Circuitos Combinatorios
|
|
|
- Marta Ríos Figueroa
- hace 7 años
- Vistas:
Transcripción
1 Circuitos Combinatorios Primer Cuatrimestre de 2010 Departamento de Computación, FCEyN,Universidad de Buenos Aires. 7 de abril de 2010
2 Objetivos de la clase de hoy Repasar los operadores y propiedades del algebra de boole vistas en la teórica (hace un ratito nomás) y utilizarlas para implementar circuitos combinatorios simples.
3 Propiedades Suma de productos Producto de sumas Compuertas lógicas Repasemos... Operadores booleanos: Pueden ser completamente descriptos usando su tabla de verdad. AND, OR, NOT Operadores básicos NAND, NOR Operadores universales Funciones booleanas: Combinación de operadores lógicos y variables booleanas. Ej. F (X, Y, Z) = X + Y Z. Orden de precedencia en la evaluación NOT > AND > OR. Dos funciones son iguales sii tienen la misma tabla de verdad. Identidades booleanas: Reducciones utilizando propiedades o leyes. X YZ + X Y Z + XZ == X Y + XZ
4 Propiedades Suma de productos Producto de sumas Compuertas lógicas Propiedades Identidad 1.A = A 0 + A = A Nulo 0.A = A = 1 Idempotencia A.A = A A + A = A Inverso A.A = 0 A + A = 1 Conmutatividad A.B = B.A A + B = B + A Asociatividad (A.B).C = A.(B.C) (A + B) + C = A + (B + C) Distributividad A + B.C = (A + B).(A + C) A.(B + C) = A.B + A.C Absorción A.(A + B) = A A + A.B = A De Morgan (A.B) = A + B (A + B) = A.B No existe una forma mecánica y facil para reducir una función, hay que practicar. De esto se deduce que no hay una única forma de escribir una función lógica, surge la necesidad de las formas canónicas.
5 Propiedades Suma de productos Producto de sumas Compuertas lógicas Suma de productos Por cada valor de la función que sea 1 escribimos un término utilizando todas las variables unidas por operadores AND, de forma tal que el término también valga 1. Luego combinamos todo con operadores OR. Probemos con un ejemplo: A B F(A,B) F (A, B) = AB + AB Es la función conocida como XOR.
6 Propiedades Suma de productos Producto de sumas Compuertas lógicas Producto de sumas Por cada valor de la función que sea 0 escribimos un término utilizando todas las variables unidas por operadores OR, de forma tal que el término también valga 0. Luego combinamos todo con operadores AND. Usando el ejemplo anterior: A B F(A,B) F (A, B) = (A + B)(A + B)
7 Propiedades Suma de productos Producto de sumas Compuertas lógicas Compuertas lógicas Una compuerta es un dispositivo electrónico que produce un resultado en base a un conjunto de valores de entrada. Se corresponden exactamente con las funciones que vimos antes.
8 Propiedades Suma de productos Producto de sumas Compuertas lógicas Compuerta NOT A NOT A
9 Propiedades Suma de productos Producto de sumas Compuertas lógicas Compuerta AND A B A AND B
10 Propiedades Suma de productos Producto de sumas Compuertas lógicas Compuerta OR A B A OR B
11 Propiedades Suma de productos Producto de sumas Compuertas lógicas Compuerta XOR A B A XOR B
12 Propiedades Suma de productos Producto de sumas Compuertas lógicas Compuerta NOR A B A NOR B
13 Propiedades Suma de productos Producto de sumas Compuertas lógicas Compuerta NAND A B A NAND B
14 Ejercicio 1 Demostrar si la siguiente igualdad entre funciones booleanas es verdadera o falsa: (X + Y ) = (X.Y ).Z + X.Z + (Y + Z) Solución: (X.Y ).Z + X.Z + (Y + Z) De Morgan (X.Y ).Z + X.Z + Y.Z Distributiva (X.Y ).Z + (X + Y ).Z De Morgan (X + Y ).Z + (X + Y ).Z Distributiva (X + Y ).(Z + Z) Inverso (X + Y ).1 Identidad X + Y
15 Ejercicio 2 Simplificar la función: XY + X Z + YZ Solución: XY + X Z + YZ(1) Identidad XY + X Z + YZ(X + X ) Inverso XY + X Z + (YZ)X + (YZ)X Distributiva XY + X Z + X (YZ) + X (ZY ) Conmutativa (varias veces) XY + X Z + (XY )Z + (X Z)Y Asociativa XY + (XY )Z + (X Z) + (X Z)Y Conmutativa XY (1 + Z) + X Z(1 + Y ) Distributiva XY (1) + X Z(1) Nulo XY + X Z Identidad
16 Ejercicio 3 Dada la siguiente tabla de verdad: A B C F Escribir la función booleana que representa. Implementar la función utilizando a lo sumo una compuerta binaria AND, una compuerta binaria OR y una compuerta NOT.
