TEORIA DE AUTOMATAS.
|
|
|
- Josefina Núñez Vera
- hace 8 años
- Vistas:
Transcripción
1 TEORIA DE AUTOMATAS. RELACION DE PROBLEMAS II.. Construir un AFND capaz de aceptar una cadena u {, }, que contenga la subcadena. Construir un AFND capaz de aceptar una cadena u {, }, que contenga la subcadena. Obtener un AFD capaz de aceptar una cadena u {, }, que contenga simultaneamente las subcadenas y. 2. Obtener a partir de la gramática regular G = ({S, B}, {, }, P, S), con P = {S B, B B, B B, B ǫ}, el autómata AFND que reconoce el lenguaje generado por esa gramática. 3. Dada la gramática regular G = ({S}, {, }, P, S), con P = {S S, S }, obtener el autoómata AFD que reconoce el lenguaje generado por esa gramática. 4. Obtener el AFD que acepta el lenguaje representado por la expresión regular (). 5. Dado el lenguaje L = {u u {, } }, encontrar la expresión regular, la gramática lineal por la derecha, la gramática lineal por la izquierda y el autómata asociado. 6. Dado un AFD, determinar el proceso que habría que seguir para construir una Gramática lineal por la izquierda capaz de generar el Lenguaje aceptado por dicho autómata. 7. Dada la expresión regular (a + ǫ)b encontrar el AFD asociado. 8. Obtener una expresión regular para el lenguaje complementario al aceptado por la gramática S aba B bab ǫ A bs b B as Nota.- Se valorará especialmente, si la construcción se hace construyendo el Autómata Finito Determinístico asociado.
2 9. Escribir el diagrama de transición para una máquina de Mealy que detecta la presencia de la subcadena en la cadena de entrada. Así si dicha máquina lee la cadena produce la salida. Supuestos los alfabetos de entrada y salida A = {a, b} y B = {, }, construir una máquina de Mealy que reconozca cadenas de entrada de la forma aabbaba y las codifica presentando una salida según las siguientes condiciones: si se lee el primer símbolo se escribe un. si el símbolo anteriormente leido es una a se escribe un. si el símbolo anteriormente leido es una b se escribe un. De manera que si se lee la cadena de entrada aabbaba se presentará la cadena de salida. Construir un Autómata Finito Determinístico que acepte el lenguaje generado por la siguiente gramática: S AB, A aa, A c B bbb, B b 2. Construir una maquina de Mealy que codifica palabras del albafeto {a, b} en palabras del alfabeto {, } de acuerdo con las siguientes reglas: Si la cantidad de símbolos b leído hasta el momento es par, entonces una a se transforma en un, y una b en un. 2
3 Si la cantidad de símbolos b leído hasta el momento es impar, entonces una a se transforma en un y una b en un. 3. Dar expresiones regulares para los lenguajes sobre el alfabeto {a, b} dados por las siguientes condiciones: a) Palabras que no contienen la subcadena a b) Palabras que no contienen la subcadena ab c) Palabras que no contienen la subcadena aba 4. Construir un autómata finito determinístico minimal que acepte el lenguaje L {a, b, c} de todas las palabras con un número impar de ocurrencias de la subcadena abc. 5. Construir un autómata finito determinístico que acepte el lenguaje de todas las palabras sobre el alfabeto {, } que no contengan la subcadena. Construir una gramática regular por la izquierda a partir de dicho autómata. 6. Calcular de forma algorítmica una expresión regular para el lenguaje aceptado por el autómata: a p q a a b b r b 7. Construir una Máquina de Mealy capaz de ir calculando la suma módulo 3 de los números que vaya recibiendo del alfabeto {,, 2, 3, 4, 5, 6, 7, 8, 9}. Por ejemplo, si recibe la palabra 3424 funciona de la siguiente forma: Símbolo leido Sumas parciales Resultado Salida (resultado módulo 3)
