x + 5x ) - (x 3 + 4x -5) = -x 3 x 5x +3 Para multiplicar: P(x) = x 3 x + 5x 1 y Q(x) = 3x P(x) = x 3 x + 5x 1 Q(x) = 3x P(x) Q(x) = 3x 5 6x x 3 3x O bien: (x 3 x + 5x 1) (3x ) = 3x 5 6x x 3 3x IVIDADES: 5. Di el grado de cada uno de estos polinomios: a) x 5 6x + 3x +1 [Escribir texto] Página 67
6 b) x + 3x 3 5x + x 3 3 4x 3 6. Sean P(x) = x 4-3x 3 + 5x + 3 y Q(x) = 5x 3 +3x 11. Halla: a) P(x) + Q(x) b) P(x) Q (x) c) Q(x) P(x) 7. Halla los productos siguientes: a) x(x + y + 1) b) x (3x + 5x ) c) ab(a + b) [Escribir texto] Página 68
7 d) 5(3x + 7x + 11) e) x y (x + y + 1) f) -(5x 3 + 3x 8) g) -x (3x 5x + 8) El producto de dos polinomios: Por ejemplo: P(x) = x 3 4x 1 y Q(x) = 3x - P(x) x 3 4x 1 Q(x) 3x - -4x 3 + 8x + 6x 4-1x 3-3x 6x 4 16x 3 + 8x -3x + PRODUCTO DE - POR P(x) PRODUCTO DE 3x POR P(x) P(x) Q(x) O también: (x 3 4x 1) (3x ) = 6x 4-1x 3-3x- 4x 3 + 8x + = 6x 4 16x 3 + 8x -3x + Sacar factor común: En la expresión: 6x 3 + 3x x la x se repite en todos los sumandos, es factor común a todos ellos. Podemos sacarla fuera del siguiente modo: [Escribir texto] Página 69
8 x (6x + 3x ) de tal manera que si desarrollamos el paréntesis tenemos de nuevo la primera expresión 6x 3 + 3x x = x (6x + 3x ) A esta transformación se le llama sacar factor común. IVIDADES: 8. Efectúa las operaciones indicadas y simplifica la expresión resultante. a) 3 (x 3 5x +7) (x 3 + 6x +11x +4) = b) x(3x 5x + 1) + 5(3x 5x + 1) - 1 x = 4 3 x 3x 5 c) (x 5) y x y d) 6 3 = 6 [Escribir texto] Página 70
9 e) 3(x y 7 4) 10 y 1 3 = g) (x-1) +3(y+4) - (3x 5 y) +9 = h) (3x 3 x + 11) x 3 -(11x 3 + 7x 3x) = 1 h) x 1 3x 6x 6 x 3 11x 31 = 3 [Escribir texto] Página 71
10 9. Extrae factor común en cada una de las siguientes expresiones: a) 3x + 6x b) z 4 3z c) 6x d) y 4 3x y x 5 y 4 e) 13x 6 +4x 4-3x 3 e) 4 x 3x 3 5x f) x 3 x + x i) 40x 10x [Escribir texto] Página 7
11 5. IDENTIDADES NOTABLES. Una identidad es una igualdad algebraica que se cumple para cualquier valor de la incógnita. Se llaman identidades notables a las tres siguientes: Cuadrado de una suma Es igual al cuadrado del primero más el cuadrado del segundo más el doble del primero por el segundo (a+b) =a +b +ab Cuadrado de una diferencia Es igual al cuadrado del primero más el cuadrado del segundo menos el doble del primero por el segundo (a-b) =a +b -ab Suma por diferencia Es igual a la diferencia de cuadrados (a+b) (a-b) = (a -b ) IVIDADES: 10. Desarrollar: a) (x -7), es el cuadrado de una diferencia, por tanto: (x -7) = (x) + 7 x 7 = 4x x b) (x + 1) = c) (x 1) = d) (x + 3) = [Escribir texto] Página 73
12 e) (5x + ) = f) (5x + y) = g) (x + 1) (x 1) = h) (x +3) (x -3) i) (x -5) (x + 5) 11. Simplifica: a) ( x+3) - [x + (x 3) ] = b) (5x 4) (x +3) 5 = [Escribir texto] Página 74
13 c) 3x ((x +5) (x + 3) +19 = EJERCICIOS: 1. Asocia a cada uno de los siguientes enunciados una de las expresiones algebraicas: a) A un número se le quita 7 b) El doble de un número mas su cuadrado c) Un múltiplo de 3 menos 1 d) El 0% de un número e) Cuatro veces un número menos sus dos tercios f) El precio de un pantalón aumentado en un 10% g) Un número impar 0,x x +1 x + x 1,1x x 4x - 3 3x -1 x - 7. Llama x al ancho de la pizarra y expresa su altura en cada caso: a) La altura es la mitad del ancho b) La altura es 0 cm menos que el ancho c) La altura es los tres cuartos del ancho d) La altura es un 0% menor de su ancho 3. Traduce al lenguaje algebraico, empleando una sola incógnita: a) Los tres quintos de un número menos uno b) La suma de tres números consecutivos c) Un múltiplo de tres mas su doble d) La suma de un número y su cuadrado e) El producto de un número por su siguiente 4. Simplifica [Escribir texto] Página 75
