Ensamblador x86. Ing. Jorge Castro-Godínez

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Ensamblador x86. Ing. Jorge Castro-Godínez"

Transcripción

1 Ensamblador x86 Lección 4 Ing. Jorge Castro-Godínez MT7003 Microprocesadores y Microcontroladores Área de Ingeniería Mecatrónica Instituto Tecnológico de Costa Rica I Semestre 2014 Jorge Castro-Godínez Ensamblador x86 1 / 45

2 Contenido Instrucción mov 1 Instrucción mov 2 3 Jorge Castro-Godínez Ensamblador x86 2 / 45

3 3 tipos de instrucciones Transferencia de datos entre memoria y registros Carga o load: de memoria a registros %reg = Mem[address] Almacenamiento o store: de registro a memoria. Mem[address] = %reg Recordar que la memoria es como un arreglo indexado Funciones aritméticas con datos en registros o en memoria. Transferencia de control Saltos incondicionales desde o hacia procedimientos. Saltos condicionales. Jorge Castro-Godínez Ensamblador x86 3 / 45

4 Moviendo datos: IA32 (1) movx source,destination x puede ser b, w, l movl src,dest: mueve 4 bytes, long word movw src,dest: mueve 2 bytes, word movb src,dest: mueve 1 bytes, byte Estas instrucciones son muy comunes en un código típico. %eax %ecx %edx %ebx %esi %edi %esp %ebp Jorge Castro-Godínez Ensamblador x86 4 / 45

5 Moviendo datos: IA32 (2) Tipos de operandos Inmediatos: dato constante entero. $0x400, $-533 Parecido a C, pero con $ como prefijo. Registro: uno de ocho registros. %eax, %edx Recordar que %esp, %ebp están reservados para propósitos específicos. Para algunas instrucciones en particular, los otros registros tienen una funcionalidad especial, e.g., multiplicaciones y divisiones. Memoria: x cantidad de bytes de la memoria direccionados por el valor de un registro. El ejemplo más simple ( %eax) Existen varios modos de direccionamiento. Jorge Castro-Godínez Ensamblador x86 5 / 45

6 Combinaciones de movl Source Dest Src,Dest C Analog Imm Reg Mem movl $0x4,%eax movl $-147,(%eax) var_a = 0x4; *p_a = -147; movl Reg Reg Mem movl %eax,%edx movl %eax,(%edx) var_d = var_a; *p_d = var_a; Mem Reg movl (%eax),%edx var_d = *p_a; No se pueden realizar transferencias entre direcciones de memoria en una sola instrucción! Jorge Castro-Godínez Ensamblador x86 6 / 45

7 Modos básicos de direccionamiento Indirecto (R) Mem[Reg[R]] Registro R especifica la dirección de memoria. movl ( %ecx), %eax Desplazamiento D(R) Mem[Reg[R]+D] Registro R especifica la dirección de memoria, e.g., el inicio de alguna región de memoria. D especifica un desplasamiento de la dirección dada por R (es un offset). movl 8( %ebp), %edx Jorge Castro-Godínez Ensamblador x86 7 / 45

8 Swap (1) void swap(int *xp, int *yp) { int t0 = *xp; int t1 = *yp; *xp = t1; *yp = t0; } swap: pushl %ebp movl %esp,%ebp pushl %ebx movl 12(%ebp),%ecx movl 8(%ebp),%edx movl (%ecx),%eax movl (%edx),%ebx movl %eax,(%edx) movl %ebx,(%ecx) Set Up Body movl -4(%ebp),%ebx movl %ebp,%esp popl %ebp ret Finish Jorge Castro-Godínez Ensamblador x86 8 / 45

9 Swap (2) void swap(int *xp, int *yp) { int t0 = *xp; int t1 = *yp; *xp = t1; *yp = t0; } Register %ecx %edx %eax %ebx Value yp xp t1 t0 Offset yp xp Rtn adr Old %ebp Stack (in memory) %ebp movl 12(%ebp),%ecx # ecx = yp movl 8(%ebp),%edx # edx = xp movl (%ecx),%eax # eax = *yp (t1) movl (%edx),%ebx # ebx = *xp (t0) movl %eax,(%edx) # *xp = eax movl %ebx,(%ecx) # *yp = ebx Old %ebx Jorge Castro-Godínez Ensamblador x86 9 / 45

10 Swap (3) %eax %edx %ecx %ebx %esi %edi %esp %ebp 0x104 yp xp movl 12(%ebp),%ecx movl 8(%ebp),%edx movl (%ecx),%eax movl (%edx),%ebx movl %eax,(%edx) movl %ebx,(%ecx) Offset %ebp x120 0x124 Rtn adr Address 0x124 0x120 0x11c 0x118 0x114 0x110 0x10c 0x108 0x104 0x100 # ecx = yp # edx = xp # eax = *yp (t1) # ebx = *xp (t0) # *xp = eax # *yp = ebx Jorge Castro-Godínez Ensamblador x86 10 / 45

11 Swap (4) %eax %edx %ecx %ebx %esi %edi %esp %ebp 0x124 0x120 0x104 yp xp movl 12(%ebp),%ecx movl 8(%ebp),%edx movl (%ecx),%eax movl (%edx),%ebx movl %eax,(%edx) movl %ebx,(%ecx) Offset %ebp x120 0x124 Rtn adr Address 0x124 0x120 0x11c 0x118 0x114 0x110 0x10c 0x108 0x104 0x100 # ecx = yp # edx = xp # eax = *yp (t1) # ebx = *xp (t0) # *xp = eax # *yp = ebx Jorge Castro-Godínez Ensamblador x86 11 / 45

12 Swap (5) %eax %edx %ecx %ebx %esi %edi %esp %ebp 456 0x124 0x120 0x104 yp xp movl 12(%ebp),%ecx movl 8(%ebp),%edx movl (%ecx),%eax movl (%edx),%ebx movl %eax,(%edx) movl %ebx,(%ecx) Offset %ebp x120 0x124 Rtn adr Address 0x124 0x120 0x11c 0x118 0x114 0x110 0x10c 0x108 0x104 0x100 # ecx = yp # edx = xp # eax = *yp (t1) # ebx = *xp (t0) # *xp = eax # *yp = ebx Jorge Castro-Godínez Ensamblador x86 12 / 45

13 Swap (6) %eax %edx %ecx %ebx %esi %edi %esp %ebp 456 0x124 0x x104 yp xp movl 12(%ebp),%ecx movl 8(%ebp),%edx movl (%ecx),%eax movl (%edx),%ebx movl %eax,(%edx) movl %ebx,(%ecx) Offset %ebp x120 0x124 Rtn adr Address 0x124 0x120 0x11c 0x118 0x114 0x110 0x10c 0x108 0x104 0x100 # ecx = yp # edx = xp # eax = *yp (t1) # ebx = *xp (t0) # *xp = eax # *yp = ebx Jorge Castro-Godínez Ensamblador x86 13 / 45

14 Swap (7) %eax %edx %ecx %ebx %esi %edi %esp %ebp x124 0x x104 yp xp movl 12(%ebp),%ecx movl 8(%ebp),%edx movl (%ecx),%eax movl (%edx),%ebx movl %eax,(%edx) movl %ebx,(%ecx) Offset %ebp x120 0x124 Rtn adr Address 0x124 0x120 0x11c 0x118 0x114 0x110 0x10c 0x108 0x104 0x100 # ecx = yp # edx = xp # eax = *yp (t1) # ebx = *xp (t0) # *xp = eax # *yp = ebx Jorge Castro-Godínez Ensamblador x86 14 / 45

15 Swap (8) %eax %edx %ecx %ebx %esi %edi %esp %ebp 456 0x124 0x x104 yp xp movl 12(%ebp),%ecx movl 8(%ebp),%edx movl (%ecx),%eax movl (%edx),%ebx movl %eax,(%edx) movl %ebx,(%ecx) Offset %ebp x120 0x124 Rtn adr Address 0x124 0x120 0x11c 0x118 0x114 0x110 0x10c 0x108 0x104 0x100 # ecx = yp # edx = xp # eax = *yp (t1) # ebx = *xp (t0) # *xp = eax # *yp = ebx Jorge Castro-Godínez Ensamblador x86 15 / 45