4 8. Construir una Máquina de Mealy con alfabetos de entrada y salida A = B = {, } y que produzca una salida de excepto para las entradas entre el final de una subcadena y el de una subcadena, en cuyo caso producirá una salida de. Por ejemplo para la entrada u =, la salida es. Obtener una Máquina de Moore equivalente. Nota: Las dos subcadenas se pueden solapar. 9. Determinar si el lenguaje generado por la siguiente gramática es regular: S AabB, A aa, A ba, A ǫ, B Bab, B Bb, B ab, B b En caso de que lo sea, encontrar una expresión regular asociada. 2. Un transmisor manda secuencias de bits a un receptor. La información que se transmite no tiene ningún significado, excepto los fragmentos de información válida. Éstos son los que vienen precedidos por la palabra y terminan con la secuencia. Construir una máquina de Mealy que aplicada al receptor transforme la información no válida (incluyendo la secuencia de inicio) en el símbolo c, y deje la información válida (incluyendo la secuencia final) tal y como se recibe, sin ninguna transformación. 2. Dado el autómata finito determinista: q q2 q3 construir una expresión regular para el lenguaje L aceptado por el autómata. Construir un autómata y una expresión regular para el lenguaje LL. 22. En una piscifactoría se desea instalar un sistema automatizado para la cría del Salmón. Para ello tenemos una cubeta donde se localiza el Salmón. El automatismo deberá controlar la cubeta.una cubeta consta de dos grifos (ver figura ): uno para el agua fría y otro para el agua caliente. De manera que la temperatura del agua en la cubeta siempre esté entre 25 o y 3 o C. Para controlar la temperatura el autómata recibe información de 4
5 Pienso Nivel del agua Permitido Agua Fria Agua caliente Cubeta Desague Figura : Cubeta para la cría del Salmón un sensor S temperatura indicándole si debe añadir agua fría para enfriar el agua, o agua caliente para calentarla o si la temperatura es correcta. Otro factor que debe tener en cuenta el sistema es si el nivel del agua esta al nivel de agua permitido en la cubeta. Para ello el automáta recibirá información de otro sensor S nivelagua indicándole si tiene que abrir el desagüe, abrir el agua ( abrirá mitad caliente mitad fría) o si el nivel del agua es correcto. Además el sistema recibe información de un tercer sensor S Pienso indicándole si debe abrir la compuerta del pienso o no. Por lo tanto cada estado del sistema podría interpretarse como se encuentra: El grifo del agua caliente (abierto o cerrado) El grifo del agua fría (abierto o cerrado) El grifo del pienso (abierto o cerrado) El desague (abierto o cerrado) Y desde cada estado recibimos información a la vez de S temperatura,s nivelagua,s Pienso. Supongamos que en el estado inicial los grifos y desagüe están cerrados. Se pide: a) Construir una máquina de Moore para dicho sistema. b) Pasar la máquina de Moore a una máquina de Mealy. 23. Si f : {, } {a, b, c} es un homomorfismo dado por f() = aab, f() = bbc, dar autómatas finitos deterministas minimales para los lenguajes L y f (L) donde L {a, b, c} es el lenguaje en el que el número de símbolos a no es múltiplo de 4. 5
MODELOS DE COMPUTACION I Preguntas Tipo Test. 1. El lema de bombeo puede usarse para demostrar que un lenguaje determinado es regular.
MODELOS DE COMPUTACION I Preguntas Tipo Test Indicar si son verdaderas o falsas las siguientes afirmaciones: 1. El lema de bombeo puede usarse para demostrar que un lenguaje determinado es regular. 2.