17 Expresamos la función como una suma de productos: (A.B.C) + (A.B.C) + (A.B.C) Ahora nos restringen las compuertas, tenemos que simplificar. (A.B.C) + (A.B.C) + (A.B.C) Distributiva ((A.B) + (A.B) + (A.B)).C Distributiva ((A.B) + (A + A).B).C Inverso ((A.B) + 1.B).C Identidad ((A.B) + B).C Distributiva ((A + B).(B + B)).C Inverso ((A + B),1).C Identidad (A + B).C Bingo! Ahora a implementarlo
18 La implementación es la siguiente:
19 Ejercicio 4 Armar un inversor de 3 bits. Este circuito invierte o no las tres entradas de acuerdo al valor de una de ellas que actúa como control. En otras palabras, un inversor de k-bits es un circuito de k entradas (e k,..., e 0 ) y k 1 salidas (s k 1,..., s 0 ) que funciona del siguiente modo: Si e k = 1, entonces s i = not(e i ) para todo i < k Si e k = 0, entonces s i = e i para todo i < k Ejemplo: inversor(1,011)=100 inversor(0,011)=011 inversor(1,100)=011 inversor(1,101)=010
20 Solución: Podriamos hacer la tabla de verdad, pero seria mucho lio, mejor pensemos =). Primero miremos como invertir un solo bit. ei ek si De donde nos suena esta tabla?... Sep, es un XOR ( ) P Q = (P.Q) + (P.Q) Ahora que ya lo tenemos cocinado para un valor, pensemos que pasa cuando tenemos más de uno.
21 Implementado con XOR:
22 Ejercicio 5 Armar un sumador simple (de un bit). Solución:
23 Ejercicio 6 Teniendo dos sumadores simples y solo una compuerta a elección, arme un sumador completo. Solución:
24 Ejercicio 7 Usando sumadores armar un circuito que convierta un entero en su inverso aditivo (el inverso aditivo de un número n es el número x tal que x + n = 0). Los enteros se representan con notación complemento a 2 de 4 bits. En esta reprepresentación el -8 no tiene inverso aditivo, no hace falta contemplar el caso aparte. (HINT: Pensar en propiedades del inverso aditivo vistas en la práctica 1) Solución:
25 Ejercicio 8 Dibujar el diagrama lógico de un demultiplexor de 2 ĺıneas de control, 1 ĺınea de entrada y 4 ĺıneas de salida. Este circuito dirige la única ĺınea de entrada a una de cuatro ĺıneas de salida, dependiendo del estado de las dos ĺıneas de control. c 1 c 0 s i 0 0 s 0 = e 0, s i = 0 si i s 1 = e 0, s i = 0 si i s 2 = e 0, s i = 0 si i s 3 = e 0, s i = 0 si i 3
26 Solución: Nota: Se usaron compuertas de tres entradas por simplicidad, si en el parcial usan compuertas de más de dos entradas tienen que explicar como funcionan.
27 Cosas que tendríamos que haber entendido y tips Operadores y funciones booleanas, reducciones utilizando propiedades. Dada una tabla de verdad escribir la función booleana correspondiente. Implementar funciones utilizando compuertas lógicas. RECOMENDACIONES Sean cuidadosos cuando dibujan circuitos: Que quede claro cuando un cable esta conectado a otro y cuando lo saltea (pongan un circulito en la unión o una curva cuando no quieren que lo toque).