16 Modos de Direccionamiento (1) Las direcciones usadas para accesar memoria en mov y otras instrucciones, pueden ser calculadas de diferentes maneras. Forma general: D(Rb,Ri,S) Mem[Reg[Rb] + S*Reg[Ri] + D] D: Desplazamiento constante en 1, 2 o 4 bytes. Rb: Registro base: cualquiera de los 8 registros Ri: Registro índice: cualquiera de los registros, excepto %esp. S: Escala; 1, 2, 4 o 8 Jorge Castro-Godínez Ensamblador x86 16 / 45

17 Modos de Direccionamiento (2) Casos especiales: puede ser cualquer combinación de D, Rb, Ri y S. (Rb,Ri) Mem[Reg[Rb] + Reg[Ri]] D(Rb,Ri) Mem[Reg[Rb] + Reg[Ri] + D] (Rb,Ri,S) Mem[Reg[Rb] + S*Reg[Ri]] Jorge Castro-Godínez Ensamblador x86 17 / 45

18 Ejemplos Instrucción mov %edx %ecx 0xf000 0x100 (Rb,Ri) D(,Ri,S) (Rb,Ri,S) D(Rb) Mem[Reg[Rb]+Reg[Ri]] Mem[S*Reg[Ri]+D] Mem[Reg[Rb]+S*Reg[Ri]] Mem[Reg[Rb] +D] Expression Address Computation Address 0x8(%edx) 0xf x8 0xf008 (%edx,%ecx) 0xf x100 0xf100 (%edx,%ecx,4) 0xf *0x100 0xf400 0x80(,%edx,2) 2*0xf x80 0x1e080 Jorge Castro-Godínez Ensamblador x86 18 / 45

19 Cálculo de una dirección leal src,dest src es la expresión del modo de direccionamiento. dest tendrá la dirección calculada por la expresión lea: load effective address Ejemplo: leal ( %edx, %ecx,4), %eax Esta instrucción puede ser usada para realizar operaciones de la forma: x + k*i Jorge Castro-Godínez Ensamblador x86 19 / 45

20 Operaciones aritméticas Format Computation addl Src,Dest Dest = Dest + Src subl Src,Dest Dest = Dest - Src imull Src,Dest Dest = Dest * Src sall Src,Dest Dest = Dest << Src Also called shll sarl Src,Dest Dest = Dest >> Src Arithmetic shrl Src,Dest Dest = Dest >> Src Logical xorl Src,Dest Dest = Dest ^ Src andl Src,Dest Dest = Dest & Src orl Src,Dest Dest = Dest Src Watch out for argument order! (especially subl) Jorge Castro-Godínez Ensamblador x86 20 / 45

21 Operaciones aritméticas incl Dest Dest = Dest + 1 decl Dest Dest = Dest - 1 negl Dest Dest = -Dest notl Dest Dest = ~Dest Jorge Castro-Godínez Ensamblador x86 21 / 45

22 leal en operaciones aritméticas (1) int arith (int x, int y, int z) { int t1 = x+y; int t2 = z+t1; int t3 = x+4; int t4 = y * 48; int t5 = t3 + t4; int rval = t2 * t5; return rval; } arith: pushl %ebp movl %esp,%ebp movl 8(%ebp),%eax movl 12(%ebp),%edx leal (%edx,%eax),%ecx leal (%edx,%edx,2),%edx sall $4,%edx addl 16(%ebp),%ecx leal 4(%edx,%eax),%eax imull %ecx,%eax movl %ebp,%esp popl %ebp ret Set Up Body Finish Jorge Castro-Godínez Ensamblador x86 22 / 45

23 leal en operaciones aritméticas (2) int arith (int x, int y, int z) { int t1 = x+y; int t2 = z+t1; int t3 = x+4; int t4 = y * 48; int t5 = t3 + t4; int rval = t2 * t5; return rval; } Offset movl 8(%ebp),%eax # eax = x movl 12(%ebp),%edx # edx = y leal (%edx,%eax),%ecx # ecx = x+y (t1) leal (%edx,%edx,2),%edx # edx = y + 2*y = 3*y sall $4,%edx # edx = 48*y (t4) addl 16(%ebp),%ecx # ecx = z+t1 (t2) leal 4(%edx,%eax),%eax # eax = 4+t4+x (t5) imull %ecx,%eax # eax = t5*t2 (rval) z y x Rtn adr Old %ebp Stack %ebp Jorge Castro-Godínez Ensamblador x86 23 / 45

24 leal en operaciones aritméticas (3) int arith (int x, int y, int z) { int t1 = x+y; int t2 = z+t1; int t3 = x+4; int t4 = y * 48; int t5 = t3 + t4; int rval = t2 * t5; return rval; } Offset movl 8(%ebp),%eax # eax = x movl 12(%ebp),%edx # edx = y leal (%edx,%eax),%ecx # ecx = x+y (t1) leal (%edx,%edx,2),%edx # edx = y + 2*y = 3*y sall $4,%edx # edx = 48*y (t4) addl 16(%ebp),%ecx # ecx = z+t1 (t2) leal 4(%edx,%eax),%eax # eax = 4+t4+x (t5) imull %ecx,%eax # eax = t5*t2 (rval) z y x Rtn adr Old %ebp Stack %ebp Jorge Castro-Godínez Ensamblador x86 24 / 45

25 leal en operaciones aritméticas (4) int arith (int x, int y, int z) { int t1 = x+y; int t2 = z+t1; int t3 = x+4; int t4 = y * 48; int t5 = t3 + t4; int rval = t2 * t5; return rval; } Offset movl 8(%ebp),%eax # eax = x movl 12(%ebp),%edx # edx = y leal (%edx,%eax),%ecx # ecx = x+y (t1) leal (%edx,%edx,2),%edx # edx = y + 2*y = 3*y sall $4,%edx # edx = 48*y (t4) addl 16(%ebp),%ecx # ecx = z+t1 (t2) leal 4(%edx,%eax),%eax # eax = 4+t4+x (t5) imull %ecx,%eax # eax = t5*t2 (rval) z y x Rtn adr Old %ebp Stack %ebp Jorge Castro-Godínez Ensamblador x86 25 / 45

26 leal en operaciones aritméticas (5) int arith (int x, int y, int z) { int t1 = x+y; int t2 = z+t1; int t3 = x+4; int t4 = y * 48; int t5 = t3 + t4; int rval = t2 * t5; return rval; } Offset movl 8(%ebp),%eax # eax = x movl 12(%ebp),%edx # edx = y leal (%edx,%eax),%ecx # ecx = x+y (t1) leal (%edx,%edx,2),%edx # edx = y + 2*y = 3*y sall $4,%edx # edx = 48*y (t4) addl 16(%ebp),%ecx # ecx = z+t1 (t2) leal 4(%edx,%eax),%eax # eax = 4+t4+x (t5) imull %ecx,%eax # eax = t5*t2 (rval) z y x Rtn adr Old %ebp Stack %ebp Jorge Castro-Godínez Ensamblador x86 26 / 45

27 leal en operaciones aritméticas (6) arith int arith (int x, int y, int z) { int t1 = x+y; int t2 = z+t1; int t3 = x+4; int t4 = y * 48; int t5 = t3 + t4; int rval = t2 * t5; return rval; } Instructions in different order from C code Some expressions require multiple instructions Some instructions cover multiple expressions Get exact same code when compile: (x+y+z)*(x+4+48*y) movl 8(%ebp),%eax # eax = x movl 12(%ebp),%edx # edx = y leal (%edx,%eax),%ecx # ecx = x+y (t1) leal (%edx,%edx,2),%edx # edx = y + 2*y = 3*y sall $4,%edx # edx = 48*y (t4) addl 16(%ebp),%ecx # ecx = z+t1 (t2) leal 4(%edx,%eax),%eax # eax = 4+t4+x (t5) imull %ecx,%eax # eax = t5*t2 (rval) Jorge Castro-Godínez Ensamblador x86 27 / 45