14 a) 5x 3x 3 x + 4x 3-3 = b) (x + 5x 7) ( x 6x + 1) = c) (x +5x -7) +3(x +3x -4)= d) 3(x 3-5x +9) (x 3 + 6x - 11x +4) = e) x(3x -5x+1) + 5(3x 1 5x +1) - x 4 = 3 f) 3x (5x 3x) x(4x x 11x 4 = [Escribir texto] Página 76
15 3 x 3x 5 g) h) x 3 1 x 5 1 = 5. Extrae factor común en cada una de las siguientes expresiones. a) 3x +6x b) b 4-3b c) 3ab + ab d) 5x +5x e) 16x 4 + 4x [Escribir texto] Página 77
16 f) 6x 3 +9x - 1x 6. Halla los productos siguientes: a) x(x + 3) b) ab (a +b) c) x y (x+y+1) d) x (3x 5x +8) e) 3x y 3 (x-y+1) f) -5(3x +7x +11) [Escribir texto] Página 78
17 h) -x (3x -5x+8) i) x (3x 5x 3 ) j) - 3x (x 15-3x 1-3x 7-5x -3x) 7. M ultiplica: a) (x+7) (x-7) = b) (1+ x) (1 x)= [Escribir texto] Página 79
18 c) (x 1) (x + 1) = d) (4 3x) (4 + 3x)= e) (5x 3) ( 5x +3)= 8. Utiliza las identi notables en los siguientes casos: a) (x +1) b) (x 1) c) (1 x) d) (1 + x) e) (x +3) [Escribir texto] Página 80
19 f) (3 x) g) (x -5) h) (6 x ) i) (x 3 x) j) x 3 k) 1 x 9. E xpresa en forma de producto: a) x + x + 1 [Escribir texto] Página 81
20 b) x x c) 4x + 4x + 1 d) 4x x [Escribir texto] Página 8
Ámbito Científico-Tecnológico Módulo III Bloque 3 Unidad 3 Las letras y los números: un cóctel perfecto
Ámbito Científico-Tecnológico Módulo III Bloque 3 Unidad 3 Las letras y los números: un cóctel perfecto En esta unidad vas a comenzar el estudio del álgebra, el lenguaje de las matemáticas. Vas a aprender
I.E.S. Tierra de Ciudad Rodrigo Departamento de Matemáticas TEMA 6. POLINOMIOS
TEMA 6. POLINOMIOS Una expresión algebraica es un conjunto de letras y números unidos por los signos matemáticos. Las expresiones algebraicas surgen de traducir al lenguaje matemático enunciados en los
TEMA 5. Expresiones Algebraicas
TEMA 5 Expresiones Algebraicas 5.1.- Lenguaje Algebraico El lenguaje numérico sirve para expresar operaciones utilizando solamente números. El lenguaje algebraico sirve para expresar situaciones reales
Apuntes de matemáticas 2º ESO Curso 2013-2014. Lenguaje algebraico.
Lenguaje algebraico. Expresiones algebraicas Trabajar en álgebra consiste en manejar relaciones numéricas en las que una o más cantidades son desconocidas. Estas cantidades se llaman variables, incógnitas
MATEMÁTICAS ÁLGEBRA (TIC)
COLEGIO COLOMBO BRITÁNICO Formación en la Libertad y para la Libertad MATEMÁTICAS ÁLGEBRA (TIC) GRADO:8 O A, B DOCENTE: Nubia E. Niño C. FECHA: 23 / 02 / 15 GUÍA UNIFICADA: # 1 5; # 1-6 y 1-7 DESEMPEÑOS:
Curso º ESO. UNIDADES 6 Y 7: EXPRESIONES ALGEBRAICAS Y ECUACIONES Departamento de Matemáticas IES Fray Bartolomé de las Casas de Morón
2º ESO UNIDADES 6 Y 7: EXPRESIONES ALGEBRAICAS Y ECUACIONES Departamento de Matemáticas IES Fray Bartolomé de las Casas de Morón OBJETIVOS CONTENIDOS PROCEDIMIENTOS Lenguaje algebraico. Normas y Traducción
TRABAJO DE MATEMÁTICAS. PENDIENTES DE 1º ESO. (2ª parte)
TRABAJO DE MATEMÁTICAS PENDIENTES DE 1º ESO. (2ª parte) NÚMEROS RACIONALES REDUCCIÓN DE FRACCIONES AL MISMO DENOMINADOR Para reducir varias fracciones al mismo denominador se siguen los siguientes pasos:
Ficha de Repaso: Lenguaje Algebraico
Ficha de Repaso: Lenguaje Algebraico 1º) Traduce las siguientes afirmaciones al lenguaje algebraico: a) El doble de un número b) El cubo de un número c) El cuadrado de un número menos su doble d) Un número
COLEGIO EL LIMONAR. MÁLAGA DEPARTAMENTO DE MÁTEMÁTICAS RELACIONES DE EJERCICIOS. 1º ESO
COLEGIO EL LIMONAR. MÁLAGA DEPARTAMENTO DE MÁTEMÁTICAS RELACIONES DE EJERCICIOS. º ESO RELACIÓN 5: ALGEBRA Lenguaje algebraico, monomios polinomios EXPRESIÓN ALGEBRAICA Es un conjunto de números letras
EXPRESIONES ALGEBRAICAS. El tripe de un número menos «cinco» en lenguaje algebraico se escribe
1 Álgebral EXPRESIONES ALGEBRAICAS El tripe de un número menos «cinco» en lenguaje algebraico se escribe 3x 5: 3x 5 es una expresión algebraica donde x es la incógnita. La letra x representa un número
TEMA 4: EXPRESIONES ALGEBRAICAS.