Lógica Digital - Circuitos Combinatorios
Lógica Digital - Circuitos Combinatorios Expositor: Esteban Pontnau Primer Cuatrimestre de 2012 Departamento de Computación, FCEyN,Universidad de Buenos Aires. 3 de abril de 2012 Objetivos de la clase
Circuitos Combinatorios
Circuitos Combinatorios Expositor: Esteban Pontnau Autor: Luis Agustín Nieto Primer Cuatrimestre de 2011 Departamento de Computación, FCEyN,Universidad de Buenos Aires. 5 de abril de 2011 Objetivos de
Práctica 3: Lógica Digital - Combinatorios 1/2
Práctica 3: Lógica Digital - Combinatorios 1/2 Matías López Organización del Computador I DC - UBA Verano 2010 Compuertas - NOT Propiedades A NOT A 0 1 1 0 Compuertas - AND Propiedades A B A AND B 0 0
Práctica 2: Lógica Digital - Combinatorios
Organización del Computador I DC - UBA Segundo Cuatrimestre de 2009 Álgebra booleana Propiedades Álgebra booleana Compuertas - NOT Propiedades A NOT A 0 1 1 0 Compuertas - AND Propiedades A B A AND B 0
Organización del Computador 1 Lógica Digital 1: álgebra de Boole y
Introducción Circuitos Bloques Organización del Computador 1 Lógica Digital 1: álgebra de Boole y compuertas Departamento de Computación Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires
Organización del Computador 1 Lógica Digital 1: álgebra de Boole y compuertas
Organización del Computador 1 Lógica Digital 1: álgebra de Boole y compuertas Dr. Marcelo Risk Departamento de Computación Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires 2017 Lógica
Organización del Computador 1 Lógica Digital 1: álgebra de Boole y
Introducción Circuitos Bloques Organización del Computador 1 Lógica Digital 1: álgebra de Boole y compuertas Departamento de Computación Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires
Organización n del Computador 1. Lógica Digital 1 Algebra de Boole y compuertas
Organización n del Computador 1 Lógica Digital 1 Algebra de Boole y compuertas Representación n de la Información La computadoras necesitan almacenar datos e instrucciones en memoria Sistema binario (solo
Tema 3.1 Introducción a los circuitos combinacionales. Algebra de Boole
Tema 3.1 Introducción a los circuitos combinacionales. Algebra de Boole Índice Algebra de Boole. Definición. Operaciones lógicas: OR, AND, XOR y NOT Puertas lógicas Algebra de Boole Postulados Teoremas
Compuertas Lógicas, Algebra Booleana
Compuertas Lógicas, Algebra Booleana Representación de números negativos Herramientas para conversión y operaciones aritméticas Evaluación BIN DEC DEC Revisión Evaluación Compuertas lógicas Algebra Booleana
1.1 Circuitos Digitales
TEMA III Circuitos Digitales Electrónica II 27. Circuitos Digitales Del mundo analógico al digital. Ventajas de la señal digital. Inconvenientes de la señal digital. Algebra de Boole. Puertas Lógicas.
Descripción en VHDL de arquitecturas para implementar el algoritmo CORDIC
Anexo B Funciones booleanas El álgebra de Boole provee las operaciones las reglas para trabajar con el conjunto {0, 1}. Los dispositivos electrónicos pueden estudiarse utilizando este conjunto las reglas
Álgebra Booleana. Álgebra Booleana. Definiciones. Definiciones. Definiciones. Definiciones. Sistemas Digitales Mario Medina 1
Álgebra Booleana Álgebra Booleana Mario Medina C. [email protected] Postulados y axiomas Lemas y teoremas Referencias a otras álgebras Álgebra de Boole: estructura algebraica definida sobre un conjunto
Álgebra de Boole. Adición booleana. Multiplicación booleana. Escuela Politécnica Superior
Álgebra de Boole El Álgebra de Boole es una forma muy adecuada para expresar y analizar las operaciones de los circuitos lógicos. Se puede considerar las matemáticas de los sistemas digitales. Operaciones
Arquitectura de Computadoras 2015 Práctico 03. Práctico 3. Álgebra de Boole. Método de Karnaugh. Circuitos lógicos combinatorios.