28 Otro ejemplo (1) int logical(int x, int y) { int t1 = x^y; int t2 = t1 >> 17; int mask = (1<<13) - 7; int rval = t2 & mask; return rval; } logical: pushl %ebp movl %esp,%ebp movl 8(%ebp),%eax xorl 12(%ebp),%eax sarl $17,%eax andl $8185,%eax movl %ebp,%esp popl %ebp ret Set Up Body Finish movl 8(%ebp),%eax # eax = x xorl 12(%ebp),%eax # eax = x^y sarl $17,%eax # eax = t1>>17 andl $8185,%eax # eax = t2 & 8185 Offset 12 8 y x Stack 4 Rtn adr 0 Old %ebp %ebp Jorge Castro-Godínez Ensamblador x86 28 / 45

29 Otro ejemplo (2) int logical(int x, int y) { int t1 = x^y; int t2 = t1 >> 17; int mask = (1<<13) - 7; int rval = t2 & mask; return rval; } logical: pushl %ebp movl %esp,%ebp movl 8(%ebp),%eax xorl 12(%ebp),%eax sarl $17,%eax andl $8185,%eax movl %ebp,%esp popl %ebp ret Set Up Body Finish movl 8(%ebp),%eax eax = x xorl 12(%ebp),%eax eax = x^y (t1) sarl $17,%eax eax = t1>>17 (t2) andl $8185,%eax eax = t2 & 8185 Jorge Castro-Godínez Ensamblador x86 29 / 45

30 Otro ejemplo (3) int logical(int x, int y) { int t1 = x^y; int t2 = t1 >> 17; int mask = (1<<13) - 7; int rval = t2 & mask; return rval; } logical: pushl %ebp movl %esp,%ebp movl 8(%ebp),%eax xorl 12(%ebp),%eax sarl $17,%eax andl $8185,%eax movl %ebp,%esp popl %ebp ret Set Up Body Finish movl 8(%ebp),%eax eax = x xorl 12(%ebp),%eax eax = x^y (t1) sarl $17,%eax eax = t1>>17 (t2) andl $8185,%eax eax = t2 & 8185 Jorge Castro-Godínez Ensamblador x86 30 / 45

31 Otro ejemplo (4) int logical(int x, int y) { int t1 = x^y; int t2 = t1 >> 17; int mask = (1<<13) - 7; int rval = t2 & mask; return rval; } 2 13 = 8192, = , logical: pushl %ebp movl %esp,%ebp movl 8(%ebp),%eax xorl 12(%ebp),%eax sarl $17,%eax andl $8185,%eax movl %ebp,%esp popl %ebp ret Set Up Body Finish movl 8(%ebp),%eax eax = x xorl 12(%ebp),%eax eax = x^y (t1) sarl $17,%eax eax = t1>>17 (t2) andl $8185,%eax eax = t2 & 8185 Jorge Castro-Godínez Ensamblador x86 31 / 45

32 Condicionales Un salto condicional es suficiente para implementar la mayoría de construcciones de control de flujo presentes en lenguajes de alto nivel. if (condicion) then {...} else {...} while (condicion) then {...} do {...} while (condicion) for (inicializacion;condicion;iterativo) {...} Saltos incondicionales también implementan estructuras relativas a control de flujo. Tanto saltos condicionales como incondicionales se referencian como saltos. Jorge Castro-Godínez Ensamblador x86 32 / 45

33 Saltos Instrucción mov Instrucciones jx: saltar a una parte diferente del código dependiendo de las condiciones. jx Condition Description jmp 1 Unconditional je ZF Equal / Zero jne ~ZF Not Equal / Not Zero js SF Negative jns ~SF Nonnegative jg ~(SF^OF)&~ZF Greater (Signed) jge ~(SF^OF) Greater or Equal (Signed) jl (SF^OF) Less (Signed) jle (SF^OF) ZF Less or Equal (Signed) ja ~CF&~ZF Above (unsigned) jb CF Below (unsigned) Jorge Castro-Godínez Ensamblador x86 33 / 45

34 Estado del procesador (parcialmente) Información acerca del estado actual de la ejecución de un programa. %eax %ecx %edx %ebx %esi %edi %esp %ebp %eip General purpose registers Current stack top Current stack frame Instruction pointer CF ZF SF OF Condition codes Jorge Castro-Godínez Ensamblador x86 34 / 45

35 Códigos Condicionales - establecidos impĺıcitamente Registros de un solo bit. CF: bandera de acarreo (carry) ZF: bandera de cero SF: bandera de signo (para datos con signo) OF: bandera de desbordamiento (overflow) Establecidos impĺıcitamente por operaciones aritméticas. E.g., addl src,dest t = a + b CF es uno si se da un acarreo proveniente de los bits más significativos (desbordamiento sin signo) ZF es uno si t == 0 SF es uno si t < 0 OF es uno si se da un desbordamiento con datos con signo La instrucción lea no afecta estas banderas. Jorge Castro-Godínez Ensamblador x86 35 / 45

36 Códigos Condicionales - establecidos expĺıcitamente Establecidos expĺıcitamente por la instrucción de comparación. E.g., cmpl src1,src2 cmpl b,a es como a-b sin tener ningún destino del resultado. CF es uno si se da un acarreo del bit más significativo (usado en comparaciones sin signo). ZF es uno si a == b SF es uno si (a-b) < 0 (con signo). OF es uno si se da un desbordamiento con datos con signo. Jorge Castro-Godínez Ensamblador x86 36 / 45

37 Códigos Condicionales - establecidos expĺıcitamente Establecidos expĺıcitamente por la instrucción de prueba (test). E.g., testl src1,src2 testl b,a es como a & b sin tener ningún destino del resultado. Establece los códigos de condición basado en los valores de scr1 y scr2. Útil para tener uno de los operandos como una máscara. ZF es uno si a && b == 0 SF es uno si a & b < 0 Jorge Castro-Godínez Ensamblador x86 37 / 45

38 Ejemplo de salto condicional (1) int absdiff(int x, int y) { int result; if (x > y) { result = x-y; } else { result = y-x; } return result; } absdiff: pushl %ebp movl %esp, %ebp movl 8(%ebp), %edx movl 12(%ebp), %eax cmpl %eax, %edx jle.l7 subl %eax, %edx movl %edx, %eax.l8: leave ret.l7: subl %edx, %eax jmp.l8 Setup Body1 Finish Body2 Jorge Castro-Godínez Ensamblador x86 38 / 45

39 Ejemplo de salto condicional (2) int absdiff(int x, int y) { int result; if (x > y) { result = x-y; } else { result = y-x; } return result; } int goto_ad(int x, int y) { int result; if (x <= y) goto Else; result = x-y; Exit: return result; Else: result = y-x; goto Exit; } Jorge Castro-Godínez Ensamblador x86 39 / 45

40 Ejemplo de salto condicional (3) int goto_ad(int x, int y) { int result; if (x <= y) goto Else; result = x-y; Exit: return result; Else: result = y-x; goto Exit; } int x int y %edx %eax absdiff: pushl %ebp movl %esp, %ebp movl 8(%ebp), %edx movl 12(%ebp), %eax cmpl %eax, %edx jle.l7 subl %eax, %edx movl %edx, %eax.l8: leave ret.l7: subl %edx, %eax jmp.l8 Jorge Castro-Godínez Ensamblador x86 40 / 45

41 Ejemplo de salto condicional (4) int goto_ad(int x, int y) { int result; if (x <= y) goto Else; result = x-y; Exit: return result; Else: result = y-x; goto Exit; } int x int y %edx %eax absdiff: pushl %ebp movl %esp, %ebp movl 8(%ebp), %edx movl 12(%ebp), %eax cmpl %eax, %edx jle.l7 subl %eax, %edx movl %edx, %eax.l8: leave ret.l7: subl %edx, %eax jmp.l8 Jorge Castro-Godínez Ensamblador x86 41 / 45