TEMA 4: EXPRESIONES ALGEBRAICAS. Segundo Curso de Educación Secundaria Obligatoria. I.E.S de Fuentesaúco. Manuel González de León. CURSO 2011-2012 Página 1 de 14 Profesor: Manuel González de León Curso
UNIDAD 5: ÁLGEBRA. Nacho Jiménez ANT ÍNDICE SIG
UNIDAD 5: ÁLGEBRA Nacho Jiménez 0. Conceptos previos ÍNDICE 1. Para qué sirve el álgebra? 2. Expresiones algebraicas 2.1 Monomios 2.2 Suma y resta de monomios 2.3 Multiplicación de monomios 2.4 División
lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas
º ESO 1. Expresiones algebraicas En matemáticas es muy común utilizar letras para expresar un resultado general. Por ejemplo, el área de un b h triángulo es base por altura dividido por dos y se expresa
TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS
TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS 1.- POLINOMIOS Recordemos que un monomio es una expresión algebraica (combinación de letras y números) en la que las únicas operaciones que aparecen entre las
Se dice que dos monomios son semejantes cuando tienen la misma parte literal
Expresiones algebraicas 1 MONOMIOS Conceptos Un monomio es una expresión algebraica en la que las únicas operaciones que aparecen entre las variables son el producto y la potencia de exponente natural.
Un monomio es el producto indicado de un número por una o varias letras GRADO 4º
TEMA. POLINOMIOS OPERACIONES. MONOMIOS Un monomio es el producto indicado de un número por una o varias letras GRADO º COEFICIENTE PARTE LITERAL. VALOR NUMÉRICO DE UN MONOMIO Es el resultado que se obtiene
La suma de los monomios es otro monomio que tiene la misma parte literal y cuyo coeficiente es la suma de los coeficientes.
Suma de monomios Sólo podemos sumar monomios semejantes. La suma de los monomios es otro monomio que tiene la misma parte literal y cuyo coeficiente es la suma de los coeficientes. ax n + bx n = (a + b)x
Matemáticas 2º E.S.P.A. Pág.1 C.E.P.A. Plus Ultra. Logroño
ALGEBRA 1. LETRAS EN VEZ DE NÚMEROS En muchas tareas de las matemáticas es preciso trabajar con números de valor desconocido o indeterminado. En esos casos, los números se representan por letras y se operan
Guía Nº 1(B) ALGEBRA
Liceo Industrial Benjamín Dávila Larraín Unidad Técnica Pedagógica Guía Nº (B) ALGEBRA I. Identificación Docente Verónica Moya R. Claudia Paez Subsector/Módulo Matemática Email docente Aprendizaje Esperado
APUNTES DE FUNDAMENTOS DE MATEMATICA. CASO I: Cuando todos los términos de un polinomio tienen un factor común.
FACTORIZACION DE POLINOMIOS. CASO I: Cuando todos los términos de un polinomio tienen un factor común. Cuando se tiene una expresión de dos o más términos algebraicos y si se presenta algún término común,
TEMA 2. POLINOMIOS Y FRACCIONES ALGEBRAICAS
TEMA. POLINOMIOS Y FRACCIONES ALGEBRAICAS.. Repaso de polinomios - Epresión algebraica. Valor numérico - Polinomios. Operaciones con polinomios.. Identidades notables - Cuadrado de una suma de una diferencia
IES CINCO VILLAS TEMA 3 EL LENGUAJE ALGEBRAICO 3º ESO Página 1
EJERCICIOS RESUELTOS MÍNIMOS TEMA EL LENGUAJE ALGEBRAICO º ESO Ejercicio nº.- Completa esta tabla: POLINOMIO GRADO N. DE TÉRMINOS VARIABLE/S 4 5, y 5 7 4 POLINOMIO GRADO N. DE TÉRMINOS VARIABLE/S 4 4 y
5 Expresiones algebraicas
8948 _ 04-008.qxd /9/07 :0 Página 9 Expresiones algebraicas INTRODUCCIÓN RESUMEN DE LA UNIDAD El lenguaje algebraico sirve para expresar situaciones relacionadas con la vida cotidiana, utilizando letras
Tema 6 Lenguaje Algebraico. Ecuaciones
Tema 6 Lenguaje Algebraico. Ecuaciones 1. El álgebra El álgebra es una rama de las matemáticas que emplea números y letras con las operaciones aritméticas de sumar, restar, multiplicar, dividir, potencias
INSTITUCION EDUCATIVA LA PRESENTACION
INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMATICAS ASIGNATURA: MATEMATICAS DOCENTE: HUGO HERNAN BEDOYA Y LUIS LOPEZ TIPO DE GUIA: NIVELACION PERIODO GRADO FECHA DURACION 8 A/B Abril
Expresiones algebraicas
Expresiones algebraicas Una expresión algebraica es una combinación de letras y números relacionadas por los signos de las operaciones: adición, sustracción, multiplicación, división y potenciación. Las
Operaciones con monomios y polinomios
Operaciones con monomios y polinomios Para las operaciones algebraicas se debe de tener en cuenta que existen dos formas para representar cantidades las cuales son números o letras. Al representar una