Interrogación 2. Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación. Segundo Semestre, 2003
Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación Interrogación 2 IIC 2222 Teoría de Autómatas y Lenguajes Formales Segundo Semestre, 2003 Esta interrogación
Escribir la expresión regular de un número entero que no acepte que el primer dígito sea cero salvo el número 0. Solución: 0 [1-9][0-9]*
Procesadores de lenguaje Ejercicios del Tema 2 Ejercicio 2.1 Sean L = {a, aa, b} y M = {ab, b }. Describe LM y M 3 por enumercaión LM = { aab, ab, aaab, bab, bb } M 3 = { ababab, ababb, abbab, abbb, babab,
EJERCICIOS del TEMA 3: Lenguajes independientes del contexto
EJERCICIOS del TEMA 3: Lenguajes independientes del contexto Sobre GICs (gramáticas independientes del contexto) 1. Sea G una gramática con las siguientes producciones: S ASB ε A aab ε B bba ba c ) d )
GRAMATICAS LIBRES DEL CONTEXTO
GRMTICS LIBRES DEL CONTEXTO Estas gramáticas, conocidas también como gramáticas de tipo 2 o gramáticas independientes del contexto, son las que generan los lenguajes libres o independientes del contexto.
Autómatas Finitos y Lenguajes Regulares
Autómatas Finitos y Lenguajes Regulares Problema: Dado un lenguaje L definido sobre un alfabeto A y una cadena x arbitraria, determinar si x L o x L. Cadena x AUTOMATA FINITO SI NO Lenguaje Regular Autómatas
No todos los LRs finitos se representan mejor con ERs. Observe el siguiente ejemplo:
1 Clase 3 SSL EXPRESIONES REGULARES Para REPRESENTAR a los Lenguajes Regulares. Se construyen utilizando los caracteres del alfabeto sobre el cual se define el lenguaje, el símbolo y operadores especiales.
Expresiones regulares, gramáticas regulares
Expresiones regulares, gramáticas regulares Los LR en la jerarquía de Chomsky La clasificación de lenguajes en clases de lenguajes se debe a N. Chomsky, quien propuso una jerarquía de lenguajes, donde
Temas. Objetivo. Que el estudiante logre: 1) Identificar conceptos constructivos de la Teoría de la Computabilidad. 2) Definir autómatas de pila.
0 Temas Definición de autómata de pila Autómata de pila determinístico y no determinístico Objetivo Que el estudiante logre: 1) Identificar conceptos constructivos de la Teoría de la Computabilidad. 2)
Autómatas finitos no deterministas (AFnD)
Autómatas finitos no deterministas (AFnD) Elvira Mayordomo Universidad de Zaragoza 1 de octubre de 2012 Contenido de este tema Introducción y ejemplos de autómatas finitos no deterministas Definición de
Convertir un AFND a un AFD
Convertir un AFND a un AFD Existe una equivalencia entre los AFD y AFN, de forma que un autómata M es equivalente a un autómata M' si L(M) ) L(M'). Ejemplo: Los autómatas de la siguiente figura son equivalentes.
TEORÍA DE AUTÓMATAS Y LENGUAJES FORMALES Grado en Ingeniería Informática Online, Curso Universidad Rey Juan Carlos
TEORÍA DE AUTÓMATAS Y LENGUAJES FORMALES Grado en Ingeniería Informática Online, Curso 202-203 Universidad Rey Juan Carlos GUÍA PARA LA REALIZACIÓN DE LA HOJA DE PROBLEMAS No 3 (Tema 3: Expresiones Regulares)
Autómatas de Pila y Lenguajes Incontextuales
Autómatas de Pila y Lenguajes Incontextuales Elvira Mayordomo Universidad de Zaragoza 5 de noviembre de 2012 Contenido de este tema 1. Introducción a los autómatas de pila 2. Definiciones 3. Equivalencia
Una cadena sobre Σ es cualquier secuencia de elementos de longitud finita sobre Σ.
