Compuertas Lógicas, Algebra Booleana
|
|
|
- Gloria Montoya Juárez
- hace 8 años
- Vistas:
Transcripción
1 Compuertas Lógicas, Algebra Booleana
2 Representación de números negativos Herramientas para conversión y operaciones aritméticas Evaluación
3 BIN DEC DEC
4 Revisión Evaluación Compuertas lógicas Algebra Booleana Ejemplos Ejercicios
5 Revisión de Evaluación
6
7
8
9 Las operaciones aritméticas binarias son complejas en sí mismas. Son operaciones entre números. Para implementarlas físicamente (eléctricamente) se utilizan operaciones mucho mas sencillas como bloques básicos de construcción: Operaciones Lógicas Son las operaciones básicas entre bits que permitirán la construcción de operaciones mas complejas, como las aritméticas.
10
11 Pueden tener una o más entradas Su función está determinada por la tabla de la verdad
12 Los componentes digitales básicos se denominan COMPUERTAS (gates) Existen tres tipos sirven para construir los otros componentes
13 La salida de una compuerta NOT es uno si su entrada están es uno y viceversa Tabla de la verdad y símbolo de la compuerta NOT
14 Análisis de las entradas de una compuerta NOT y su salida esperada
15 La salida de una compuerta AND es uno solamente si todas sus entradas están en uno Tabla de la verdad y símbolo de la compuerta AND
16 Análisis de las entradas de una compuerta OR y su salida esperada
17 Análisis grafico de cómo cambia la salida de una compuerta AND cuando varían sus entradas Solo si todas sus entradas tienen un uno, el valor de la salida será uno
18 Si la compuerta AND tiene tres entradas, se sigue cumpliendo la tabla de la verdad de forma similar a la de dos entradas
19 La salida de una compuerta OR es uno si cualquier de sus entradas está en uno Tabla de la verdad y símbolo de la compuerta OR
20 Análisis de las entradas de una compuerta OR y su salida esperada
21 Análisis grafico de cómo cambia la salida de una compuerta OR cuando varían sus entradas Basta con que cualquiera de sus entradas tenga un uno para que el valor de la salida sea uno
22 Si la compuerta OR tiene tres entradas, se sigue cumpliendo la tabla de la verdad de forma similar a la de dos entradas
23
24 Es la versión negada de la compuerta OR La salida es un uno cuando ambas entradas tienen un cero
25 Análisis grafico de cómo cambia la salida de una compuerta NOR cuando varían sus entradas La salida es un uno si las entradas tienen un cero
26 Es la versión negada de la compuerta AND La salida es un uno cuando alguna de las entradas tiene un cero
27 Análisis grafico de cómo cambia la salida de una compuerta NAND cuando varían sus entradas La salida es un uno si alguna de las entradas tienen un uno pero no ambas
28 La salida de la compuerta XOR solo es un uno cuando una de sus entradas es un uno pero no ambas
29 Análisis grafico de cómo cambia la salida de una compuerta XOR cuando varían sus entradas La salida solo es un uno si las entradas son distintas
30
31 Las funciones lógicas pueden ser muy grandes. Es importante en la implementación física que el número de dispositivos (operaciones) sea mínimo: Costos Tiempo de respuesta Utilizar herramientas de manipulación de expresiones booleanas permite controlar el tamaño de los circuitos, y manejar parámetros especiales de implementación. Algebra Booleana
32 Suponiendo variables binarias (booleanas): x, y, w, z Axiomas Básicos: (1) x = 0 si x 1 y x=1 si x 0 (2) Si x=0 x =1 y Si x=1 x = 0 (3) 0 0 = 0 (4) 1 1 = 1 (5) 0 1 = 1 0 = 0 (6) = 1 (7) = 0 (8) = = 1
33 Teoremas de una variable: (1) x + 0 = x x 1 = x (identidad) (2) x + 1 = 1 x 0 = 0 (elemento neutro) (3) x + x = x x x = x (idempotencia) (4) (x ) = x (involucion) (5) x + x = 1 x x = 0 (complemento) Teoremas de dos y tres variables (1) x + y = y + x x y = y x (conmutatividad) (2) (x+y)+z = x+(y+z) (x y) z = x (y z) (Asociatividad) (3) x y + x z = x (y+z) (x+y) (x+z)=x+(y z) (Distributiva) (4) x + x y = x x (x+y) = x (cobertura) (5) x y + x y = x (x+y) (x+y ) = x (combinación) (6) xy + x z + yz = xy + x z (x+y)(x +z)(y+z) = (x+y)(x +z) (consenso)