2. Ecuaciones de primer grado: (sencillas, con paréntesis, con denominadores).
Bloque 3. ECUACIONES Y SISTEMAS (En el libro Temas 4 y 5, páginas 63 y 81) 1. Ecuaciones: Definiciones. Reglas de equivalencia. 2. Ecuaciones de primer grado: (sencillas, con paréntesis, con denominadores).
Contenido: 1. Definición y clasificación. Polinomios.
Polinomios. Contenido:. Definición y clasificación.. Operaciones.. Simplificación. 4. Productos notables.. Factorización. 6. Completar cuadrados. 7. Nociones de despeje.. Definición y clasificación Definición.
POLINOMIOS. Un polinomio es una expresión algebraica (conjunto de. números y letras que representan números, conectados por las
POLINOMIOS Teoría 1.- Qué es un polinomio? Un polinomio es una expresión algebraica (conjunto de números y letras que representan números, conectados por las operaciones de suma, resta, multiplicación,
A)2011 B)2012 B)2013 D)2014 E)2015. C) a5 +b 5
ENCUENTRO # 6 TEMA: Fracciones algebraicas CONTENIDOS:. Máximo común divisor 2. Mínimo común múltiplo 3. Simplificación de fracciones algebraicas 4. Suma de fracciones algebraicas 5. Resta de fracciones
UNIVERSIDAD AUTÓNOMA DE QUERÉTARO FACULTAD DE CONTADURÍA Y ADMINISTRACIÓN CURSO PROPEDEÚTICO ÁREA: MATEMÁTICAS
UNIVERSIDAD AUTÓNOMA DE QUERÉTARO FACULTAD DE CONTADURÍA Y ADMINISTRACIÓN CURSO PROPEDEÚTICO ÁREA: MATEMÁTICAS TEMA 1. ÁLGEBRA Parte de las Matemáticas que se dedica en sus aspectos más elementales. A
LOS NUMEROS IRRACIONALES Y SU REPRESENTACIÓN EN LA RECTA NUMERICA
GUIA Nº 1: LOS NÚMEROS REALES 1 GRADO: 8º PROFESORA: Eblin Martínez M. ESTUDIANTE: PERIODO: I DURACIÓN: 20 Hrs LOGRO: Realizo operaciones con números naturales, enteros, racionales e irracionales. INDICADORES
SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD. a) Grado 2 b) Grado 3 c) Grado 2 d)grado 1 e) Grado 1 f) Grado 3 g) Grado 0 h) Grado 2 i) Grado 0
Pág. Página 8 PRACTICA Monomios Indica cuál es el grado de los siguientes monomios y di cuáles son semejantes: a) x b) x c) x d) x e) x f) x g) h) x i) a) Grado b) Grado c) Grado d)grado e) Grado f) Grado
Tema 3 Álgebra Matemáticas I 1º Bachillerato. 1
Tema 3 Álgebra Matemáticas I 1º Bachillerato. 1 TEMA 3 ÁLGEBRA 3.1 FACTORIZACIÓN DE POLINOMIOS LA DIVISIBILIDAD EN LOS POLINOMIOS Un polinomio P(x) es divisible por otro polinomio Q(x) cuando el cociente
FACTORIZACION FACTORIZACIÓN. Factorizar un número consiste en expresarlo como producto de dos de sus divisores.
-PA-0 FACTORIZACION V0 Página de 9 NOCION: FACTORIZACIÓN Factorizar un número consiste en epresarlo como producto de dos de sus divisores. Ejemplo: Factoriza 0 en dos de sus divisores :, es decir 0 = Y
PENDIENTES 2º ESO. Segundo examen DEPARTAMENTO DE MATEMÁTICAS. Preparación del segundo examen de recuperación de MATEMÁTICAS DE 2º ESO Curso 2013-2014
014 015 Preparación del segundo examen de recuperación de MATEMÁTICAS DE º ESO Curso 013-014 PENDIENTES º ESO Segundo examen DEPARTAMENTO DE MATEMÁTICAS Preparación del segundo examen de recuperación de
UNIDAD DE APRENDIZAJE I
UNIDAD DE APRENDIZAJE I Saberes procedimentales Interpreta y utiliza correctamente el lenguaje simbólico para el manejo de expresiones algebraicas. 2. Identifica operaciones básicas con expresiones algebraicas.
Tutorial MT-b6. Matemática 2006. Tutorial Nivel Básico. Álgebra
12345678901234567890 M ate m ática Tutorial MT-b6 Matemática 2006 Tutorial Nivel Básico Álgebra Matemática 2006 Tutorial Álgebra Marco teórico: 1. Término algebraico El término algebraico es la unidad
Productos notables. Se les llama productos notables (también productos especiales) precisamente porque son muy utilizados en los ejercicios.