Práctico 3 Álgebra de Boole. Método de Karnaugh. Circuitos lógicos combinatorios. Objetivo Conocer y entrenarse en las técnicas para la construcción de circuitos combinatorios de mediano porte. Conocer
I UNIDAD ÁLGEBRA BOOLEANA Y COMPUERTAS LÓGICAS
I UNIDAD ÁLGEBRA BOOLEANA Y COMPUERTAS LÓGICAS 1.1 Electrónica Digital Obviamente es una ciencia que estudia las señales eléctricas, pero en este caso son señales discretas, es decir, están bien identificadas,
2-Funciones y representaciones booleanas
2-Funciones y representaciones booleanas 2.1 Lógica y álgebra de Boole 2.2 Funciones booleanas 2.3 Representaciones de funciones booleanas. 2.4 Funciones de varias variables. 2: Funciones booleanas 1 Lógica
George Boole. Álgebra Booleana. Álgebra de Conmutación. Circuitos Digitales EC1723
George oole Circuitos Digitales EC723 Matemático británico (85-864). utodidacta y sin título universitario, en 849 fue nombrado Profesor de Matemáticas en el Queen's College en Irlanda. En su libro Laws
03. Introducción a los circuitos lógicos
03. Introducción a los circuitos lógicos 1. LÓGICA DE PROPOSICIONES...2 PROPOSICIÓN...2 CONECTORES U OPERADORES LÓGICOS...2 Tablas de...2 Tautología...2 Contradicción...2 2. ÁLGEBRA DE BOOLE...3 AXIOMAS
ÁLGEBRAS DE BOOLE. En un álgebra de Boole (B, +,, ) se cumplen las siguientes propiedades, para todo x, y, z B: Doble Complemento
ÁLGEBRAS DE BOOLE CARACTERIZACIÓN DE UN ÁLGEBRA DE BOOLE Un álgebra de Boole (o álgebra booleana) consiste en un conjunto B = {0, 1}, operadores binarios + y en S y un operador unario en S. Estas operaciones
GUIA 4: ALGEBRA DE BOOLE
GUIA 4: ALGEBRA DE BOOLE En 1854 George Boole introdujo una notación simbólica para el tratamiento de variables cuyo valor podría ser verdadero o falso (variables binarias) Así el álgebra de Boole nos
Fundamentos lógicos. Dpto. Ingeniería Eléctrica, Electrónica, Automática y Física Aplicada
Fundamentos lógicos Dpto. Ingeniería Eléctrica, Electrónica, Automática y Física Aplicada www.elai.upm.es Álgebra de Boole Buena parte de los automatismos responden a la lógica binaria Las variables binarias
NOT. Ejemplo: Circuito C1
Métodos de diseño de circuitos digitales Sistemas combinacionales En un circuito combinacional los valores de las salidas dependen únicamente de los valores que tienen las entradas en el presente. Se construen
Algebra de Boole. » a + a = 1» a a = 0
Algebra de Boole Dos elementos: 0 y 1 Tres operaciones básicas: producto ( ) suma ( + ) y negación ( ` ) Propiedades. Siendo a, b, c números booleanos, se cumple: Conmutativa de la suma: a + b = b + a
TEMA 3 ÁLGEBRA DE CONMUTACIÓN
TEMA 3 ÁLGEBRA DE CONMUTACIÓN TEMA 3: Álgebra de Boole ÍNDICE. POSTULADOS DEL ÁLGEBRA DE CONMUTACIÓN 2. ÁLGEBRA DE BOOLE BIVALENTE O ÁLGEBRA DE CONMUTACIÓN 2. Teoremas del álgebra de conmutación 3. VARIABLES
Universidad Nacional de Catamarca Facultad de Ciencias Exactas y Naturales
Universidad Nacional de Catamarca Facultad de Ciencias Exactas y Naturales CICLO PROFESORADO EN COMPUTACIÓN PRIMER AÑO ASIGNATURA ARTICULACIÓN CURRICULAR II http://www.actiweb.es/artcur2unca/ Ing. Georgina
Electrónica Digital: Sistemas Numéricos y Algebra de Boole
Electrónica Digital: Sistemas Numéricos y Algebra de Boole Profesor: Ing. Andrés Felipe Suárez Sánchez Grupo de Investigación en Percepción y Sistemas Inteligentes. Email: [email protected]
2. ÁLGEBRA DE BOOLE OPERACIONES BÁSICAS DEL ÁLGEBRA DE BOOLE. OPERACIONES LÓGICAS.
2. ÁLGEBRA DE BOOLE 2..- Definición. 2.2.- Operaciones básicas. 2.3.- Propiedades o teoremas del álgebra de Boole. 2.4.- Función Booleana / Lógica. 2.5.- Representación de función Booleana. 2.6.- Formas
Práctica 2 - Lógica Digital
Práctica 2 - Lógica Digital Organización del Computador 1 Primer Cuatrimestre 2017 Todas las compuertas mencionadas en esta práctica son de 1 ó 2 entradas, a menos que se indique lo contrario. Usaremos
Arquitectura de Computadoras Algebra de Boole Basadas en las Notas de Teórico Versión 1.0 del Dpto. de Arquitectura-InCo-FIng
Basadas en las Versión.0 del Dpto. de Arquitectura-InCo-FIng ALGEBRA DE BOOLE Introducción. El álgebra de Boole es una herramienta de fundamental importancia en el mundo de la computación. Las propiedades
Electrónica Digital. Ing. Javier Soto Vargas Ph.D. ECI TDDA(M) - Javier Soto 1
Electrónica Digital Ing. Javier Soto Vargas Ph.D. [email protected] ECI TDDA(M) - Javier Soto 1 Sistema Digital Manejo de elementos discretos de información. Elementos discretos: Señales eléctricas.