34 Teoremas de n variables (1)x + x x = x x x x = x (idempotencia) (2)(x 1 x 2 x n ) = x 1 + x x n (De Morgan) (3)[F(x 1, x 2,, x n, +, )] = F(x 1, x 2,, x n,,+) (De Morgan general) Ejemplo del teorema de Morgan general: cualquier función es equivalente a la misma función con los operadores y variables invertidos: F(x,y,w,z) = (w x) + (x y) + (w (x + z )) = (w + x ) (x + y ) (w + (x z))
35 Algebra Booleana
36
37
38 Usando las reglas mencionadas simplifique la siguiente expresión: f ( A, B, C, D) A. B. D A. B. D B. C. D f ( A, B, C, D) A C D. AC.. D
39 Algebra Booleana
40 Usando una tabla de la verdad demuestre que
41 Encuentre X
42 Encuentre x
43 Encuentre Z y simplifique
Tema 3.1 Introducción a los circuitos combinacionales. Algebra de Boole
Tema 3.1 Introducción a los circuitos combinacionales. Algebra de Boole Índice Algebra de Boole. Definición. Operaciones lógicas: OR, AND, XOR y NOT Puertas lógicas Algebra de Boole Postulados Teoremas
03. Introducción a los circuitos lógicos
03. Introducción a los circuitos lógicos 1. LÓGICA DE PROPOSICIONES...2 PROPOSICIÓN...2 CONECTORES U OPERADORES LÓGICOS...2 Tablas de...2 Tautología...2 Contradicción...2 2. ÁLGEBRA DE BOOLE...3 AXIOMAS
Compuertas Lógicas. Sergio Stive Solano Sabié. Agosto de 2012 MATEMÁTICA. Sergio Solano. Compuertas lógicas NAND, NOR, XOR y XNOR
XOR y Lógicas Sergio Stive Solano Agosto de 2012 XOR y Lógicas Sergio Stive Solano Agosto de 2012 XOR y XOR y Con las puertas básicas podemos implementar cualquier función booleana. Sin embargo existen
Álgebra Booleana. Álgebra Booleana. Definiciones. Definiciones. Definiciones. Definiciones. Sistemas Digitales Mario Medina 1
Álgebra Booleana Álgebra Booleana Mario Medina C. [email protected] Postulados y axiomas Lemas y teoremas Referencias a otras álgebras Álgebra de Boole: estructura algebraica definida sobre un conjunto
GUIA 4: ALGEBRA DE BOOLE
GUIA 4: ALGEBRA DE BOOLE En 1854 George Boole introdujo una notación simbólica para el tratamiento de variables cuyo valor podría ser verdadero o falso (variables binarias) Así el álgebra de Boole nos
Álgebra Booleana. Suma Booleana. El término suma es 1 si al menos uno de sus literales son 1. El término suma es 0 solamente si cada literal es 0.
Álgebra Booleana El álgebra de Boole son las matemáticas de los sistemas digitales. En el nivel de lógica digital de una computadora, lo que comúnmente se llama hardware y que está formado por los componentes
George Boole. Álgebra Booleana. Álgebra de Conmutación. Circuitos Digitales EC1723
George oole Circuitos Digitales EC723 Matemático británico (85-864). utodidacta y sin título universitario, en 849 fue nombrado Profesor de Matemáticas en el Queen's College en Irlanda. En su libro Laws
2-Funciones y representaciones booleanas
2-Funciones y representaciones booleanas 2.1 Lógica y álgebra de Boole 2.2 Funciones booleanas 2.3 Representaciones de funciones booleanas. 2.4 Funciones de varias variables. 2: Funciones booleanas 1 Lógica
Tema 1: Circuitos Combinacionales
Tema : Circuitos Combinacionales Contenidos. Introducción. Aritmética. Álgebra de Boole Señales Sistemas. Introducción Entrada Ecitación Sistema Salida Respuesta Un sistema es un conjunto de partes o elementos
ALGEBRA DE BOOLE George Boole C. E. Shannon E. V. Hungtington [6]
ALGEBRA DE BOOLE El álgebra booleana, como cualquier otro sistema matemático deductivo, puede definirse con un conjunto de elementos, un conjunto de operadores y un número de axiomas no probados o postulados.
Álgebra de Boole. Adición booleana. Multiplicación booleana. Escuela Politécnica Superior
Álgebra de Boole El Álgebra de Boole es una forma muy adecuada para expresar y analizar las operaciones de los circuitos lógicos. Se puede considerar las matemáticas de los sistemas digitales. Operaciones
Electrónica Digital - Guión
Electrónica Digital - Guión 1. Introducción. 2. El álgebra de Boole. 3. Propiedades del álgebra de Boole. 4. Concepto de Bit y Byte. 5. Conversión del sistema decimal en binario y viceversa. 6. Planteamiento
PUERTAS LOGICAS. Una tensión alta significa un 1 binario y una tensión baja significa un 0 binario.