42 Ejemplo de salto condicional (5) int goto_ad(int x, int y) { int result; if (x <= y) goto Else; result = x-y; Exit: return result; Else: result = y-x; goto Exit; } int x int y %edx %eax absdiff: pushl %ebp movl %esp, %ebp movl 8(%ebp), %edx movl 12(%ebp), %eax cmpl %eax, %edx jle.l7 subl %eax, %edx movl %edx, %eax.l8: leave ret.l7: subl %edx, %eax jmp.l8 Jorge Castro-Godínez Ensamblador x86 42 / 45

43 Ejemplo de salto condicional (6) int goto_ad(int x, int y) { int result; if (x <= y) goto Else; result = x-y; Exit: return result; Else: result = y-x; goto Exit; } int x int y %edx %eax absdiff: pushl %ebp movl %esp, %ebp movl 8(%ebp), %edx movl 12(%ebp), %eax cmpl %eax, %edx jle.l7 subl %eax, %edx movl %edx, %eax.l8: leave ret.l7: subl %edx, %eax jmp.l8 Jorge Castro-Godínez Ensamblador x86 43 / 45

44 Ejemplo de salto condicional (7) int goto_ad(int x, int y) { int result; if (x <= y) goto Else; result = x-y; Exit: return result; Else: result = y-x; goto Exit; } int x int y %edx %eax absdiff: pushl %ebp movl %esp, %ebp movl 8(%ebp), %edx movl 12(%ebp), %eax cmpl %eax, %edx jle.l7 subl %eax, %edx movl %edx, %eax.l8: leave ret.l7: subl %edx, %eax jmp.l8 Jorge Castro-Godínez Ensamblador x86 44 / 45

45 Direccionamiento relativo al PC Saltos relativos al PC son reubicados Aquellos saltos con posiciones absolutas no pueden ser reubicados. 0x100 cmp r2, r3 0x1000 0x102 je 0x70 0x1002 0x104 0x1004 0x172 add r3, r4 0x1072 Jorge Castro-Godínez Ensamblador x86 45 / 45

Ensamblador x86: lazos y procedimientos

Ensamblador x86: lazos y procedimientos Ensamblador x86: lazos y procedimientos Lección 5 Ing. Jorge Castro-Godínez MT7003 Microprocesadores y Microcontroladores Área de Ingeniería Mecatrónica Instituto Tecnológico de Costa Rica I Semestre 2014

Más detalles

El Diseño de un Lenguaje Máquina

El Diseño de un Lenguaje Máquina Arquitectura de Ordenadores Juego de Instrucciones del Procesador Intel Pentium Abelardo Pardo abel@it.uc3m.es Universidad Carlos III de Madrid Departamento de Ingeniería Telemática El Diseño de un Lenguaje

Más detalles

Fundamentos de Arquitectura y Código Máquina

Fundamentos de Arquitectura y Código Máquina Fundamentos de Arquitectura y Código Máquina Lección 3 Ing. Jorge Castro-Godínez MT7003 Microprocesadores y Microcontroladores Área de Ingeniería Mecatrónica Instituto Tecnológico de Costa Rica I Semestre

Más detalles

Sesión 8- Práctica de Medida de Rendimiento

Sesión 8- Práctica de Medida de Rendimiento Sesión 8- Práctica de Medida de Rendimiento Arquitectura de Computadores I (IS19) Arquitectura de Computadores I (II19) Área de Arquitectura y Tecnología de Computadores Departamento de Ingeniería y Ciencia

Más detalles

El nivel ISA (II)! Conjunto de Instrucciones

El nivel ISA (II)! Conjunto de Instrucciones El nivel ISA (II) Conjunto de Instrucciones EC-2721 Arquitectura del Computador I Que es un Conjunto de Instrucciones? Colección completa de instrucciones comprendida por un procesador Lenguaje de máquina

Más detalles

2014 Mario Medina C. 1

2014 Mario Medina C. 1 Ensamblador y lenguaje C Ensamblador Intel x86 y lenguaje C Sistemas Computacionales Mario Medina C. mariomedina@udec.cl Lenguaje C: lenguaje de alto nivel Fácil de compilar a código de máquina Usado para

Más detalles

Práctica 1. Introducción a la programación en ensamblador

Práctica 1. Introducción a la programación en ensamblador Práctica 1 Introducción a la programación en ensamblador 1. Generalidades 2. Introducción 3. Cuestiones 1. Generalidades El desarrollo de las prácticas consistirá en una breve introducción del tema por

Más detalles

Intel 8086 modelo básico (primera parte) Registros:

Intel 8086 modelo básico (primera parte) Registros: Intel 8086 modelo básico (primera parte) Registros: Uso general: AX, BX, CX, DX, SI, DI, BP. Uso con direccionamento especial: SP, IP. Registros de segmento: CS, SS, DS, ES. Modelo de los registros: 20

Más detalles

Arquitectura del CPU. Organización del Computador 1 Verano 2016

Arquitectura del CPU. Organización del Computador 1 Verano 2016 Arquitectura del CPU Organización del Computador 1 Verano 2016 Agenda De dónde venimos? Introducción: esquema de una computadora Representación de la información Circuitos Combinatorios Circuitos Secuenciales

Más detalles

Arquitectura (Procesador familia 80 x 86 )

Arquitectura (Procesador familia 80 x 86 ) Arquitectura (Procesador familia 80 x 86 ) Diseño de operación Basada en la arquitectura Von Newman Memoria CPU asignadas direcciones I / O BUS: Es un canal de comunicaciones Bus de direcciones: Contiene

Más detalles

Aprendiendo Sistemas Operativos: Programación de Procesadores de Arquitectura IA-32

Aprendiendo Sistemas Operativos: Programación de Procesadores de Arquitectura IA-32 Aprendiendo Sistemas Operativos: Programación de Procesadores de Arquitectura IA-32 Este documento forma parte de la serie Aprendiendo Sistemas Operativos y sirve como una introducción a los aspectos básicos

Más detalles

Instrucción De Salto Incondicional

Instrucción De Salto Incondicional INSTRUCCIONES DE CONTROL DE FLUJO Los programas que se han desarrollado hasta ahora se ejecutan en forma secuencial, esto es, el programa inicia su ejecución con la primera instrucción y continúa de arriba

Más detalles

Objetivo. Introducción. Tema: GENERACION DE CODIGO. Compiladores, Guía 11 1

Objetivo. Introducción. Tema: GENERACION DE CODIGO. Compiladores, Guía 11 1 Compiladores, Guía 11 1 Tema: GENERACION DE CODIGO. Facultad : Ingeniería Escuela :Computación Asignatura:Compiladores Objetivo Reconocer las diferentes instrucciones para la generación de código.ensamblador

Más detalles

Comparaciones en lenguaje ensamblador

Comparaciones en lenguaje ensamblador Comparaciones en lenguaje ensamblador Objetivo: Entender cómo se realizan las comparaciones de datos en lenguaje ensamblador En lenguaje ensamblador no existe la instrucción IF como se trabaja en otros

Más detalles

Fundamentos de Computadores

Fundamentos de Computadores Universidad de Murcia Facultad de Informática TÍTULO DE GRADO EN INGENIERÍA INFORMÁTICA Tema 5: Lenguajes del computador: alto nivel, ensamblador y máquina Boletín de autoevaluación de las sesiones prácticas

Más detalles

Entorno de Ejecución del Procesador Intel Pentium

Entorno de Ejecución del Procesador Intel Pentium Arquitectura de Ordenadores Arquitectura del Procesador Intel Pentium Abelardo Pardo abel@it.uc3m.es Universidad Carlos III de Madrid Departamento de Ingeniería Telemática Entorno de Ejecución del Procesador

Más detalles

Organización del Computador I Verano. MIPS (2 de 2) Basado en el capítulo 2 del libro de Patterson y Hennessy

Organización del Computador I Verano. MIPS (2 de 2) Basado en el capítulo 2 del libro de Patterson y Hennessy Organización del Computador I Verano MIPS (2 de 2) Basado en el capítulo 2 del libro de Patterson y Hennessy Verano 2014 Profesora Borensztejn Arquitectura MIPS (R2000) Registros Formato de Instrucción