Organización de Computadoras
Organización de Computadoras SEMANA 1 UNIVERSIDAD NACIONAL DE QUILMES Qué vimos? Sistema Binario Interpretación Representación Aritmética Sistema Hexadecimal Hoy! Lógica proposicional Compuertas lógicas:
Álgebra Booleana. Suma Booleana. El término suma es 1 si al menos uno de sus literales son 1. El término suma es 0 solamente si cada literal es 0.
Álgebra Booleana El álgebra de Boole son las matemáticas de los sistemas digitales. En el nivel de lógica digital de una computadora, lo que comúnmente se llama hardware y que está formado por los componentes
LÓGICA DIGITAL ING. RAUL ROJAS REATEGUI
LÓGICA DIGITAL ING. RAUL ROJAS REATEGUI 1. DEFINICION La lógica es la aplicación metódica de principios, reglas y criterios de razonamiento para la demostración y derivación de proposiciones 2.- EVOLUCION
Figura 1. La puerta NAND
Otras Compuertas Lógicas Los más complejos sistemas digitales, como, por ejemplo, las grandes computadoras, se construyen con puertas lógicas básicas. Las puertas NOT, OR y AND son las fundamentales. Cuatro
3-Formas Canónicas. 3: Canónicas 1
3-Formas Canónicas 3.1 Expresiones canónicas: mintérminos y maxtérminos 3.2 Expansión a las formas canónicas 3.3 Síntesis de las formas canónicas 3.4 Diseño lógico y simplificación 3: Canónicas 1 Expresiones
ANALÓGICO vs. DIGITAL
ANALÓGICO vs. DIGITAL Una señal analógica se caracteriza por presentar un numero infinito de valores posibles. Continuo Posibles valores: 1.00, 1.01, 200003,, infinitas posibilidades Una señal digital
Práctica 2 - Lógica Digital
Práctica 2 - Lógica Digital Organización del Computador 1 Primer cuatrimestre de 2012 Todas las compuertas mencionadas en esta práctica son de 1 ó 2 entradas, a menos que se indique lo contrario. Usaremos
UNIDAD 4. Álgebra Booleana
UNIDAD 4 Álgebra Booleana ÁLGEBRA BOOLEANA El Álgebra Booleana se define como una retícula: Complementada: existe un elemento mínimo 0 y un elemento máximo I de tal forma que si a esta en la retícula,
Circuitos lógicos combinacionales. Tema 6
Circuitos lógicos combinacionales Tema 6 Qué sabrás al final del capítulo? Implementar funciones con dos niveles de puertas lógicas AND/OR OR/AND NAND NOR Analizar sistemas combinacionales, obteniendo
GUIA DE CIRCUITOS LOGICOS COMBINATORIOS
GUIA DE CIRCUITOS LOGICOS COMBINATORIOS 1. Defina Sistema Numérico. 2. Escriba la Ecuación General de un Sistema Numérico. 3. Explique Por qué se utilizan distintas numeraciones en la Electrónica Digital?
Titulación: Grado en Ingeniería Informática Asignatura: Fundamentos de Computadores
Titulación: Grado en Ingeniería Informática Asignatura: Fundamentos de Computadores Bloque : Sistemas combinacionales Tema 4: Algebra de Boole y funciones lógicas Pablo Huerta Pellitero ÍNDICE Bibliografía
Centro Asociado Palma de Mallorca. Tutor: Antonio Rivero Cuesta
Centro Asociado Palma de Mallorca Arquitectura de Ordenadores Tutor: Antonio Rivero Cuesta Unidad Didáctica 1 Representación de la Información y Funciones Lógicas Tema 3 Algebra Booleana y Puertas Lógicas
ALGEBRA BOOLEANA. CONMUTATIVO. Se dice que un operador binario º es conmutativo si A º B = B º A para todos los posibles valores de A y B.
ÁLGEBRA BOOLEANA UNEFA NUCLEO ZULIA El álgebra booleana es un sistema matemático deductivo centrado en los valores cero y uno (falso y verdadero). Un operador binario º definido en éste juego de valores
2. CONTROL DE CIRCUITOS ELECTRÓNICOS COLEGIO MALVAR DPTO. CCNN Y TECNOLOGÍA 3º ESO
2. CONTROL DE CIRCUITO ELECTRÓNICO COLEGIO MALVAR DPTO. CCNN Y TECNOLOGÍA 3º EO INTRODUCCIÓN Las agujas de un reloj, que giran representando el avance del tiempo, lo hacen en forma aná- loga (análogo =
Introducción a la Matemática Discreta
Introducción a la Matemática Discreta Lógica proposicional y Álgebras de Boole Luisa María Camacho Camacho Introd. a la Matemática Discreta 1 / 25 Introducción a la Matemática Discreta Temario Tema 1.