Productos notables Sabemos que se llama producto al resultado de una multiplicación. También sabemos que los valores que se multiplican se llaman factores. Se llama productos notables a ciertas expresiones
RESUMEN DE CONCEPTOS
RESUMEN DE CONCEPTOS 1º ESO MATEMÁTICAS NÚMEROS NATURALES (1) Múltiplo de un número: Un número es múltiplo de otro si el segundo está contenido en el primero un número exacto de veces. Ejemplo: 16 es múltiplo
Expresiones algebraicas
Expresiones algebraicas El templo de Apis Desde un lugar privilegiado, el escriba Ahmes asistía al interrogatorio dirigido por el juez y el sumo sacerdote del templo, quien había denunciado la desaparición
PRODUCTOS NOTABLES: son aquellas multiplicaciones algebraicas
PRODUCTOS NOTABLES: son aquellas multiplicaciones algebraicas que se resuelven siguiendo Reglas y Fórmulas específicas para cada caso y cuyo resultado puede ser escrito por simple inspección, es decir
UNIDAD 2. Lenguaje algebraico
Matemática UNIDAD 2. Lenguaje algebraico 1 Medio GUÍA N 1 Evaluación de Expresiones Algebraicas Conceptos básicos El lenguaje algebraico es una de las principales formas del lenguaje matemático y es mucho
Números Naturales. Cero elemento neutro: = 12 Sucesión fundamental : se obtiene el siguiente número = 9
Números Naturales Cuando comenzamos a contar los objetos, los años, etc, nos hemos encontrado con los números de forma natural; por eso a este conjunto de números así aprendidos se les denomina números
CLASIFICACION DE LAS EXPRESIONES ALGEBRAICAS. Las expresiones algebraicas se clasifican en: a) racionales; b) irracionales.
Capítulo 3.-EXPRESIONES ALGEBRAICAS OBJETIVOS INSTRUCTIVOS Que el alumno: Distinga la clasificación de las expresiones algebraicas. Aprenda las operaciones con monomios y polinomios y sus aplicaciones
Polinomios Primero que todo vamos a definirlos como aquella expresión algebraica de la forma: P(x) = a n x n + a n - 1 x n - 1 + a n - 2 x n - 2 +...
Polinomios Primero que todo vamos a definirlos como aquella expresión algebraica de la forma: P(x) = a n x n + a n - 1 x n - 1 + a n - 2 x n - 2 +... + a 1 x 1 + a 0 Siendo a n, a n -1... a 1, a o números,
TEMA 6: DIVISIÓN DE POLINOMIOS RAÍCES MATEMÁTICAS 3º ESO
TEMA 6: DIVISIÓN DE POLINOMIOS RAÍCES MATEMÁTICAS 3º ESO 1. División de polinomios Dados dos polinomios P (el dividendo) y D (el divisor), dividir P entre D es encontrar dos polinomios Q (el cociente)
5.- Calcula el cociente y el resto de las divisiones siguientes:
1.- Opera y simplifica las siguientes expresiones: 2.- Efectúa las siguientes operaciones y simplifica el resultado: 3º.- Multiplica cada expresión por el mín.c.m. de los denominadores y simplifica: 4.-
Tema 2: Polinomios, ecuaciones y sistemas de ecuaciones.
Tema 2: Polinomios, ecuaciones y sistemas de ecuaciones. Polinomios Ecuaciones Ecuaciones de primer grado Ecuaciones de segundo grado Ecuaciones polinómicas de grado superior Ecuaciones racionales Ecuaciones
Expresiones Algebraicas Racionales en los Números Reales
en los Números Reales Carlos A. Rivera-Morales Álgebra Tabla de Contenido Contenido cional nales Algebraica Racional ales : Contenido Discutiremos: qué es una expresión algebraica racional : Contenido
open green road Guía Matemática ECUACIÓN DE PRIMER GRADO profesor: Nicolás Melgarejo .co
Guía Matemática ECUACIÓN DE PRIMER GRADO profesor: Nicolás Melgarejo.co 1. Relación de igualdad En Matemática cuando dos expresiones tienen el mismo valor o representan lo mismo, diremos que existe una
INTRODUCCIÓN. En ocasiones has visto expresiones como la siguiente: a + b = b + a
INTRODUCCIÓN En ocasiones has visto expresiones como la siguiente: a + b b + a Con ella representamos la propiedad conmutativa de la suma. Esta propiedad es cierta para cualquier par de números y por ello
Matemática I. Mínimo Común Múltiplo. Ing. Santiago Figueroa Lorenzo Correo:
Matemática I Mínimo Común Múltiplo Ing. Santiago Figueroa Lorenzo Correo: [email protected] Temas Primera Unidad: Elementos Algebraicos Tema 3: Mínimo Común Múltiplo Mínimo Común Múltiplo
POLINOMIOS Y FRACCIONES ALGEBRAICAS
POLINOMIOS Y FRACCIONES ALGEBRAICAS Monomio: Monomio es una expresión algebraica en la que las únicas operaciones que aparecen entre las variables son el producto y la potencia de exponente natural. 2x
EL LENGUAJE ALGEBRAICO
LENGUAJE ALGEBRAICO Guillermo Ruiz Varela - PT EL LENGUAJE ALGEBRAICO Hasta ahora siempre hemos trabajado en matemáticas con números y signos, es lo que se llama lenguaje numérico. A partir de ahora, vamos
Guía 1: PATRONES DE REPETICIÓN
Guía : PATRONES DE REPETICIÓN Un patrón es una sucesión de elementos (orales, gestuales, gráficos, de comportamiento, numéricos) que se construye siguiendo una regla, ya sea de repetición o de recurrencia.