Más detalles

Lección 2 Introducción al lenguaje C

Lección 2 Introducción al lenguaje C Lección Introducción al lenguaje C Decimal Binario Hexadecimal A B C D E F Octal Equivalencia entre decimal, binario, hexadecimal y octal. Código ASCII (American Standard Code for Information Interchange)

Más detalles

Resumen de las instrucciones del 8086/8088

Resumen de las instrucciones del 8086/8088 Resumen de las instrucciones del 8086/8088 En este capítulo se hace un resumen de las instrucciones del 8086/8088. Estas instrucciones se encuentran explicadas más detalladamente en otro capítulo. Se puede

Más detalles

Arquitectura de Computadoras

Arquitectura de Computadoras 4-1 Arquitectura de Computadoras Tema 4: Arquitectura del Set de Instrucciones Eduardo Daniel Cohen dcohen@arnet.com.ar http://www.herrera.unt.edu.ar/arqcom 4-2 Arquitectura del Set de Instrucciones Indice

Más detalles

Plataformas de soporte computacional: arquitecturas avanzadas,

Plataformas de soporte computacional: arquitecturas avanzadas, Plataformas de soporte computacional: arquitecturas avanzadas, sesión Diego R. Llanos, Belén Palop Departamento de Informática Universidad de Valladolid {diego,b.palop}@infor.uva.es Índice. Arquitectura

Más detalles

MIPS: Modelo de programación. (I Parte)

MIPS: Modelo de programación. (I Parte) MIPS: Modelo de programación (I Parte) MIPS: Microprocessor without Interlocked Pipeline Stages Trabajaremos como MIPS Son similares a las desarrolladas en los años 80 Cerca de 100 millones de procesadores

Más detalles

Organización de computadoras. Clase 6. Universidad Nacional de Quilmes. Lic. Martínez Federico

Organización de computadoras. Clase 6. Universidad Nacional de Quilmes. Lic. Martínez Federico Organización de computadoras Clase 6 Universidad Nacional de Quilmes Lic. Martínez Federico Qué vimos? Pila Push Pop Modularizar Reusar Call y Ret Q5 Qué vimos? JMP y CALL no son lo mismo? NO Qué hay para

Más detalles

Modos de Direccionamiento

Modos de Direccionamiento Arquitectura de Ordenadores Modos de Direccionamiento del Intel Pentium Abelardo Pardo abel@it.uc3m.es Universidad Carlos III de Madrid Departamento de Ingeniería Telemática Modos de Direccionamiento ADM-1

Más detalles

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA Tema 4: Familia x86 Carlos Garre 1 Familia x86 Contenidos Concepto de familia: la familia x86. Generaciones de la familia x86. Primera generación: 8086. Segunda generación: 80286. Tercera generación: 80386.

Más detalles

Introducción a la Computación. Capítulo 10 Repertorio de instrucciones: Características y Funciones

Introducción a la Computación. Capítulo 10 Repertorio de instrucciones: Características y Funciones Introducción a la Computación Capítulo 10 Repertorio de instrucciones: Características y Funciones Que es un set de instrucciones? La colección completa de instrucciones que interpreta una CPU Código máquina

Más detalles

Memoria Virtual. Ing. Jorge Castro-Godínez

Memoria Virtual. Ing. Jorge Castro-Godínez Memoria Virtual Lección 7 Ing. Jorge Castro-Godínez MT7003 Microprocesadores y Microcontroladores Área de Ingeniería Mecatrónica Instituto Tecnológico de Costa Rica I Semestre 2014 Jorge Castro-Godínez

Más detalles

Trabajo Práctico Nro 3: Assembler

Trabajo Práctico Nro 3: Assembler Año 28 Banderas Nombre Estado = Estado = 1 Desbordamiento: Indica cuando el resultado de una operación con NV-No hubo OV-Desborde signo a excedido la capacidad del up. desborde Dirección: Controla la selección

Más detalles

Organización del Computador I 1er. Parcial 17-Mayo-2005. Turno:

Organización del Computador I 1er. Parcial 17-Mayo-2005. Turno: Nota: En el parcial se puede tener la cartilla de Assembler y la de seguimiento (formatos de instrucción) pero no se pueden compartir. Para aprobar el parcial, son necesarios 6(seis) puntos. Para promocionar,

Más detalles

Construyendo Programas más Complejos

Construyendo Programas más Complejos Arquitectura de Ordenadores Construcciones de Alto Nivel en Ensamblador Abelardo Pardo abel@it.uc3m.es Universidad Carlos III de Madrid Departamento de Ingeniería Telemática Construyendo Programas más

Más detalles

Práctica 4 - Arquitectura CPU

Práctica 4 - Arquitectura CPU Práctica 4 - Arquitectura CPU Organización del Computador 1 1er. Cuatrimestre 2006 Programación en Assembler Ejercicio 1 Dados los siguientes valores de la memoria y del registro R0 de la arquitectura

Más detalles

Arquitectura de Computadores II Clase #3

Arquitectura de Computadores II Clase #3 Clase #3 Facultad de Ingeniería Universidad de la República Instituto de Computación Curso 2010 Veremos Registros Repertorio de instrucciones Modos de direccionamiento El stack Formatos de datos Control

Más detalles

Programas de ordenador (software)

Programas de ordenador (software) Programas de ordenador (software) Jorge Juan Chico , Julián Viejo Cortés 2011, 2014, 2015 Departamento de Tecnología Electrónica Universidad de Sevilla Usted es libre

Más detalles

movl $var, %eax movl $0xf02, %ebx movb var, %ah movw %bx, %ax mov ebx, eax movl %ebx, %eax movl 3(%ebx), %eax

movl $var, %eax movl $0xf02, %ebx movb var, %ah movw %bx, %ax mov ebx, eax movl %ebx, %eax movl 3(%ebx), %eax ENSAMBLADOR EN LÍNEA CON EL gcc APÉNDICE 2 1. Herramientas Los programas se desarrollarán en C y en ensamblador. El ensamblador se utilizará básicamente para realizar ciertas optimizaciones en el código

Más detalles

Organización n del Computador. CPU (ISA) Conjunto de Instrucciones de la Arquitectura

Organización n del Computador. CPU (ISA) Conjunto de Instrucciones de la Arquitectura Organización n del Computador CPU (ISA) Conjunto de Instrucciones de la Arquitectura Estructura (computadora) periféricos Computador Computador Unidad Central de Proceso CPU Sistema de interconexión Memoria

Más detalles

Práctica 4. Organización del Computador 1 12 de septiembre de Algunas consideraciones preliminares:

Práctica 4. Organización del Computador 1 12 de septiembre de Algunas consideraciones preliminares: Práctica 4 Organización del Computador 1 12 de septiembre de 2005 Algunas consideraciones preliminares: Donde aparece xxxxxxxx quiere decir que el valor correcto ya está en esa dirección de memoria Todos

Más detalles

ELO311 Estructuras de Computadores Digitales. Operaciones MIPS para Control de flujo

ELO311 Estructuras de Computadores Digitales. Operaciones MIPS para Control de flujo ELO311 Estructuras de Computadores Digitales Operaciones MIPS para Control de flujo Tomás Arredondo Vidal Este material está basado en: material de apoyo del texto de David Patterson, John Hennessy, "Computer

Más detalles

8.4. El software en los μprocesadores

8.4. El software en los μprocesadores 8.4. El software en los μprocesadores Ejemplo de comandos de la CPU: Tarea: Sumar dos números A y B. Suponer los datos A y B almacenados en las posiciones 1000 2 y 1010 2 respectivamente. El resultado

Más detalles

Departamento de Sistemas e Informática

Departamento de Sistemas e Informática Departamento de Sistemas e Informática Programación en Assembler - Clase 1 Digital II Presentación de Docentes y Material Docentes: Ing. Andrés Capalbo Ing. Diego Alegrechi Ing. Esteban Almirón Material

Más detalles

JUGANDO CON C, ASM Y SYSCALLS Alejandro Hernández - @nitr0usmx

JUGANDO CON C, ASM Y SYSCALLS Alejandro Hernández - @nitr0usmx JUGANDO CON C, ASM Y SYSCALLS Alejandro Hernández - @nitr0usmx Tabla de Contenidos 1.-ASM. 1.1.-Definición de ASM. 1.2.-Arquitectura de computadoras. 1.3.-Instrucciones básicas. 2.-SYSCALLS. 2.1.-Definición