Conceptos previos. Revisión de Sistemas Lógicos Formatos Numéricos. Dpto. Ingeniería Electrónica y Comunicaciones
Conceptos previos Revisión de Sistemas Lógicos Formatos Numéricos Revisión de Sistemas Lógicos Álgebra de Boole Base matemática de la Electrónica Digital Consta de dos elementos: 0 lógico y 1 lógico Tecnología
Algebra de Boole: Teoremas
Teorema 1: A + A = A Teorema 2: A A = A Teorema 3: A + 0 = A Teorema 4: A 1 = A Teorema 5: A 0 = 0 Teorema 6: A + 1 = 1 Teorema 7: (A + B) = A B Teorema 8: (A B) = A + B Teorema 9: A + A B = A Teorema
Tema 1: Circuitos Combinacionales
Tema : Circuitos Combinacionales Contenidos. Introducción. Aritmética. Álgebra de Boole Señales Sistemas. Introducción Entrada Ecitación Sistema Salida Respuesta Un sistema es un conjunto de partes o elementos
Álgebra de Boole. Valparaíso, 1 er Semestre Prof. Rodrigo Araya E.
Prof. Rodrigo Araya E. [email protected] Universidad Técnica Federico Santa María Departamento de Informática Valparaíso, 1 er Semestre 2006 1 2 3 4 Contenido En 1815 George Boole propuso una herramienta
Álgebra de Boole. Tema 5
Álgebra de Boole Tema 5 Qué sabrás al final del capítulo? Leyes y propiedades del Álgebra de Boole Simplificar funciones utilizando el Álgebra de Boole Analizar circuitos mediante Álgebra de Boole y simplificarlos
Tema I EXIGENCIAS COMPUTACIONALES DEL PROCESAMIENTO DIGITAL DE LA INFORMACION
Tema I EXIGENCIAS COMPUTACIONALES DEL PROCESAMIENTO DIGITAL DE LA INFORMACION Tutor: Manuel Fernández Barcell Centro asociado de Cádiz http://prof.mfbarcell.es TEMA 1: EXIGENCIAS COMPUTACIONALES DEL PROCESAMIENTO
IMPLEMENTACIÓN DE CIRCUITOS COMBINACIONALES
IMPLEMENTACIÓN DE CIRCUITOS COMBINACIONALES SIMPLIFICACIÓN DE FUNCIONES LÓGICAS Para implementar mediante un circuito digital formado por puertas lógicas una función lógica el primer paso consiste en realizar
Circuitos combinacionales. Tema 6
Circuitos combinacionales Tema 6 Qué sabrás al final del tema? Conocer las formas canónicas de una función Implementar funciones con dos niveles de puertas lógicas AND / OR OR / AND Implementación con
Clase Nº 2. Ing. Manuel Rivas DEPARTAMENTO DE ELECTRÓNICA. Trimestre Enero - Marzo 2006
EC2175 Ingeniería Electrónica 2 Clase Nº 2 Ing. Manuel Rivas DEPARTAMENTO DE ELECTRÓNICA Trimestre Enero - Marzo 2006 Objetivos de aprendizaje Conocer las operaciones lógicas básicas: AND, OR y NOT Estudiar
1ª evaluación: 1: INTRODUCCIÓN A LOS SISTEMAS DIGITALES SISTEMAS DE NUMERACIÓN BINARIO OCTAL Y HEXADECIMAL CAMBIOS DE BASE
Electrónica digital Página 1 1ª evaluación: 1: 2: 3: 4: INTRODUCCIÓN A LOS SISTEMAS DIGITALES SISTEMAS DE NUMERACIÓN BINARIO OCTAL Y HEXADECIMAL CAMBIOS DE BASE ALGEBRA DE BOOLE POSTULADOS Y TEOREMAS PUERTAS
Fundamentos de Computadores. Álgebra de Conmutación
Fundamentos de Computadores Álgebra de Conmutación Objetivos Conceptuales: Conocer el Álgebra de Boole y el Álgebra de Conmutación como caso especial de aquella Propiedades del Álgebra de Boole Representación
Existen diferentes compuertas lógicas y aquí mencionaremos las básicas pero a la vez quizá las más usadas:
Compuertas lógicas Las compuertas lógicas son dispositivos electrónicos utilizados para realizar lógica de conmutación. Son el equivalente a interruptores eléctricos o electromagnéticos. para utilizar
ÁLGEBRA BOOLEANA El álgebra booleana es un sistema matemático deductivo centrado en los valores cero y uno (falso y verdadero). Un operador binario "
ÁLGEBRA BOOLEANA El álgebra booleana es un sistema matemático deductivo centrado en los valores cero y uno (falso y verdadero). Un operador binario " " definido en éste juego de valores acepta un par de
Puertas lógicas. Técnicas de diseño y simplificación de funciones lógicas.