Alfabetos, Cadenas y Lenguajes Definición 1 Un Alfabeto es cualquier conjunto finito, no vacío. Ejemplo 1 Sea Σ = {0, 1, 2, 3,..., 9} donde 0 Σ Definición 2 Una cadena sobre Σ es cualquier secuencia de
Autómatas Finitos Deterministicos (DFA)
Autómatas Finitos Deterministicos (DFA) Introducción a la Lógica y la Computación Fa.M.A.F., Universidad Nacional de Córdoba 26/0/6 Info útil Bibliografía: Introducción a la teoría de autómatas, lenguajes
Fundamentos de Ciencias de la Computación Trabajo Práctico N 2 Lenguajes Libres del Contexto y Sensibles al Contexto Segundo Cuatrimestre de 2002
Departamento de Cs. e Ingeniería de la Computación Universidad Nacional del Sur Ejercicios Fundamentos de Ciencias de la Computación Trabajo Práctico N 2 Lenguajes Libres del Contexto y Sensibles al Contexto
Un autómata con pila no determinista (APND) es una septupla Q A B F en la que
AUTÓMATAS CON PILA Un autómata con pila no determinista (APND) es una septupla Q A F en la que δ q 0 Q es un conjunto finito de estados A es un alfabeto de entrada es un alfabeto para la pila δ es la función
Máquinas Secuenciales, Autómatas y Lenguajes. Tema 3.1: Autómatas Finitos Deterministas
Tema 3.1: Autómatas Finitos Deterministas Luis Peña [email protected] http://www.ia.urjc.es/cms/es/docencia/ic-msal Sumario Tema 3.1: Autómatas Finitos Deterministas. 1. Concepto de AFD 2. Equivalencia
Equivalencia Entre PDA y CFL
Equivalencia Entre PDA y CFL El Lenguaje aceptado por un Autómata con Pila Universidad de Cantabria Esquema 1 Introducción 2 3 Lenguaje Aceptado por un Autómata Como en los autómatas finitos, se puede
Apuntes de Regulación y Automatización. Prácticas y Problemas.
TEMA 3. AUTOMATISMOS Y AUTÓMATAS PROGRAMABLES. IMPLEMENTACION DE GRAFCET. OBJETIVOS: Los diseños e introducidos en el tema anterior, se traducen de manera sencilla a unas funciones lógicas concretas, esta
AUTÓMATAS DE PILA Y LENGUAJES INDEPENDIENTES DEL CONTEXTO
Autómatas de pila y lenguajes independientes del contexto -1- AUTÓMATAS DE PILA Y LENGUAJES INDEPENDIENTES DEL CONTEXTO AUTÓMATAS DE PILA - Son autómatas finitos con una memoria en forma de pila. - Símbolos
Lenguajes y Gramáticas
Lenguajes y Gramáticas Teoría de Lenguajes Fernando Naranjo Introduccion Se desarrollan lenguajes de programación basados en el principio de gramática formal. Se crean maquinas cada vez mas sofisticadas
EXÁMENES DE REPASO Teoría de Autómatas y Lenguajes Formales UNIVERSIDAD FRANCISCO DE VITORIA
EXÁMENES DE REPASO Teoría de Autómatas y Lenguajes Formales UNIVERSIDAD FRANCISCO DE VITORIA 1ER PARCIAL TEORÍA DE AUTÓMATAS Y LENGUAJES FORMALES Examen parcial 12/02/2003 1.- Usa el lema de bombeo para
Lenguajes Regulares. Antonio Falcó. - p. 1
Lenguajes Regulares Antonio Falcó - p. 1 Cadenas o palabras I Una cadena o palabra es una sucesión finita de símbolos. cadena {c, a, d, e, n}. 10001 {0, 1} El conjunto de símbolos que empleamos para construir
Unidad 4. Autómatas de Pila
Unidad 4. Autómatas de Pila Una de las limitaciones de los AF es que no pueden reconocer el lenguaje {0 n 1 n } debido a que no se puede registrar para todo n con un número finito de estados. Otro lenguaje
Autómatas Deterministas. Ivan Olmos Pineda
Autómatas Deterministas Ivan Olmos Pineda Introducción Los autómatas son una representación formal muy útil, que permite modelar el comportamiento de diferentes dispositivos, máquinas, programas, etc.