PUERTAS LOGICAS Son bloques de construcción básica de los sistemas digitales; operan con números binarios, por lo que se denominan puertas lógicas binarias. En los circuitos digitales todos los voltajes,
NOT. Ejemplo: Circuito C1
Métodos de diseño de circuitos digitales Sistemas combinacionales En un circuito combinacional los valores de las salidas dependen únicamente de los valores que tienen las entradas en el presente. Se construen
ÁLGEBRAS DE BOOLE. En un álgebra de Boole (B, +,, ) se cumplen las siguientes propiedades, para todo x, y, z B: Doble Complemento
ÁLGEBRAS DE BOOLE CARACTERIZACIÓN DE UN ÁLGEBRA DE BOOLE Un álgebra de Boole (o álgebra booleana) consiste en un conjunto B = {0, 1}, operadores binarios + y en S y un operador unario en S. Estas operaciones
UNIDAD 4. Álgebra Booleana
UNIDAD 4 Álgebra Booleana ÁLGEBRA BOOLEANA El Álgebra Booleana se define como una retícula: Complementada: existe un elemento mínimo 0 y un elemento máximo I de tal forma que si a esta en la retícula,
Existen diferentes compuertas lógicas y aquí mencionaremos las básicas pero a la vez quizá las más usadas:
Compuertas lógicas Las compuertas lógicas son dispositivos electrónicos utilizados para realizar lógica de conmutación. Son el equivalente a interruptores eléctricos o electromagnéticos. para utilizar
Sistemas informáticos industriales. Algebra de Boole
Sistemas informáticos industriales 2016 lgebra de oole lgebra oole Se denomina así en honor a George oole (1815-1864). El algebra de oole se emplea en sistema de control digitales, desde los sistemas de
GUIA DE CIRCUITOS LOGICOS COMBINATORIOS
GUIA DE CIRCUITOS LOGICOS COMBINATORIOS 1. Defina Sistema Numérico. 2. Escriba la Ecuación General de un Sistema Numérico. 3. Explique Por qué se utilizan distintas numeraciones en la Electrónica Digital?
Centro Asociado Palma de Mallorca. Tutor: Antonio Rivero Cuesta
Centro Asociado Palma de Mallorca Arquitectura de Ordenadores Tutor: Antonio Rivero Cuesta Unidad Didáctica 1 Representación de la Información y Funciones Lógicas Tema 3 Algebra Booleana y Puertas Lógicas
k k N b Sistemas Númericos Sistemas con Notación Posicional (1) Sistemas con Notación Posicional (2) Sistemas Decimal
Sistemas con Notación Posicional (1) Sistemas Númericos N b = a n-1 *b n-1 + a n-2 *b n-2 +... + a 0 *b 0 +a -1 *b - 1 + a -2 *b -2 +... + a -m *b -m Sistemas con Notación Posicional (2) N b : Número en
El número decimal 57, en formato binario es igual a:
CURSO: ELECTRÓNICA DIGITAL UNIDAD 1: COMPUERTAS LÓGICAS - TEORÍA PROFESOR: JORGE ANTONIO POLANÍA 1. NÚMEROS BINARIOS EJEMPLO En el cuadro anterior, está la representación de los números binarios en formato
CIRCUITOS DIGITALES UNIVERSIDAD CATOLICA DE CUENCA EXT. CAÑAR CATEDRATICO: ING. CRISTIAN FLORES ALUMNO: TITO GUASCO FECHA:
CIRCUITOS DIGITALES 2011 UNIVERSIDAD CATOLICA DE CUENCA EXT. CAÑAR CATEDRATICO: ALUMNO: FECHA: ING. CRISTIAN FLORES TITO GUASCO 11-10-2011 2 CIRCUITOS DIGITALES TEMA: COMPUERTAS LOGICAS Las computadoras
Algebra de Boole. » a + a = 1» a a = 0
Algebra de Boole Dos elementos: 0 y 1 Tres operaciones básicas: producto ( ) suma ( + ) y negación ( ` ) Propiedades. Siendo a, b, c números booleanos, se cumple: Conmutativa de la suma: a + b = b + a
Unidad IV. Teorema 1: Multiplicación por cero (identidad) Es el factor neutro: Suma: a+1=! producto: a0=0
Unidad IV Algebra Booleana 4.1 Teoremas y postulados. Teoremas Teorema 1: Multiplicación por cero (identidad) Es el factor neutro: Suma: a+1=!--------producto: a0=0 Teorema 2: Absorción En la suma se identifica
ELECTRÓNICA DIGITAL 1. INTRODUCCIÓN. SEÑALES ANALÓGICAS Y DIGITALES.