Más detalles

Circuitos Digitales II y Laboratorio Electrónica Digital II y Laboratorio

Circuitos Digitales II y Laboratorio Electrónica Digital II y Laboratorio Circuitos Digitales II y Laboratorio Electrónica Digital II y Laboratorio Fundamentos de Arquitectura de Computadores Modelo de von Neumann Profesor: Felipe Cabarcas Correo:cabarcas@udea.edu.co Oficina:

Más detalles

ISA (Instruction Set Architecture) Arquitectura del conjunto de instrucciones

ISA (Instruction Set Architecture) Arquitectura del conjunto de instrucciones ISA (Instruction Set Architecture) Arquitectura del conjunto de instrucciones Instruction Set Architecture (ISA) Arquitectura del conjunto de instrucciones software Conjunto de instrucciones hardware Universidad

Más detalles

INTERRUPCIONES SOFTWARE y EXCEPCIONES

INTERRUPCIONES SOFTWARE y EXCEPCIONES INTERRUPCIONES SOFTWARE y EXCEPCIONES S.CANDELA Universidad de Las Palmas de Gran Canaria (c) ULPGC 1 Interrupciones Una interrupción n se genera cuando se quiere que la CPU deje de ejecutar el proceso

Más detalles

EL ENSAMBLADOR... PERO SI ES MUY FÁCIL

EL ENSAMBLADOR... PERO SI ES MUY FÁCIL EL ENSAMBLADOR... PERO SI ES MUY FÁCIL Guia supuestamente poco dolorosa a la programación del IA-32 (i386) (sintaxis AT&T) Manel Guerrero Zapata 21 de octubre de 2013 2 Índice general 1. Prólogo 7 2. Introducción

Más detalles

Apellidos Nombre DNI

Apellidos Nombre DNI A continuación se muestra el listado de un programa cuyo objetivo es encontrar una palabra dentro de una cadena de caracteres de la sección de datos y copiar dicha palabra en otra zona de la sección de

Más detalles

Conceptos de Arquitectura de Computadoras Curso 2015

Conceptos de Arquitectura de Computadoras Curso 2015 PRACTICA 1 Assembly, Instrucciones, Programas, Subrutinas y Simulador MSX88 Objetivos: que el alumno Domine las instrucciones básicas del lenguaje assembly del MSX88. Utilice los diferentes modos de direccionamiento.

Más detalles

Arquitectura de Computadores y laboratorio Clase 15: Arquitectura MIPS Pt.3. Departamento de Ingeniería de Sistemas Universidad de Antioquia 2011 2

Arquitectura de Computadores y laboratorio Clase 15: Arquitectura MIPS Pt.3. Departamento de Ingeniería de Sistemas Universidad de Antioquia 2011 2 Arquitectura de Computadores y laboratorio Clase 15: Arquitectura MIPS Pt.3 Departamento de Ingeniería de Sistemas Universidad de Antioquia 2011 2 Instrucciones de control de flujo Arquitectura de Computadores

Más detalles

Arquitectura intel 8086. Preámbulo de OSO para alumnos formados en el procesador MIPS. Asignatura Sistemas Operativos Murcia abril de 2005

Arquitectura intel 8086. Preámbulo de OSO para alumnos formados en el procesador MIPS. Asignatura Sistemas Operativos Murcia abril de 2005 Arquitectura intel 8086 Preámbulo de OSO para alumnos formados en el procesador MIPS Asignatura Sistemas Operativos Murcia abril de 2005 página 1. Introducción 2 2.- Direccionamiento y Registros de Segmento

Más detalles

Módulo 08 Lenguaje Ensamblador

Módulo 08 Lenguaje Ensamblador Módulo 08 Lenguaje Ensamblador Organización de Computadoras Depto. Cs. e Ing. de la Comp. Universidad Nacional del Sur Copyright Copyright 2011-2015 A. G. Stankevicius Se asegura la libertad para copiar,

Más detalles

Procesadores de 64 bits

Procesadores de 64 bits Procesadores de 64 bits Técnicas Digitales III Ing. Gustavo Nudelman 2013 Introducción Desarrollada por AMD en 2003 con el modelo Opteron, continuando con el Athlon para ser luego tomado por Intel en los

Más detalles

ARQUITECTURA SPARC NOTAS DEL CURSO

ARQUITECTURA SPARC NOTAS DEL CURSO ARQUITECTURA SPARC NOTAS DEL CURSO Arquitectura de Computadores 2 Facultad de Ingeniería Página 2 de 24 1 ÍNDICE 1 ÍNDICE...3 2 DIRECCIONAMIENTO DE MEMORIA...4 3 VENTANAS...6 4 INSTRUCCIONES...8 4.1 ARITMÉTICAS...9

Más detalles

Introducción a la ingeniería inversa x86

Introducción a la ingeniería inversa x86 UNLEARNING SECURITY Introducción a la ingeniería inversa x86 http://unlearningsecurity.blogspot.com Daniel Romero Pérez unlearnsecurity@gmail.com Marzo del 2012 * Recopilación de entregas realizadas en

Más detalles

Ejercicios del Tema 3. Fundamentos de la programación en ensamblador

Ejercicios del Tema 3. Fundamentos de la programación en ensamblador Ejercicios del Tema 3. Fundamentos de la programación en ensamblador Ejercicio 1. Escriba un programa en ensamblador del MIPS 32 para calcular la suma de los 100 primeros números naturales. El programa

Más detalles

"Programación en Ensamblador del microprocesador Pentium (I)"

Programación en Ensamblador del microprocesador Pentium (I) PRÁCTICA 3 "Programación en Ensamblador del microprocesador Pentium (I)" ÍNDICE 3.1.- El microprocesador Pentium. 3.2.- Inserción de ensamblador en Visual Studio. 3.3.- Facilidades para la depuración de

Más detalles

ARQUITECTURA DEL REPERTORIO DE INSTRUCCIONES

ARQUITECTURA DEL REPERTORIO DE INSTRUCCIONES ARQUITECTURA DEL REPERTORIO DE INSTRUCCIONES Arquitectura del Repertorio de instrucciones Arquitectura del repertorio de instrucciones Repertorio de instrucciones Organización del almacenamiento Formato

Más detalles

Fig. 1: Tipos de datos que puede manejar el procesador

Fig. 1: Tipos de datos que puede manejar el procesador 1. Introducción 2. Registros internos 3. Almacenamiento de datos 4. Modos de direccionamiento 5. Juego de Instrucciones 6. Etiquetas, cometarios y directivas 7. Problemas 1. Introducción El lenguaje ensamblador

Más detalles

APÈNDIX: ENSAMBLADOR LINUX

APÈNDIX: ENSAMBLADOR LINUX 1. Ensamblador Linux APÈNDIX: ENSAMBLADOR LINUX Aquest tutorial està extret directament de l adreça web: http://www.publispain.com/supertutoriales/programacion/ensamblador/cursos/1/linas m.htm 1.1. Sintaxis

Más detalles

Objetivos. Objetivos. Arquitectura de Computadores. R.Mitnik

Objetivos. Objetivos. Arquitectura de Computadores. R.Mitnik Objetivos Objetivos Arquitecturas von Neumann Otras Unidad Central de Procesamiento (CPU) Responsabilidades Requisitos Partes de una CPU ALU Control & Decode Registros Electrónica y buses 2 Índice Capítulo

Más detalles

Relación de Problemas I

Relación de Problemas I Relación de Problemas I 352) $1'5e6 52/'È1 $5$1'$ 1. Realizar el cálculo del tiempo que transcurre durante la ejecución del bloque de instrucciones sombreado, en función del contenido de los registros

Más detalles

La Pila en los Procesadores IA-32 e Intel c 64

La Pila en los Procesadores IA-32 e Intel c 64 La Pila en los Procesadores IA-32 e Intel c 64 Alejandro Furfaro Ilustraciones de David Gonzalez Marquez (tnx a lot) Abril 2012 Abril 2012 1 / 44 Agenda 1 Funcionamiento Básico 2 Ejemplos de uso de pila