Autómatas y Lenguajes Formales. Tema 3.2: Autómatas Finitos No Deterministas. Luis Peña [email protected]
Autómatas y Lenguajes Formales Tema 3.2: Autómatas Finitos No Deterministas Luis Peña [email protected] Sumario Tema 3.2: Autómatas Finitos No Deterministas. 1. Concepto de AFND 2. Teoremas de Equivalencia
Procesadores de Lenguaje
Procesadores de Lenguaje Repaso TALF Cristina Tîrnăucă Dept. Matesco, Universidad de Cantabria Fac. Ciencias Ing. Informática Primavera de 2013 La Jerarquía de Chomsky Cuatro niveles de lenguajes formales
Serafín Moral Departamento de Ciencias de la Computación. Modelos de Computación ITema 2: Autómatas Finitos p.1/88
Modelos de Computación I Tema 2: Autómatas Finitos Serafín Moral Departamento de Ciencias de la Computación Modelos de Computación ITema 2: Autómatas Finitos p./88 Contenido Autómata Finito Determinista
Computabilidad y Lenguajes Formales: Autómatas Finitos
300CIG007 Computabilidad y Lenguajes Formales: Autómatas Finitos Pontificia Universidad Javeriana Cali Ingeniería de Sistemas y Computación Prof. Gloria Inés Alvarez V. No Determinismo Hasta ahora cada
MANEJO DE EXPRESIONES REGULARES
Procesadores de lenguajes Ejercicios del Tema 2 MANEJO DE EXPRESIONES REGULARES Ejercicio 2. Escriba expresiones regulares para los siguientes lenguajes: a) Comentarios que comiencen por
Tema: Autómata de Pila
Facultad: Ingeniería Escuela: Computación Asignatura: Compiladores 1 Tema: Autómata de Pila Contenido La presente guía aborda los autómatas de pila, y se enfoca en la aplicación que se le puede dar a estas
Universidad Central de Venezuela Facultad de Ciencias Escuela de Computación Organización y Estructura del Computador II Semestre I-2014.
Universidad Central de Venezuela Facultad de Ciencias Escuela de Computación Organización y Estructura del Computador II Semestre I-2014 Práctica #3 1) Qué es un latch? Qué es un flip-flop? 2) Si se aplican
Máquinas de Turing IIC3242. IIC3242 Máquinas de Turing 1 / 45
Máquinas de Turing IIC3242 IIC3242 Máquinas de Turing 1 / 45 Complejidad Computacional Objetivo: Medir la complejidad computacional de un problema. Vale decir: Medir la cantidad de recursos computacionales
NOT. Ejemplo: Circuito C1
Métodos de diseño de circuitos digitales Sistemas combinacionales En un circuito combinacional los valores de las salidas dependen únicamente de los valores que tienen las entradas en el presente. Se construen
Teoría de Lenguajes. Gramáticas incontextuales
Teoría de Lenguajes Gramáticas incontextuales José M. Sempere Departamento de Sistemas Informáticos y Computación Universidad Politécnica de Valencia Gramáticas incontextuales 1. Definiciones básicas.
TEORÍA DE AUTÓMATAS Y LENGUAJES FORMALES
TEORÍA DE AUTÓMATAS Y LENGUAJES FORMALES (TALF) BLOQUE II: LENGUAJES REGULARES Tema 2: Autómatas Finitos Parte 2 (de 3). Autómatas Finitos No Deterministas (AFNDs) Grado en Ingeniería Informática URJC
ARITMÉTICA MODULAR. Unidad 1
Unidad 1 ARITMÉTICA MODULAR 9 Capítulo 1 DE LA TEORÍA DE CONJUNTOS Objetivo general Presentar y afianzar algunos conceptos de la Teoría de Conjuntos relacionados con el estudio de la matemática discreta.