1 ELECTRÓNICA DIGITAL 1. INTRODUCCIÓN. SEÑALES ANALÓGICAS Y DIGITALES. Podemos dividir la electrónica en dos grandes campos: la electrónica analógica y la electrónica digital, según el tipo de señales
5.3. Álgebras de Boole y de conmutación. Funciones lógicas
5.3. Álgebras de Boole y de conmutación. Funciones lógicas 5.3.1. Algebra de conmutación o algebra booleana 5.3.1.1. Axiomas [ Wakerly 4.1.1 pág. 195] 5.3.1.2. Teoremas de una sola variable [ Wakerly 4.1.2
Sistemas Electrónicos Digitales
Sistemas Electrónicos Digitales Profesor: Carlos Herrera C. I. Unidad COMPUERTAS LOGICAS Las compuertas lógicas son dispositivos que operan con aquellos estados lógicos Binarios y que funcionan igual que
TEMA 3 ÁLGEBRA DE CONMUTACIÓN
TEMA 3 ÁLGEBRA DE CONMUTACIÓN TEMA 3: Álgebra de Boole ÍNDICE. POSTULADOS DEL ÁLGEBRA DE CONMUTACIÓN 2. ÁLGEBRA DE BOOLE BIVALENTE O ÁLGEBRA DE CONMUTACIÓN 2. Teoremas del álgebra de conmutación 3. VARIABLES
Algebra de Boole: Teoremas
Teorema 1: A + A = A Teorema 2: A A = A Teorema 3: A + 0 = A Teorema 4: A 1 = A Teorema 5: A 0 = 0 Teorema 6: A + 1 = 1 Teorema 7: (A + B) = A B Teorema 8: (A B) = A + B Teorema 9: A + A B = A Teorema
Álgebra de Boole. Valparaíso, 1 er Semestre Prof. Rodrigo Araya E.
Prof. Rodrigo Araya E. [email protected] Universidad Técnica Federico Santa María Departamento de Informática Valparaíso, 1 er Semestre 2006 1 2 3 4 Contenido En 1815 George Boole propuso una herramienta
La compuerta AND opera de tal forma que su salida será ALTA o 1,solo cuando todas sus entradas sean ALTAS. De otra forma la salida sera BAJA.
Eplicación del Tema Sesión 12. Operación ND, NOT, NND Y NOR. OPERCIÓN ND Si y son dos variables boolenas y se combinan con la operación OR la epresión quedaría: =. Donde el símbolo. representa la epresión
CURSO: ELECTRÓNICA DIGITAL UNIDAD 1: COMPUERTAS LÓGICAS - TEORÍA PROFESOR: JORGE ANTONIO POLANÍA
CURSO: ELECTRÓNICA DIGITAL UNIDAD 1: COMPUERTAS LÓGICAS - TEORÍA PROFESOR: JORGE ANTONIO POLANÍA Las compuertas lógicas son bloques que realizan las operaciones básicas de la aritmética binaria del álgebra
ALGEBRA BOOLEANA (ALGEBRA LOGICA)
ALGEBRA BOOLEANA Un sistema axiomático es una colección de conocimientos ordenados jerárquica-mente mediante reglas o leyes lógicas aplicadas a un número limitado de conceptos o principios básicos. Un
ESTRUCTURA Y TECNOLOGÍA DE LOS COMPUTADORES I. TEMA 4 Algebra booleana y puertas lógicas
ESTRUCTURA Y TECNOLOGÍA DE LOS COMPUTADORES I TEMA 4 Algebra booleana y puertas lógicas TEMA 4. Algebra booleana y puertas lógicas 4.1 Definición de álgebra de Boole 4.2 Teoremas del álgebra de Boole 4.3
CIRCUITOS LÓGICOS. Lógica FCE 1. ALGEBRA DE BOOLE
Lógica FE IRUITOS LÓGIOS 1. LGER DE OOLE 1.1 Introducción Tanto la teoría de conjuntos como la lógica de enunciados tienen propiedades similares. Tales propiedades se utilizan para definir una estructura
Conocer la aplicación de dispositivos semiconductores, como conmutadores, así como las compuertas lógicas básicas y sus tablas de verdad.
OBJETIVO GENERAL: PRACTICA No. 1: PRINCIPIOS BÁSICOS Conocer la aplicación de dispositivos semiconductores, como conmutadores, así como las compuertas lógicas básicas y sus tablas de verdad. OBJETIVOS
Álgebra Booleana y Diseño Lógico. Circuitos Digitales, 2º de Ingeniero de Telecomunicación. EITE ULPGC.
Álgebra Booleana y Diseño Lógico Circuitos Digitales, 2º de Ingeniero de Telecomunicación. EITE ULPGC. Índice 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. Propiedades algebraicas Definición axiomática de álgebra
plicación de los circuitos SUMADOR DIBITAL S C
plicación de los circuitos ógicos A B SUMADOR DIBITAL S C Aplicaciones de los circuitos lógicos Algunas aplicaciones elementales como los circuitos aritméticos digitales y los codificadores y decodificadores,
ALGEBRA BOOLEANA. CONMUTATIVO. Se dice que un operador binario º es conmutativo si A º B = B º A para todos los posibles valores de A y B.