Institución Educativa Distrital Madre Laura
Una fracción algebraica es una expresión fraccionaria en la que numerador y denominador son polinomios. Son fracciones algebraicas: Las fracciones algebraicas tienen un comportamiento similar a las fracciones
Unidad 2: Ecuaciones, inecuaciones y sistemas.
Unidad 2: Ecuaciones, inecuaciones y sistemas 1 Unidad 2: Ecuaciones, inecuaciones y sistemas. 1.- Factorización de polinomios. M. C. D y m.c.m de polinomios. Un número a es raíz de un polinomio es 0.
Se llama factores o divisores, a las expresiones algebraicas que multiplicadas entre sí, dan como producto la primera expresión.
FACTORIZACION Se llama factores o divisores, a las expresiones algebraicas que multiplicadas entre sí, dan como producto la primera expresión. Al proceso de encontrar los factores o divisores a partir
POLINOMIOS. El grado de un polinomio P(x) es el mayor exponente al que se encuentra elevada la variable x.
POLINOMIOS Un POLINOMIO es una expresión algebraica de la forma: x 1 + a 0 P(x) = a n x n + a n - 1 x n - 1 + a n - 2 x n - 2 +... + a 1 Siendo a n, a n - 1... a 1, a o números, llamados coeficientes.
1. dejar a una lado de la igualdad la expresión que contenga una raíz.
1. Resuelve las siguientes ecuaciones reales: Solución x 1 + x = 0 ; 3 x = 3 ; ln(x 1) + 4 = ln 3 Ecuaciones con raíces: No todas las ecuaciones de este tipo son sencillas de resolver, pero podemos intentar
POLINOMIOS Y FRACCIONES ALGEBRAICAS
POLINOMIOS Y FRACCIONES ALGEBRAICAS Definición de monomio. Expresión algebraica formada por el producto de un número finito de constantes y variables con exponente natural. Al producto de las constantes
LOS NÚMEROS ENTEROS. Para restar un número entero, se quita el paréntesis y se pone al número el signo contrario al que tenía.
Melilla Los números Enteros y operaciones elementales LOS NÚMEROS ENTEROS 1º LOS NÚMEROS ENTEROS. El conjunto de los números enteros Z está formado por los números naturales (enteros positivos) el cero
El Teorema Fundamental del Álgebra
El Teorema Fundamental del Álgebra 1. Repaso de polinomios Definiciones básicas Un monomio en una indeterminada x es una expresión de la forma ax n que representa el producto de un número, a, por una potencia
2. ECUACIONES LINEALES O DE PRIMER GRADO
. ECUACIONES LINEALES O DE PRIMER GRADO El objetivo de este capítulo es repasar las ecuaciones lineales o de primer grado y resolver ecuaciones lineales por medio de propiedades vistas en la unidad nº
POLINOMIOS OPERACIONES CON MONOMIOS
POLINOMIOS Una expresión algebraica es una combinación de letras y números, ligados por los signos de las operaciones: adición, sustracción, multiplicación, división y potenciación. Las expresiones algebraicas
EXPRESIONES ALGEBRAICAS. POLINOMIOS
EXPRESIONES ALGEBRAICAS. POLINOMIOS 1. EXPRESIONES ALGEBRAICAS. Estas expresiones del área son expresiones algebraicas, ya que además de números aparecen letras. Son también expresiones algebraicas: bac,
ECUACIONES DE PRIMER GRADO CON UNA INCÓGNITA
ECUACIONES DE PRIMER GRADO CON UNA INCÓGNITA Recordar: Una ecuación es una igualdad algebraica en la que aparecen letras (incógnitas) con valor desconocido. El grado de una ecuación viene dado por el eponente
MATEMÁTICAS II CC III PARCIAL
UNIDAD DIDÁCTICA #3 CONTENIDO ECUACIONES LINEALES CON UNA INCOGNITA TIPOS DE ECUACIONES RESOLUCION DE ECUACIONES LINEALES INECUACIONES LINEALES 1 ECUACIONES LINEALES CON UNA INCOGNITA Una ecuación es una
UNIDAD 6. POLINOMIOS CON COEFICIENTES ENTEROS
UNIDAD 6. POLINOMIOS CON COEFICIENTES ENTEROS Unidad 6: Polinomios con coeficientes enteros. Al final deberás haber aprendido... Expresar algebraicamente enunciados sencillos. Extraer enunciados razonables
Universidad de Puerto Rico en Arecibo Departamento de Matemáticas Sec. 5.1: Polinomios
Universidad de Puerto Rico en Arecibo Departamento de Matemáticas Sec. 5.1: Polinomios Prof. Caroline Rodríguez Martínez Polinomios Un polinomio es un solo término o la suma de dos o más términos se compone