Puertas lógicas. Técnicas de diseño y simplificación de funciones lógicas. Introducción La electrónica digital está basada en una teoría binaria cuya estructura matemática fue desarrollada por George Boole
Algebra Booleana Transversal de Programación Básica Proyecto Curricular de Ingeniería de Sistemas
1 Algebra Booleana 2013 Transversal de Programación Básica Proyecto Curricular de Ingeniería de Sistemas 2 Introducción La herramienta fundamental para el análisis y diseño de circuitos digitales es el
Tabla 5.2 Compuertas básicas A B A B A B
Compuertas lógicas Un bloque lógico es una representación simbólica gráfica de una o más variables de entrada a un operador lógico, para obtener una señal determinada o resultado. Los símbolos varían de
Álgebra Booleana y Simplificación Lógica
Álgebra Booleana y Simplificación Lógica M. en C. Erika Vilches Parte 2 Simplificación utilizando Álgebra Booleana Simplificar la expresión AB + A(B + C) + B(B + C) 1. Aplicar la ley distributiva al segundo
k k N b Sistemas Númericos Sistemas con Notación Posicional (1) Sistemas con Notación Posicional (2) Sistemas Decimal
Sistemas con Notación Posicional (1) Sistemas Númericos N b = a n-1 *b n-1 + a n-2 *b n-2 +... + a 0 *b 0 +a -1 *b - 1 + a -2 *b -2 +... + a -m *b -m Sistemas con Notación Posicional (2) N b : Número en
TEMA 1. Sistemas Combinacionales.
TEMA. Sistemas Combinacionales.. Introducción a los sistemas digitales. Familias lógicas (2-20) 2. Definición de circuito combinacional (2-25) 3. Funciones combinacionales. Simplificación e implementación
Compuertas Lógicas. Sergio Stive Solano Sabié. Agosto de 2012 MATEMÁTICA. Sergio Solano. Compuertas lógicas NAND, NOR, XOR y XNOR
XOR y Lógicas Sergio Stive Solano Agosto de 2012 XOR y Lógicas Sergio Stive Solano Agosto de 2012 XOR y XOR y Con las puertas básicas podemos implementar cualquier función booleana. Sin embargo existen
Tema 2. Funciones Lógicas. Algebra de Conmutación. Minimización de funciones Lógicas. Introducción al VHDL.
Tema 2. Funciones Lógicas Algebra de Conmutación. Minimización de funciones Lógicas. Introducción al VHDL. Álgebra de conmutación Algebra de Conmutación: Postulados y Teoremas. Representación de problemas
Álgebra Booleana circuitos lógicos
Álgebra Booleana y circuitos lógicos OBJETIVO GENERAL Teniendo en cuenta que los circuitos digitales o lógicos operan de forma binaria, emplear el álgebra booleana como fundamento teórico para el análisis,
Conceptos fundamentales de Algebra
CAPÍTULO Conceptos fundamentales de Algebra.. Conjuntos. Notaciones Se supone que el lector tiene conocimientos básicos de la Teoría de conjuntos. La notación que se usará será la usual, así, por ejemplo,
El número decimal 57, en formato binario es igual a:
CURSO: ELECTRÓNICA DIGITAL UNIDAD 1: COMPUERTAS LÓGICAS - TEORÍA PROFESOR: JORGE ANTONIO POLANÍA 1. NÚMEROS BINARIOS EJEMPLO En el cuadro anterior, está la representación de los números binarios en formato
Axiomas Básicos. ...Axiomas Básicos. Arquitecturas de Computadores Prof. MAURICIO SOLAR 3 Algebra de Boole. Temario.
27-4-2 Temario Arquitecturas de Computadores Prof. MAURICIO SOLAR 3 Algebra de Boole Introducción 2 Axiomas Básicos 3 Definiciones 4 Teoremas 5 Funciones 6 Compuertas Lógicas 7 Minimización de Funciones
Álgebra de Boole. Tema 5
Álgebra de Boole Tema 5 Qué sabrás al final del capítulo? Leyes y propiedades del Algebra de Boole Simplificar funciones utilizando el Algebra de Boole Analizar circuitos mediante Algebra de Boole y simplificarlos
QUÉ ES LA ELECTRÓNICA DIGITAL?... 2 ÁLGEBRA DE BOOLE... 2 PUERTAS LÓGICAS...