Más detalles

Tema 3: Microprocesador ColdFire MCF5282

Tema 3: Microprocesador ColdFire MCF5282 Tema 3: Microprocesador ColdFire MCF5282 Departamento de Electrónica Curso 2010/11 Índice Introducción al MCF5282 Las familias 68K y ColdFire Características generales del MCF5282 El núcleo del MCF5282

Más detalles

Organización procesador MIPS

Organización procesador MIPS Organización procesador MIPS Organización MIPS Memoria CPU Registros FPU Registros Alu Mul Div Hi Lo U. Aritmética Traps Manejo de Memoria Organización MIPS Unidad Aritmética y Lógica (ALU). Unidad Aritmética

Más detalles

Compiladores: Generación de Código. Pontificia Universidad Javeriana Cali Ingeniería de Sistemas y Computación Prof. María Constanza Pabón

Compiladores: Generación de Código. Pontificia Universidad Javeriana Cali Ingeniería de Sistemas y Computación Prof. María Constanza Pabón Compiladores: Generación de Código Pontificia Universidad Javeriana Cali Ingeniería de Sistemas y Computación Prof. María Constanza Pabón Generación de Código Representación Intermedia Tabla de Símbolos

Más detalles

Hacer ejercicios del libro (Cap. 9 Seguridad): 4,5,6,7,8,9,10,12,13

Hacer ejercicios del libro (Cap. 9 Seguridad): 4,5,6,7,8,9,10,12,13 Práctico Seguridad Sistemas Operativos Hacer ejercicios del libro (Cap. 9 Seguridad): 4,5,6,7,8,9,10,12,13 1) Suponga que se previene la ejecucion de datos localizados en la pila de una funcion (osea,

Más detalles

1.2.- EL MICROPROCESADOR.

1.2.- EL MICROPROCESADOR. 1.2.- EL MICROPROCESADOR. El microprocesador es un circuito integrado que contiene algunos o todos los elementos necesarios para conformar una (o más) unidad central de procesamiento UCP, también conocido

Más detalles

Estructura y Tecnología de Computadores. Módulo C. Arquitectura del procesador. Tema 4. Modos de direccionamiento y tipos de datos

Estructura y Tecnología de Computadores. Módulo C. Arquitectura del procesador. Tema 4. Modos de direccionamiento y tipos de datos 1 Estructura y Tecnología de Computadores Módulo C. Arquitectura del procesador Tema. Modos de direccionamiento y tipos de datos José Manuel Mendías Cuadros Dpto.. Arquitectura de Computadores y Automática

Más detalles

Este grupo es una continuación del anterior, incluye las siguientes instrucciones:

Este grupo es una continuación del anterior, incluye las siguientes instrucciones: CONJUNTO DE INSTRUCCIONES (Microprocesadores 8086/8088) Se pueden clasificar en los siguientes grupos: Instrucciones de Transferencia de Datos. Estas instrucciones mueven datos de una parte a otra del

Más detalles

UNIVERSIDAD NACIONAL DE COLOMBIA SEDE BOGOTÁ FACULTAD DE INGENIERÍA INGENIERÍA MECATRÓNICA

UNIVERSIDAD NACIONAL DE COLOMBIA SEDE BOGOTÁ FACULTAD DE INGENIERÍA INGENIERÍA MECATRÓNICA UNIVERSIDAD NACIONAL DE COLOMBIA SEDE BOGOTÁ FACULTAD DE INGENIERÍA INGENIERÍA MECATRÓNICA INTRODUCCIÓN AL PIC NOMENCLATURA ARQUITECTURA. TEMPORIZACIÓN. SET DE INSTRUCCIONES. MODOS DE DIRECCIONAMIENTO.

Más detalles

4. Operadores Operador asignación

4. Operadores Operador asignación Programación orientada a objetos con Java 43 4. Operadores Objetivos: a) Describir los operadores (aritméticos, incrementales, de relación, lógicos y de asignación) y los tipos de dato primitivos sobre

Más detalles

Contenido. Conjunto de Instrucciones. Formato de la Instrucción. Instrucciones de 1 byte. Formato de la Instrucción 28/09/2011

Contenido. Conjunto de Instrucciones. Formato de la Instrucción. Instrucciones de 1 byte. Formato de la Instrucción 28/09/2011 1 ontenido 2 UNIDAD 5 EL LENGUAJE DE ENSAMBLADOR DEL Z80 onjunto de instrucciones Tipos de instrucciones Modos de direccionamiento El ensamblador del Z80 El simulador AVOET Implementación de un sistema

Más detalles

Estructura de Microprocesadores. Profesor Ing. Johan Carvajal Godínez

Estructura de Microprocesadores. Profesor Ing. Johan Carvajal Godínez Estructura de Microprocesadores PIC 18F4550 Administración de la memoria Profesor Ing. Johan Carvajal Godínez Contenidos Organización de la memoria del MCU Administración de la memoria de programa (Flash)

Más detalles

Introducción rápida a la programación (estructurada ) con C++

Introducción rápida a la programación (estructurada ) con C++ Introducción rápida a la programación (estructurada ) con C++ A B No A? Si B A Los Bloques pueden ser una línea de código o un modulo (función o subrutina) que pueden estar contenido en otro archivo de

Más detalles

Ensamblador. Introducción. Dpto. Física y Arquitectura de Computadores. Universidad Miguel Hernandez

Ensamblador. Introducción. Dpto. Física y Arquitectura de Computadores. Universidad Miguel Hernandez Dpto. Física y Arquitectura de Computadores Universidad Miguel Hernandez Es el lenguaje de más bajo nivel que admite una máquina. El ensamblador hace que el código binario(máquina sea transparente al usuario)

Más detalles

Lógica Binaria. Arquitectura de Ordenadores. Codificación de la Información. Abelardo Pardo abel@it.uc3m.es. Universidad Carlos III de Madrid

Lógica Binaria. Arquitectura de Ordenadores. Codificación de la Información. Abelardo Pardo abel@it.uc3m.es. Universidad Carlos III de Madrid Arquitectura de Ordenadores Codificación de la Información Abelardo Pardo abel@it.uc3m.es Universidad Carlos III de Madrid Departamento de Ingeniería Telemática Lógica Binaria COD-1 Internamente el ordenador

Más detalles

3 - Arquitectura interna de un up

3 - Arquitectura interna de un up cei@upm.es 3 - Arquitectura interna un up Componentes básicos Lenguaje ensamblador y código máquina Ciclo básico ejecución una instrucción Algunos ejemplos Universidad Politécnica Madrid Componentes básicos

Más detalles

TEMA 4. ARQUITECTURA IA-64

TEMA 4. ARQUITECTURA IA-64 TEMA 4. ARQUITECTURA IA-64 Stalling, W.Computer Organization and Architecture cap. 15 Intel IA-64 Architecture Software Developer s Manual Generalidades IA-64 Desarrollo conjunto Intel-HP Nueva arquitectura

Más detalles

Módulo 09 Lenguaje Ensamblador

Módulo 09 Lenguaje Ensamblador Módulo 09 Lenguaje Ensamblador Organización de Computadoras Depto. Cs. e Ing. de la Comp. Universidad Nacional del Sur Organización de Computadoras 2 Copyright Copyright 2011-2015 A. G. Stankevicius Copyright

Más detalles

ORGANIZACIÓN DE LA MEMORIA

ORGANIZACIÓN DE LA MEMORIA Existen dos tipos de memoria en todos los µc, memoria de programa y memoria de datos. La primera (EPROM, EEPROM, FLASH, etc) contiene los códigos de operación que se ejecutarán para seguir una secuencia

Más detalles

Convenciones. Introducción. Unidades principales en la implementación. El procesador: camino de datos y control. Tipos de elementos:

Convenciones. Introducción. Unidades principales en la implementación. El procesador: camino de datos y control. Tipos de elementos: Unidades principales en la implementación Data El procesador: camino de datos y control IEC UTM Moisés E. Ramírez G. 1 Register # PC Address Instruction Instruction Registers Register # ALU memory Register