PRODUCTOS NOTABLES. Definición: son aquellos productos cuyo desarrollo se conocen fácilmente por simple observación. Y son:
PRODUCTOS NOTABLES Definición: son aquellos productos cuyo desarrollo se conocen fácilmente por simple observación. Y son: Cuadrado de la suma de dos cantidades Cuadrado de la diferencia de dos cantidades
1. Sumar monomios semejantes:
FICHA 1: Monomios 1. Sumar monomios semejantes: a) 3x + 4x 5x b) 6x 3 x 3 + 3x 3 c) x 5 + 4x 5 7x 5 d) x 4 + 6x 4 + 3x 4 5x 4 e) 7x + 9x 8x + x f) y + 5y 3y g) 3x y 6x y + 5x y h) 4xy xy 7xy i) a 6 3a
Ecuaciones de primer grado con una incógnita. Fuente: Algebra de A. Baldor
Ecuaciones de primer grado con una incógnita Fuente: Algebra de A. Baldor I De coeficientes enteros. 5x 8x 5. x +. y 5 y 5. 5x + 6 0x + 5 9y -0 + y 6x 7 8x x + 5x 65x 6 8x + x 7x + x + 9. 8x + 9 x x 5x
ALGEBRA. Término algebraico Coeficiente numérico Parte literal
ALGEBRA La importancia del álgebra radica en que constituye el cimiento de casi todas las ramas de la matemática; es una poderosa herramienta para desarrollar el pensamiento analítico. Con la ayuda del
GUÍAS DE ESTUDIO PROGRAMA DE ALFABETIZACIÓN, EDUCACIÓN BÁSICA Y MEDIA PARA JÓVENES Y ADULTOS
GUÍAS DE ESTUDIO Código PGA-0-R0 1 INSTITUCIÓN EDUCATIVA CASD PROGRAMA DE ALFABETIZACIÓN, EDUCACIÓN BÁSICA Y MEDIA PARA JÓVENES Y ADULTOS UNIDAD DE TRABAJO Nº PERIODO 1 ÁREA INTEGRADA: MATEMÁTICAS. ASIGNATURA:
UNA ECUACIÓN es una igualdad de dos expresiones algebraicas.
UNA EXPRESIÓN ALGEBRAICA es una combinación de números, variables (o símbolos) y operaciones como la suma, resta, multiplicación, división, potenciación y radicación. Ejemplos. UNA ECUACIÓN es una igualdad
Fundación Uno A)2011 B)2012 B)2013 D)2014 E)2015. es equivalente a 12 b 7 + a 7 b 12 a 19 a 19 a 13 a 6 b 7 + a 7 b 6 b13 a: D) a8 +a 3 b 5 +b 8
ENCUENTRO # 6 TEMA:Fracciones Algebraicas CONTENIDOS:. Máximo Común Divisor 2. Mínimo Común Múltiplo 3. Simplificación de Fraciones Algebraicas 4. Suma de Fracciones Algebraicas 5. Resta de Fracciones
EXPRESIONES ALGEBRAICAS Y POLINOMIOS
EXPRESIONES ALGEBRAICAS Y POLINOMIOS 1. Dado el polinomio A(x)=x +3. Halla: a) (B(x)) y b)(b(x)) 3. a) Define valor numérico de un polinomio P(x) en x=a. b) Halla el valor numérico del polinomio P(x) =
Factorización de polinomios FACTORIZACIÓN DE POLINOMIOS
FACTORIZACIÓN DE POLINOMIOS 1. Polinomios Un monomio es el producto de un número real por una o más letras que pueden estar elevadas a exponentes que sean números naturales. La suma de los exponentes de
1 of 18 10/25/2011 6:42 AM
Prof. Anneliesse SánchezDepartamento de MatemáticasUniversidad de Puerto Rico en AreciboEn esta sección discutiremos Expresiones algebraicas y polinomios. Discutiremos los siguientes tópicos: Introducción
OBJETIVOS CONTENIDOS PROCEDIMIENTOS
82652 _ 0275-0286.qxd 27/4/07 1:20 Página 275 Polinomios INTRODUCCIÓN Son múltiples los contextos en los que aparecen los polinomios: fórmulas económicas, químicas, físicas, de ahí la importancia de comprender
4 Ecuaciones e inecuaciones
Ecuaciones e inecuaciones INTRODUCCIÓN Comenzamos esta unidad diferenciando entre identidades y ecuaciones, y definiendo los conceptos asociados a cualquier ecuación: miembros, términos, coeficientes,
RESUMEN DE CONCEPTOS TEÓRICOS MATEMÁTICAS 1º ESO. CURSO
RESUMEN DE CONCEPTOS TEÓRICOS MATEMÁTICAS 1º ESO. CURSO 2015-2016 UNIDAD 1: NÚMEROS NATURALES (1) Múltiplo de un número: Un número es múltiplo de otro si el segundo está contenido en el primero un número
IES MARIA INMACULADA MATEMÁTICAS 2º E.S.O. Curso 2010-2011 TEMA : LENGUAJE ALGEBRÁICO
IES MARIA INMACULADA MATEMÁTICAS º E.S.O. Curso 010-011 GUIÓN DEL TEMA 1. Lenguaje numérico y lenguaje algebraico.. Epresión algebraica.. Valor numérico de una epresión algebraica.. Monomios. 5. Grado
EL GRADO Y LOS ELEMENTOS QUE FORMAN UN POLINOMIO
RECONOCER OBJETIVO EL GRADO Y LOS ELEMENTOS QUE ORMAN UN POLINOMIO NOMBRE: CURSO: ECHA: Un polinomio es una expresión algebraica formada por la suma algebraica de monomios, que son los términos del polinomio.