UNIDAD DIDÁCTICA ELECTRÓNICA DIGITAL NIVEL: 4ºESO 1 QUÉ ES LA ELECTRÓNICA DIGITAL?... 2 2 ÁLGEBRA DE BOOLE... 2 3 PUERTAS LÓGICAS... 3 3.1 TIPOS DE PUERTAS LÓGICAS... 3 4 INTERPRETACIÓN Y SIMPLIFICACIÓN
Sistemas informáticos industriales. Algebra de Boole
Sistemas informáticos industriales 2016 lgebra de oole lgebra oole Se denomina así en honor a George oole (1815-1864). El algebra de oole se emplea en sistema de control digitales, desde los sistemas de
Estructuras Discretas. Conjuntos. Conjuntos & Funciones. Especificación de Conjuntos.
Estructuras Discretas Conjuntos Conjuntos & Funciones Claudio Lobos [email protected] niversidad Técnica Federico Santa María Estructuras Discretas INF 152 Definición: conjunto n conjunto es una colección
TRABAJO PRÁCTICO Nº 3. Expresiones booleanas, tablas de verdad y compuertas lógicas
Sistemas Digitales TRABAJO PRÁCTICO Nº 3 Expresiones booleanas, tablas de verdad y compuertas lógicas Ejercicio Nº 1: Dadas las siguientes funciones: F ( A, B, C, D) = C.( D + A) + A. C.( B + D 1 ) F 2
Sistemas Digitales I
UNIVERSIDAD INDUSTRIAL DE SANTANDER Sistemas Digitales I Taller No1 Profesor: Carlos A. Fajardo Mayo de 2015 Temas: Representación digital de los Datos, Algebra de Boole, Funciones Lógicas, Introducción
SISTEMAS LÓGICOS. UNIDAD 2: Álgebra De Boole
Definición SISTEMAS LÓGICOS UNIDAD 2: Álgebra De Boole Comenzaremos definiendo el Álgebra de Boole como el conjunto de elementos B que puede asumir dos valores posibles (0 y 1) y que están relacionados
Suma de productos Producto de sumas. Fundamentos de los Computadores Grado en Ingeniería Informática
2. Simplificación de funciones booleanas: as Método de Karnaugh aug Suma de productos Producto de sumas Fundamentos de los Computadores Grado en Ingeniería Informática Introducción Los circuitos digitales
TEMA PUERTAS LÓGICAS. TÉCNICAS DE DISEÑO Y SIMPLIFICACIÓN DE FUNCIONES LÓGICAS.
PUERTAS LÓGICAS. TÉCNICAS DE DISEÑO Y SIMPLIFICACIÓN DE FUNCIONES LÓGICAS. ÍNDICE.- INTRODUCCIÓN... 2.- ELECTRÓNICA DIGITAL... 3.. SISTEMAS DE NUMERACIÓN... 3.2. SEÑAL DIGITAL BINARIA... 3.3. SISTEMAS
Problema Nº 1.a2.- Obtenga las siguientes conversiones numéricas. Problema Nº 1.a3.- Obtenga las siguientes conversiones numéricas. 9E36.
Universidad Simón Bolivar EC173 Circuitos Digitales Trimestre: Septiembre_DIC_ 5 PROBLEMARIO Nº 1.- 1.a.- Problemas sistemas númericos Problema Nº 1.a1.- 0. =?. =? ( c) 67.4 =? d 15 C.3 =? Problema Nº
CIRCUITOS LOGICOS. Que es una Proposición? Es una expresión verbal de un juicio acerca de algo.
GUIA : III CIRCUITOS LOGICOS OBJETIVOS Realizar la tabla de verdad para las compuertas lógicas básicas. AND,OR, NOT, NAND, OR-EX Representar simbólicamente una función booleana usando las compuertas básicas.
ALGEBRA DE BOOLE George Boole C. E. Shannon E. V. Hungtington [6]
ALGEBRA DE BOOLE El álgebra booleana, como cualquier otro sistema matemático deductivo, puede definirse con un conjunto de elementos, un conjunto de operadores y un número de axiomas no probados o postulados.
Codificación de la información y álgebra de conmutación EDIG
Codificación de la información y álgebra de conmutación Analógico vs. digital Analógico: Las señales varían de forma continua en un rango dado de tensiones, corrientes, etc. Digital: Las señales varían
UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA. CLAVE M sB
UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE-960-4-M-1-00-2017sB CURSO: SEMESTRE: Primer CÓDIGO DEL CURSO: 960 TIPO DE EXAMEN: Final FECHA DE EXAMEN: Mayo