Teoría de Autómatas y Lenguajes Formales. Introducción a las Gramáticas. Gramáticas incontextuales
Teoría de utómatas y Lenguajes Formales Introducción a las ramáticas. ramáticas incontextuales José M. Sempere Departamento de Sistemas Informáticos y Computación Universidad Politécnica de Valencia Introducción
El Autómata con Pila
El Autómata con Pila Una Generalización del Autómata Finito Universidad de Cantabria Esquema 1 2 3 4 Los autómatas son abstracciones de maquinas de calcular, como hemos visto. Los más sencillos no tienen
2do. Parcial. Todos los ejercicios se entregarán en hojas separadas. El examen tipo test cuenta hasta 2 puntos sobre la nota total.
U.R.J.C. Ingeniera Técnica en Informática de Sistemas Teoría de Autómatas y Lenguajes Formales Junio 2009 2do. Parcial Normas : La duración del examen es de 2 horas. Todos los ejercicios se entregarán
3. Ecuaciones, parte I
Matemáticas I, 2012-I La ecuación es como una balanza Una ecuación es como una balanza en equilibrio: en la balanza se exhiben dos objetos del mismo peso en ambos lados mientras que en la ecuación se exhiben
Capítulo 1 Lenguajes formales 6
Capítulo 1 Lenguajes formales 6 1.8. Operaciones entre lenguajes Puesto que los lenguajes sobre Σ son subconjuntos de Σ, las operaciones usuales entre conjuntos son también operaciones válidas entre lenguajes.
Lenguajes, Gramáticas y Autómatas Conceptos
Lenguajes, Gramáticas y Autómatas Conceptos Departamento de Informática e Ingeniería de Sistemas C.P.S. Universidad de Zaragoza Última revisión: Febrero. 2004 11/02/2004 1 Índice Alfabetos, palabras y
PROGRAMA INSTRUCCIONAL AUTOMATAS Y LENGUAJES FORMALES
UNIVERSIDAD FERMIN TORO VICE RECTORADO ACADEMICO UNIVERSIDAD FACULTAD DE INGENIERIA ESCUELA DE MANTENIMIENTO MECÁNICO ESCUELA DE TELECOMUNICACIONES ESCUELA DE ELÉCTRICA ESCUELA DE COMPUTACIÓN PROGRAMA
Autómatas de Pila. Descripciones instantáneas o IDs. El Lenguaje de PDA. Equivalencia entre PDAs y CFGs INAOE (INAOE) 1 / 50
INAOE (INAOE) 1 / 50 Contenido 1 2 3 4 (INAOE) 2 / 50 Pushdown Automata Las gramáticas libres de contexto tienen un tipo de autómata que las define llamado pushdown automata. Un pushdown automata (PDA)
Tema 5 Lenguajes independientes del contexto. Sintaxis
Tema 5 Lenguajes independientes del contexto. Sintaxis 1 Gramáticas independientes del contexto Transformación de gramáticas independientes del contexto Autómatas de pila Obtención de un autómata de pila
LEX. Las definiciones y subrutinas son opcionales. El segundo %% es opcional pero el primer %% indica el comienzo de las reglas.
LEX Estructura de un programa en LEX { definiciones { reglas { subrutinas del usuario Las definiciones y subrutinas son opcionales. El segundo es opcional pero el primer indica el comienzo de las reglas.
Máquinas de Turing IIC3242. IIC3242 Máquinas de Turing 1 / 42
Máquinas de Turing IIC3242 IIC3242 Máquinas de Turing 1 / 42 Complejidad Computacional Objetivo: Medir la complejidad computacional de un problema. Vale decir: Medir la cantidad de recursos computacionales
TEMA 5. GRAMÁTICAS REGULARES.