GUIA ALGEBRA PARTE I. Ejercicios básicos de aritmética EJERCICIOS
1 GUIA ALGEBRA PARTE I Ejercicios básicos de aritmética QUEBRADOS Fracciones mixtas ejemplo 3 4/5 Una fracción mixta es un número entero y una fracción combinados, como 1 3 / 4. Fracciones propias ejemplo
RESUMEN ALGEBRA BÁSICA
RESUMEN ALGEBRA BÁSICA TERMINO ALGEBRAICO: Es una expresión matemática que consta de un producto (o cociente) de un número con una variable elevado a un exponente (o con varias variables). TÉRMINO ALGEBRAICO
MATERIALES DIDÁCTICOS
MATERIALES DIDÁCTICOS LUIS QUINTANAR MEDINA* Ejercitaremos el despeje en ecuaciones de primer grado y lo haremos a tres niveles: El primero en que solo se consideran expresiones directas, la habilidad
Lección 8: Potencias con exponentes enteros
GUÍA DE MATEMÁTICAS III Lección 8: Potencias con exponentes enteros Cuando queremos indicar productos de factores iguales, generalmente usamos la notación exponencial. Por ejemplo podemos expresar x, como
Ecuaciones. 2x + 3 = 5x 2. 2x + 1 = 2 (x + 1) 2x + 1 = 2x + 2 1 2. 2x + 2 = 2 (x + 1) 2x + 2 = 2x + 2 2 = 2. x + 1 = 2 x = 1
Ecuaciones Igualdad Una IGUALDAD se compone de dos expresiones unidas por el signo igual. 2x + 3 = 5x 2 Una igualdad puede ser: Falsa: 2x + 1 = 2 (x + 1) 2x + 1 = 2x + 2 1 2. Cierta 2x + 2 = 2 (x + 1)
Prácticas para Resolver PROBLEMAS MATEMÁTICOS
Prácticas para Resolver PROBLEMAS MATEMÁTICOS 1 Prólogo El presente manual está dirigido a los estudiantes de las facultades de físico matemáticas de las Escuelas Normales Superiores que estudian la especialidad
Ecuaciones de 2º grado
Ecuaciones de 2º grado Una ecuación de segundo grado es toda expresión de la forma: ax 2 + bx +c = 0 con a 0. Resolución de ecuaciones de segundo grado Para resolver ecuaciones de segundo grado utilizamos
Polinomios y fracciones algebraicas
829566 _ 0249-008.qxd 27/6/08 09:21 Página 27 Polinomios y fracciones algebraicas INTRODUCCIÓN Son múltiples los contextos en los que aparecen los polinomios: fórmulas económicas, químicas, físicas, de
1. ESQUEMA - RESUMEN Página EJERCICIOS DE INICIACIÓN Página EJERCICIOS DE DESARROLLO Página EJERCICIOS DE REFUERZO Página 25
1. ESQUEMA - RESUMEN Página. EJERCICIOS DE INICIACIÓN Página 6. EJERCICIOS DE DESARROLLO Página 17 5. EJERCICIOS DE REFUERZO Página 5 1 1. ESQUEMA - RESUMEN Página 1.1. EXPRESIONES ALGEBRAICAS. 1.. VALOR
Banco de reactivos de Álgebra I
Banco de reactivos de Álgebra I Compilación: Ochoa Cruz Rita Julio de 006 Temario. Unidad I: El campo de los números reales. Conjunto y conjuntos de números. Orden y distancia. Valor absoluto 4. Operaciones
CUADERNO Nº 2 NOMBRE:
Polinomios Contenidos 1. Monomios y polinomios Expresiones algebraicas Expresión en coeficientes Valor numérico de un polinomio 2. Operaciones Suma y diferencia Producto Factor común 3. Identidades notables
SESIÓN 8 EXPONENTESY RADICALES
SESIÓN 8 EXPONENTESY RADICALES I. CONTENIDOS: 1. Leyes de los exponentes.. Exponente cero.. Exponente fraccionario. 4. Exponente negativo. 5. Radical. 6. Raíz enésima. 7. Raíces de números positivos y
5. Producto de dos binomios de la forma: ( ax + c)( bx d )
PRODUCTOS NOTABLES Y FACTORIZACIÓN. Productos Notables: Son polinomios que se obtienen de la multiplicación entre dos o más polinomios que poseen características especiales o expresiones particulares,