ÁLGEBRA BOOLEANA UNEFA NUCLEO ZULIA El álgebra booleana es un sistema matemático deductivo centrado en los valores cero y uno (falso y verdadero). Un operador binario º definido en éste juego de valores
Tema 5: Álgebra de Boole Funciones LógicasL
Tema 5: Álgebra de Boole Funciones LógicasL Ingeniería Informática Universidad Autónoma de Madrid 1 Álgebra de Boole.. Funciones LógicasL O B J E T I V O S Conocer el Álgebra de Boole, sus teoremas y las
IES PALAS ATENEA. DEPARTAMENTO DE TECNOLOGÍA. 4º ESO ELECTRÓNICA DIGITAL
ELECTRÓNICA DIGITAL 1.- La Información Cuando una señal eléctrica (Tensión o Intensidad), varía de forma continua a lo largo del tiempo, y puede tomar cualquier valor en un instante determinado, se la
Álgebra Booleana circuitos lógicos
Álgebra Booleana y circuitos lógicos OBJETIVO GENERAL Teniendo en cuenta que los circuitos digitales o lógicos operan de forma binaria, emplear el álgebra booleana como fundamento teórico para el análisis,
Ampliación Matemática Discreta. Justo Peralta López
Justo Peralta López UNIVERSIDAD DE ALMERíA DEPARTAMENTO DE ÁGEBRA Y ANÁLISIS MATEMÁTICO 1 Introducción 2 Definición semántica de las proposiciones 3 Diagrama de valores de certeza 4 Evaluación de fórmulas.
Tabla de contenidos. 1 Lógica directa
Tabla de contenidos 1 Lógica directa o 1.1 Puerta SI (YES) o 1.2 Puerta Y (AND) o 1.3 Puerta O (OR) o 1.4 Puerta OR-exclusiva (XOR) 2 Lógica negada o 2.1 Puerta NO (NOT) o 2.2 Puerta NO-Y (NAND) o 2.3
Algebra Booleana Transversal de Programación Básica Proyecto Curricular de Ingeniería de Sistemas
1 Algebra Booleana 2013 Transversal de Programación Básica Proyecto Curricular de Ingeniería de Sistemas 2 Introducción La herramienta fundamental para el análisis y diseño de circuitos digitales es el
Electrónica Digital: Sistemas Numéricos y Algebra de Boole
Electrónica Digital: Sistemas Numéricos y Algebra de Boole Profesor: Ing. Andrés Felipe Suárez Sánchez Grupo de Investigación en Percepción y Sistemas Inteligentes. Email: [email protected]
Introducción a la Matemática Discreta
Introducción a la Matemática Discreta Lógica proposicional y Álgebras de Boole Luisa María Camacho Camacho Introd. a la Matemática Discreta 1 / 25 Introducción a la Matemática Discreta Temario Tema 1.
Operaciones Booleanas y Compuertas Básicas
Álgebra de Boole El álgebra booleana es la teoría matemática que se aplica en la lógica combinatoria. Las variables booleanas son símbolos utilizados para representar magnitudes lógicas y pueden tener
Definición y representación de los
Definición y representación de los circuitos lógicos. LÁMARA R + - + - OBJETIVO GENERAL BATERÍA Utilizar el álgebra booleana para analizar y describir el funcionamiento de las combinaciones de las compuertas
UNIDAD 4. Algebra de Boole
UNIDAD 4 Algebra de Boole Introducción a la unidad La tecnología nos permite construir compuertas digitales a través de transistores y mediante las compuertas diseñamos los circuitos digitales empleados
Álgebra Booleana y Simplificación Lógica
Álgebra Booleana y Simplificación Lógica M. en C. Erika Vilches Parte 2 Simplificación utilizando Álgebra Booleana Simplificar la expresión AB + A(B + C) + B(B + C) 1. Aplicar la ley distributiva al segundo
Álgebra de Boole A p u n te N 3
Álgebra de Boole Apunte N 3 G e o r g e B o o l e y C l a u d e S h a n n o n La finalidad de la Electrónica Digital es procesar la información. Para ello utiliza las operaciones definidas por George Boole
Tema 2. Funciones Lógicas. Algebra de Conmutación. Representación de circuitos digitales. Minimización de funciones lógicas.