TEMA 5. GRAMÁTICAS REGULARES. 5.1. Gramáticas Regulares. 5.2. Autómatas finitos y gramáticas regulares. 5.2.1. Gramática regular asociada a un AFD 5.2.2. AFD asociado a una Gramática regular 5.3. Expresiones
Probabilidad: Fórmulas y definiciones básicas. PROBABILIDAD Fórmulas y definiciones básicas
PROBABILIDAD Fórmulas y definiciones básicas 1) Definiciones básicas Experimento aleatorio: Aquél en el que interviene el azar (no es posible predecir el resultado). Resultado elemental: Todo resultado
EIE SISTEMAS DIGITALES Tema 8: Circuitos Secuenciales (Síntesis) Nombre del curso: Sistemas Digitales Nombre del docente: Héctor Vargas
EIE 446 - SISTEMAS DIGITALES Tema 8: Circuitos Secuenciales (Síntesis) Nombre del curso: Sistemas Digitales Nombre del docente: Héctor Vargas OBJETIVOS DE LA UNIDAD Entender el concepto de Máquina de estados
Lógica Secuencial. Circuitos Digitales, 2º de Ingeniero de Telecomunicación ETSIT ULPGC
Lógica Secuencial Circuitos Digitales, 2º de Ingeniero de Telecomunicación ETSIT ULPGC Componentes secuenciales Contienen elementos de memoria Los valores de sus salidas dependen de los valores en sus
Tema 2. Fundamentos de la Teoría de Lenguajes Formales
Departamento de Tecnologías de la Información Tema 2. Fundamentos de la Teoría de Lenguajes Formales Ciencias de la Computación e Inteligencia Artificial Índice 2.1. Alfabeto 2.2. Palabra 2.3. Operaciones
Lenguajes (gramáticas y autómatas)
Lenguajes (gramáticas y autómatas) Elvira Mayordomo Universidad de Zaragoza 19 de septiembre de 2013 Elvira Mayordomo (Universidad de Zaragoza) Lenguajes (gramáticas y autómatas) 19 de septiembre de 2013
En matemáticas el concepto de conjunto es considerado primitivo y no se da una definición de este, por lo tanto la palabra CONJUNTO debe aceptarse
En matemáticas el concepto de conjunto es considerado primitivo y no se da una definición de este, por lo tanto la palabra CONJUNTO debe aceptarse lógicamente como un término no definido. Un conjunto se
Introducción a los Sistemas Secuenciales. Problemas estructurales en un circuito secuencial asíncrono
Definiciones básicas Autómatas De Mealy De Moore Formas de descripción de un sistema secuencial Diagrama de estado Tabla de flujo Tabla de estado-salida Tabla de transición Proceso de análisis de sistemas
PROCESADORES DE LENGUAJE EXAMEN FINAL 8-JUNIO-07
PROCESADORES DE LENGUAJE EXAMEN FINAL 8-JUNIO-07 1. En qué método de análisis sintáctico puede suceder que en la construcción del árbol de derivación de las posibles expansiones de un símbolo no terminal
Tema 2: Autómatas finitos
Tema 2: Autómatas finitos Departamento de Sistemas Informáticos y Computación DSIC - UPV http://www.dsic.upv.es p. 1 Tema 2: Autómatas finitos Autómata finito determinista (AFD). Formas de representación
Cualquier lenguaje de contexto libre, L, puede ser generado por medio de una GCL, G, que cumpla las siguientes condiciones:
Teoría de Autómatas y Lenguajes Formales Boletín de Autoevaluación 5: Cómo se simplifica una Gramática de Contexto Libre?. 1. Objetivos. El objetivo de este boletín es ilustrar cómo proceder para simplificar
Máquinas Secuenciales, Autómatas y Lenguajes Formales. Tema 4: Autómatas finitos deterministas. Holger Billhardt holger.billhardt@urjc.