Más detalles

Tema 2: Arquitectura del repertorio de instrucciones. Visión del computador que tiene el programador en bajo nivel

Tema 2: Arquitectura del repertorio de instrucciones. Visión del computador que tiene el programador en bajo nivel Tema 2: Arquitectura del repertorio de instrucciones Visión del computador que tiene el programador en bajo nivel Lo que el programador en lenguaje ensamblador debe conocer para escribir programas: - Los

Más detalles

PROGRAMA de Organización de Computadoras

PROGRAMA de Organización de Computadoras PROGRAMA de Organización de Computadoras Carrera/s: Tecnicatura Universitaria en Programación Informática / Licenciatura en Informática Asignatura: Organización de Computadoras Núcleo al que pertenece:

Más detalles

REPERTORIO DE INSTRUCCIONES DEL MICROPROCESADOR 8086

REPERTORIO DE INSTRUCCIONES DEL MICROPROCESADOR 8086 REPERTORIO DE INSTRUCCIONES DEL MICROPROCESADOR 8086 INSTRUCCIONES DE TRANSFERENCIA: NINGUNA INSTRUCCIÓN DE TRANSFERENCIA AFECTA AL REGISTRO DE ESTADO (SALVO LAS EXPLÍCITAS CON EL REGISTRO DE ESTADO) A)

Más detalles

Diseño Procesador Monociclo

Diseño Procesador Monociclo Diseño Procesador Monociclo Especificación de la arquitectura del repertorio de instrucciones y de las instrucciones que podrá ejecutar el procesador. Modelo Carga-Almacenamiento. Se implementará el procesador

Más detalles

PROCESAMIENTO DE LOS DATOS. Procesamiento de datos ascii a binario y de binario a ascii

PROCESAMIENTO DE LOS DATOS. Procesamiento de datos ascii a binario y de binario a ascii PROCESAMIENTO DE LOS DATOS Procesamiento de datos ascii a binario y de binario a ascii En ensamblador el tipo de dato es un carácter, por lo tanto es necesario procesar este dato y convertir de su correspondiente

Más detalles

ESTRUCTURA DE MICROPROCESADORES

ESTRUCTURA DE MICROPROCESADORES ESTRUCTURA DE MICROPROCESADORES La arquitectura IA32 Profesor Ing. Johan Carvajal Godínez AGENDA DE LA CLASE 1. Conceptos básicos 2. La arquitectura IA32 3. Evolución de los microprocesadores Intel 4.

Más detalles

ÍNDICE CAPÍTULO 1 FUNDAMENTOS DE LOS MICROCONTROLADORES

ÍNDICE CAPÍTULO 1 FUNDAMENTOS DE LOS MICROCONTROLADORES ÍNDICE CAPÍTULO 1 FUNDAMENTOS DE LOS MICROCONTROLADORES 1.1 Introducción 1.2 Fundamentos de los procesadores digitales secuenciales 1.2.1 Introducción 1.2.2 Arquitectura interna 1.2.2.1 Procesadores digitales

Más detalles

Todo programa en 'C' consta de una o más funciones, una de las cuales se llama main.

Todo programa en 'C' consta de una o más funciones, una de las cuales se llama main. LENGUAJE C CARACTERISTICAS DEL LENGUAJE 'C' El lenguaje 'C' se conoce como un lenguaje compilado. Existen dos tipos de lenguaje: interpretados y compilados. Los interpretados son aquellos que necesitan

Más detalles

3.3 Conceptos Básicos del Lenguaje Java

3.3 Conceptos Básicos del Lenguaje Java 3.3 Conceptos Básicos del Lenguaje Java Conjunto de Caracteres Java utiliza Unicode, un conjunto de caracteres de 16 bits Java permite leer ASCII de 7-bit o Latin-1, conviertiéndolo a Unicode Son pocos

Más detalles

DETECTING TH3 W1LD SH3LLC0D3. Alejandro Barrera (a.k.a. Ergosum) Linenoise C0N III 17,18,19 de Octubre 2003

DETECTING TH3 W1LD SH3LLC0D3. Alejandro Barrera (a.k.a. Ergosum) Linenoise C0N III 17,18,19 de Octubre 2003 \xeb\x1f\x 5e\x89 x89\x76x76 \x08\x31\x c0\x88 x88\x46x46 \x07\x89\x 46\x0c x0c\xb0xb0 \x0b\x89\x f3\x8d x8d\x4ex4e \x08\x8d\x 56\x0c x0c\xcdxcd \x80\x31\x db\x89 x89\xd8xd8 \x40\xcd\x 80\xe8 xe8\xdcxdc

Más detalles

Programación avanzada en Ensamblador. Tareas que realiza el programa ensamblador

Programación avanzada en Ensamblador. Tareas que realiza el programa ensamblador Programación avanzada en Ensamblador Cesáreo Fernández Martínez Álvaro Sánchez Miralles Tareas que realiza el programa ensamblador Traduce el fuente.a66 a código máquina.obj mov Rx, Ry mov reg, #dato Código

Más detalles

Estructuras de Control (y su forma en Python y en C) Clase 5 Introducción a la Computación Patricia Borensztejn

Estructuras de Control (y su forma en Python y en C) Clase 5 Introducción a la Computación Patricia Borensztejn Estructuras de Control (y su forma en Python y en C) Clase 5 Introducción a la Computación Patricia Borensztejn Estructuras de Control En el modelo de ejecución secuencial que vimos, el procesador repite:

Más detalles

Ejercicios del tema 4. El procesador

Ejercicios del tema 4. El procesador jercicios del tema 4. l procesador jercicio 1. Considere un procesador de 32 bits con una frecuencia de reloj de 500 MHz con la estructura del mostrado en el jercicio 3. La memoria se direcciona por bytes

Más detalles

Arquitectura de Computadores II 8086 Parte II

Arquitectura de Computadores II 8086 Parte II 8086 Parte II Facultad de Ingeniería Universidad de la República Instituto de Computación Contenido Funciones recursivas Manejadores de dispositivos Rutinas recursivas(1/10) Introducción Salvar contexto.

Más detalles

Centro Asociado Palma de Mallorca. Antonio Rivero Cuesta

Centro Asociado Palma de Mallorca. Antonio Rivero Cuesta Centro Asociado Palma de Mallorca Antonio Rivero Cuesta La Sintaxis de Java I... 5 Tipos de datos... 6 Tipos de datos simples... 7 Operadores... 11 Operadores Aritméticos... 12 Operadores relacionales...

Más detalles

Tema 7. Generación de código

Tema 7. Generación de código Departamento de Tecnologías de la Información Tema 7 Generación de código Ciencias de la Computación e Inteligencia Artificial Índice 7.1 Visión general 7.2 Código de tres direcciones 2 Índice 7.1 Visión

Más detalles

Sistemas con Microprocesadores I

Sistemas con Microprocesadores I Sistemas con Microprocesadores I 1 Microcontroladores Introducción Harvard vs. von-neumann Clasificación del procesador Segmentado o Pipeline Ortogonal vs. No ortogonal 2 Microcontroladores PIC Siglas

Más detalles

Bus de direcciones. Bus de datos

Bus de direcciones. Bus de datos 1) INTRODUCCIÓN A LA MÁQUINA SENCILLA La máquina sencilla (MS) es un computador concebido para fines exclusivamente didácticos. MS sólo dispone de dos bloques: Unidad Central de Proceso y memoria principal.

Más detalles

como les va con las practicas?

como les va con las practicas? como les va con las practicas? Problemas NP-completos y Estructuras de datos básicas (representación de datos) mat-151 1 Una maquina de Turing Aceptation state Una maquina de Turing Maquina de Turing Determinística,

Más detalles

LENGUAJE. Tema 2 Elementos de un programa

LENGUAJE. Tema 2 Elementos de un programa LENGUAJE Tema 2 Elementos de un programa ELEMENTOS DE UN PROGRAMA Comentarios. Identificadores. Constantes. Variables. Operadores. Sentencias o instrucciones. COMENTARIOS Los comentarios en C pueden ocupar

Más detalles