Tema 2. Funciones Lógicas Algebra de Conmutación. Representación de circuitos digitales. Minimización de funciones lógicas. Álgebra de conmutación Algebra de Conmutación: Postulados y Teoremas. Representación
Práctica 1 Introducción al Transistor BJT Región de Corte Saturación Aplicaciones
Práctica 1 Introducción al Transistor BJT Región de Corte Saturación Aplicaciones Universidad de San Carlos de Guatemala, Facultad de Ingeniería, Escuela de Mecánica Eléctrica, Laboratorio de Electrónica
Matemáticas Básicas para Computación
Matemáticas Básicas para Computación MATEMÁTICAS BÁSICAS PARA COMPUTACIÓN 1 Sesión No. 7 Nombre: Compuertas Lógicas Objetivo Al término de la sesión el participante aplicará los conceptos de compuertas
EJERCICIOS. a. Se les pide: b. Escriba la tabla de verdad c. Exprese la función en minterminos d. Exprese la función en maxterminos
Instituto Tecnológico de osta Rica Escuela de Ingeniería Electrónica urso: EL-3307 Diseño Lógico I Semestre 2007 Pro. Ing. José lberto Díaz García 24 de Febrero 2007 EJERIIOS I PRTE Simpliicación de unciones
Práctica 1 Transistor BJT Región de Corte Saturación Aplicaciones
Práctica 1 Transistor BJT Región de Corte Saturación Aplicaciones Universidad de San Carlos de Guatemala, Facultad de Ingeniería, Escuela de Mecánica Eléctrica, Laboratorio de Electrónica 1, Segundo Semestre
Operación de circuitos lógicos combinatorios.
Operación de circuitos lógicos combinatorios. 1.1 Analiza circuitos lógicos combinatorios, empleando sistemas y códigos numéricos. A. Identificación de las características de la electrónica digital. Orígenes
Problemas propuestos. Simplificar las siguientes expresiones lógicas
Razonar en base a los postulados y teoremas del álgebra de Boole si es posible o no definir un álgebra de Boole para tres elementos B = {0, a, 1} Demostrar los teoremas T1, T2, T7 y T9 mediante los postulados
Conceptos previos. Revisión de Sistemas Lógicos Formatos Numéricos. Dpto. Ingeniería Electrónica y Comunicaciones
Conceptos previos Revisión de Sistemas Lógicos Formatos Numéricos Revisión de Sistemas Lógicos Álgebra de Boole Base matemática de la Electrónica Digital Consta de dos elementos: 0 lógico y 1 lógico Tecnología
1. Se establecen los conceptos fundamentales (símbolos o términos no definidos).
1. ÁLGEBRA DE BOOLE. El álgebra de Boole se llama así debido a George Boole, quien la desarrolló a mediados del siglo XIX. El álgebra de Boole denominada también álgebra de la lógica, permite prescindir
Horas Trabajo Estudiante: 128
PROGRAMAS DE:: CIIENCIIAS BÁSIICAS E IINGENIIERÍÍAS DEPARTAMENTO DE MATEMÁTIICAS Y ESTADÍÍSTIICA CONTENIIDOSS PPROGRAMÁTIICOSS PPOR UNIIDADESS DE APPRENDIIZAJJE Curso: Créditos: 3 Lógica Matemática Horas
Matemáticas Básicas para Computación
Matemáticas Básicas para Computación MATEMÁTICAS BÁSICAS PARA COMPUTACIÓN 1 Sesión No. 6 Nombre: Álgebra Booleana Objetivo Durante la sesión el participante identificará las principales características
CIRCUITOS LOGICOS. Que es una Proposición? Es una expresión verbal de un juicio acerca de algo.
GUIA : III CIRCUITOS LOGICOS OBJETIVOS Realizar la tabla de verdad para las compuertas lógicas básicas. AND,OR, NOT, NAND, OR-EX Representar simbólicamente una función booleana usando las compuertas básicas.
TEMA 1 INTRODUCCIÓN A LOS SISTEMAS DIGITALES
TEMA 1 INTRODUCCIÓN A LOS SISTEMAS DIGITALES Exponer los conceptos básicos de los fundamentos de los Sistemas Digitales. Asimilar las diferencias básicas entre sistemas digitales y sistemas analógicos.
Circuitos lógicos combinacionales. Tema 6
Circuitos lógicos combinacionales Tema 6 Qué sabrás al final del capítulo? Implementar funciones con dos niveles de puertas lógicas AND/OR OR/AND NAND NOR Analizar sistemas combinacionales, obteniendo
ÁLGEBRA BOOLEANA El álgebra booleana es un sistema matemático deductivo centrado en los valores cero y uno (falso y verdadero). Un operador binario "
ÁLGEBRA BOOLEANA El álgebra booleana es un sistema matemático deductivo centrado en los valores cero y uno (falso y verdadero). Un operador binario " " definido en éste juego de valores acepta un par de
SISTEMAS LÓGICOS. UNIDAD 2: Álgebra De Boole
Definición SISTEMAS LÓGICOS UNIDAD 2: Álgebra De Boole Comenzaremos definiendo el Álgebra de Boole como el conjunto de elementos B que puede asumir dos valores posibles (0 y 1) y que están relacionados
PROBLEMAS TECNOLOGÍA INDUSTRIAL II. CONTROL DIGITAL
PROBLEMAS TECNOLOGÍA INDUSTRIAL II. CONTROL DIGITAL 1. 2. 3. 4. 5. 6. a) Convierta el número (5B3) 16 al sistema decimal b) Convierta el número (3EA) 16 al sistema binario c) Convierta el número (235)
Matemáticas Básicas para Computación. Sesión 7: Compuertas Lógicas
Matemáticas Básicas para Computación Sesión 7: Compuertas Lógicas Contextualización En esta sesión lograremos identificar y comprobar el funcionamiento de las compuertas lógicas básicas, además podremos
INDICE 1. Operación del Computador 2. Sistemas Numéricos 3. Álgebra de Boole y Circuitos Lógicos
INDICE Prólogo XI 1. Operación del Computador 1 1.1. Calculadoras y Computadores 2 1.2. Computadores digitales electrónicos 5 1.3. Aplicación de los computadores a la solución de problemas 7 1.4. Aplicaciones
UNIVERSIDAD POPULAR DEL CESAR DEPATAMENTO DE MATEMATICA Y ESTADISTICA ALGEBRA DE BOOLE
UNIVERSIDAD POPULAR DEL CESAR DEPATAMENTO DE MATEMATICA Y ESTADISTICA ALGEBRA DE BOOLE GERMAN ISAAC SOSA MONTENEGRO EJERCICIOS 3. Escriba en notación expandida los siguientes numerales : a) 2375 b) 110111
Suma Resta Multiplica. División Alg. Boole Tbla Verdad Circuitos Karnaugh
Sistemas de Numeración Operaciones Aritméticas Con SIGNO 2007-0808 Sistemas de Numeración 1 Suma SUMA: Cuatro posibles casos: AyBsonpositivos => >A+B> >= 0 A y B son negativos => A+B < 0 A positivo y B
Introducción al álgebra de Boole. Operaciones lógicas básicas. Propiedades del álgebra de Boole. a b a+b
Introducción al álgebra de Boole Muchos componentes utilizados en sistemas de control, como contactores y relés, presentan dos estados claramente diferenciados (abierto o cerrado, conduce o no conduce).
Sistemas Digitales. Circuitos Codificadores
Sistemas Digitales Circuitos Codificadores Se definen como tal, a circuitos combinacionales que tienen 2 n entradas y n salidas, aunque en algunos casos prácticos, suelen tener menos entradas. A cada una
Expresiones Algebraicas en los Números Reales
Operaciones con en los Números Reales Carlos A. Rivera-Morales Álgebra Tabla de Contenido Contenido Operaciones con Operaciones con : Contenido Operaciones con Discutiremos: qué es una: expresión algebraica
D.I.I.C.C Arquitectura de Sistemas Computacionales
CAPITULO 6.- ÁLGEBRA DE BOOLE INTRODUCCIÓN. En 1854 George Boole introdujo una notación simbólica para el tratamiento de variables cuyo valor podría ser verdadero o falso (variables binarias) Así el álgebra
ELO211: Sistemas Digitales. Tomás Arredondo Vidal
ELO211: Sistemas Digitales Tomás Arredondo Vidal Este material está basado en: textos y material de apoyo: Contemporary Logic Design 1 st / 2 nd edition. Gaetano Borriello and Randy Katz. Prentice Hall,
EL LENGUAJE DE LAS COMPUTADORAS
EL LENGUAJE DE LAS COMPUTADORAS AUTORÍA ANGEL MANUEL RUBIO ORTEGA TEMÁTICA ELECTRICIDAD, ELECTRÓNICA ETAPA ESO, BACHILLERATO Resumen Actualmente nos encontramos rodeados dispositivos digitales. Por ello
Funciones Lógicas Y Métodos De Minimización
Circuitos Digitales I Tema III Funciones Lógicas Y Métodos De Minimización Luis Tarazona, UNEXPO Barquisimeto EL-3213 Circuitos Digitales I - 2004 75 Funciones lógicas Circuito combinacional: Un circuito
DISEÑO DE CIRCUITOS LOGICOS COMBINATORIOS
DISEÑO DE CIRCUITOS LOGICOS COMBINATORIOS Circuitos Combinacionales Un circuito combinacional es un circuito digital cuyas salidas, en un instante determinado son función, exclusivamente, de la combinación
Unidad Didáctica 6 Electrónica Digital 4º ESO
Unidad Didáctica 6 Electrónica Digital 4º ESO ELECTRÓNICA DIGITAL SEÑALES ELECTRICAS LÓGICA BINARIA CIRCUITOS INTEGRADOS DIGITALES DISEÑO DE CTOS. COMBINACIONALES Y CTOS. IMPRESOS TIPOS SISTEMAS DE NUMERACIÓN
ING. WILDER ENRIQUE ROMÁN MUNIVE
TEMA CURSO: CÓDIGO: ALUMNO: CIRCUITOS LOGICOS DIBUJO ELECTRÓNICO I 1J3025 LÉVANO PINTO CHRISTIAN ENRIQUE CÓDIGO U: 20112281 AÑO: CICLO: SECCIÓN: GRUPO: DOCENTE: PRIMERO SEGUNDO DOS A ING. WILDER ENRIQUE
OR (+) AND( ). AND AND
Algebra de Boole 2.1.Introducción 2.1. Introducción El Algebra de Boole es un sistema matemático que utiliza variables y operadores lógicos. Las variables pueden valer 0 o 1. Y las operaciones básicas
Síntesis NAND_NOR. Síntesis NAND NOR. EL Diseño Lógico. Ing. José Alberto Díaz García. Página 1
Síntesis NAND NOR Página 1 Página 2 Introducción Hasta ahora las implementaciones en dos niveles que hemos sintetizado están formadas por varias compuertas AND más una compuerta OR a la salida (circuitos
I. ALGEBRA DE BOOLE. c) Cada operación es distributiva con respecto a la otra: a. ( b + c) = a. b + a. c a + ( b. c ) = ( a + b ).
I. I.1 DEFINICION. El Algebra de Boole es toda clase o conjunto de elementos que pueden tomar dos valores perfectamente diferenciados, que designaremos por 0 y 1 y que están relacionados por dos operaciones
TEMA PUERTAS LÓGICAS. TÉCNICAS DE DISEÑO Y SIMPLIFICACIÓN DE FUNCIONES LÓGICAS.
PUERTAS LÓGICAS. TÉCNICAS DE DISEÑO Y SIMPLIFICACIÓN DE FUNCIONES LÓGICAS. ÍNDICE.- INTRODUCCIÓN... 2.- ELECTRÓNICA DIGITAL... 3.. SISTEMAS DE NUMERACIÓN... 3.2. SEÑAL DIGITAL BINARIA... 3.3. SISTEMAS
CIRCUITOS DIGITALES -
CIRCUITOS DIGITALES - INTRODUCCIÓN CIRCUITOS DIGITALES CIRCUITOS DIGITALES SON LOS QUE COMUNICAN Y PROCESAN INFORMACIÓN DIGITAL SEÑAL DIGITAL: SOLO PUEDE TOMAR UN NÚMERO FINITO DE VALORES. EN BINARIO:
1 INTRODUCCIÓN TEÓRICA 2 OBJETIVOS
PRÁCTICA 1 1 INTRODUCCIÓN TEÓRICA 2 OBJETIVOS 3 MONTAJES PRÁCTICOS 3.1 Comprobación de las funciones NAND y OR. 3.1.1 Comprobación de la función NAND. 3.1.2 Comprobación de la función OR. 3.2 Implementación
ARQUITECTURAS ESPECIALES
ARQUITECTURAS ESPECIALES EL - 337 Página Qué es un Multiplexor? EL - 337 Un multiplexor o MUX es un switch digital (interruptor digital) que conecta una de las entradas con su única salida. Desde el punto
GUIA DIDACTICA DE ELECTRONICA N º12 1. IDENTIFICACION ASIGNATURA GRADO PERIODO I.H.S. TECNOLOGIA ONCE CUARTO 6
1. IDENTIFICACION ASIGNATURA GRADO PERIODO I.H.S. TECNOLOGIA ONCE CUARTO 6 DOCENTE(S) DEL AREA:NILSON YEZID VERA CHALA COMPETENCIA: USO Y APROPIACION DE LA TECNOLOGIA NIVEL DE COMPETENCIA: INTERPRETATIVA
Algebra de Boole. Algebra de Boole. Ing. José Alberto Díaz García. EL - 3307 Diseño Lógico. Página 1
Página 1 Simplificación de circuitos Como los circuitos lógicos son representaciones de funciones lógicas, se pueden utilizar los recursos disponibles para simplificarlos y así reducir la cantidad de componentes
Oliverio J. Santana Jaria. Sistemas Digitales Ingeniería Técnica en Informática de Sistemas Curso Los objetivos de este tema son:
3. Circuitos aritméticos ticos Oliverio J. Santana Jaria Sistemas Digitales Ingeniería Técnica en Informática de Sistemas Curso 2006 2007 Introducción La realización de operaciones aritméticas y lógicas
INDICE Capítulo 1. Introducción Capítulo 2. Circuitos lógicos básicos Capítulo 3. Sistemas numéricos Capítulo 4. Codificación
INDICE Capítulo 1. Introducción 1.1. Cantidades analógicas y digitales 1.2. Sistemas electrónico digitales 16 1.3. Circuitos integrados 17 1.4. Disipación de potencia y velocidad de operación 1.5. Aplicación
Introducción Flip-Flops Ejercicios Resumen. Lógica Digital. Circuitos Secuenciales - Parte I. Francisco García Eijó
Lógica Digital Circuitos Secuenciales - Parte I Francisco García Eijó Organización del Computador I Departamento de Computación - FCEyN UBA 7 de Septiembre del 2010 Agenda 1 Repaso 2 Multimedia Logic 3