Formales Tema 4: Autómatas finitos deterministas Holger Billhardt [email protected] Sumario: Bloque 2: Autómatas Finitos 4. Autómatas Finitos Deterministas 1. Concepto y Definición 2. Autómata finito
PONTIFICIA UNIVERSIDAD CATOLICA DEL ECUADOR FACULTAD DE INGENIERIA ESCUELA DE INGENIERIA DE SISTEMAS
PONTIFICIA UNIVERSIDAD CATOLICA DEL ECUADOR FACULTAD DE INGENIERIA ESCUELA DE INGENIERIA DE SISTEMAS 1. DATOS INFORMATIVOS MATERIA: DISEÑO DE LENGUAJES Y AUTOMATAS: CARRERA: INGENIERÍA DE SISTEMAS NIVEL:
Teoría de Autómatas y Lenguajes Formales.
Teoría de Autómatas y Lenguajes Formales Ejercicios de Lenguajes Regulares Autores: Araceli Sanchis de Miguel Agapito Ledezma Espino Jose A. Iglesias Martínez Beatriz García Jiménez Juan Manuel Alonso
Compiladores: Análisis Sintáctico. Pontificia Universidad Javeriana Cali Ingenieria de Sistemas y Computación Prof. Gloria Inés Alvarez V.
Compiladores: Análisis Sintáctico Pontificia Universidad Javeriana Cali Ingenieria de Sistemas y Computación Prof. Gloria Inés Alvarez V. Sintaxis Define la estructura del lenguaje Ejemplo: Jerarquía en
FUNDAMENTOS NUMÉRICOS SEMANA 4
FUNDAMENTOS NUMÉRICOS SEMANA 4 ÍNDICE INECUACIONES Y DESIGUALDADES... 3 APRENDIZAJES ESPERADOS... 3 INTRODUCCIÓN... 3 INECUACIONES... 4 REGLAS DE LAS DESIGUALDADES... 4 INECUACIONES LINEALES... 5 INECUACIONES
Teoría de la Computación para Ingeniería de Sistemas: un enfoque práctico. Prof. Hilda Contreras
Teoría de la Computación para Ingeniería de Sistemas: un enfoque práctico Prof. Hilda Contreras 25 de abril de 2012 Índice general 1. Expresiones regulares 5 1.0.1. Denición de las expresiones regulares...................
Capítulo 7: Expresiones Regulares
Capítulo 7: Expresiones Regulares 7.1. Concepto de expresión regular 7.1.1. Definición 7.1.2. Lenguaje descrito 7.1.3. Propiedades 7.2. Teoremas de equivalencia 7.2.1. Obtener un AFND a partir de una expresión
TEORÍA DE AUTÓMATAS Y LENGUAJES FORMALES TRABAJO DE PRÁCTICAS. Convocatoria de junio de 2013
TEORÍA DE AUTÓMATAS Y LENGUAJES FORMALES Ingeniería Técnica en Informática de Sistemas Segundo curso Departamento de Informática y Análisis Numérico Escuela Politécnica Superior Universidad de Córdoba
Expresiones Regulares y Derivadas Formales
Motivación e Ideas y Derivadas Formales La Derivación como Operación. Universidad de Cantabria Esquema Motivación e Ideas 1 Motivación e Ideas 2 3 Motivación Motivación e Ideas Sabemos como son los conjuntos
Procesadores de Lenguaje
Procesadores de Lenguaje Analizadores sintácticos descendentes: LL(1) Cristina Tîrnăucă Dept. Matesco, Universidad de Cantabria Fac. Ciencias Ing. Informática Primavera de 2013 Analizadores sintácticos
Matrices: repaso. Denotaremos con M m n el conjunto de matrices de tamaño m n, o sea, de m filas y n columnas. Una matriz A M m n es de la forma A =
Matrices: repaso Denotaremos con M m n el conjunto de matrices de tamaño m n, o sea, de m filas y n columnas Una matriz A M m n es de la forma a 11 a 1n A = a m1 a mn Denotaremos A ij = a ij el coeficiente
Inducción Matemática Conjuntos Funciones. Matemática Discreta. Agustín G. Bonifacio UNSL. Repaso de Inducción, Conjuntos y Funciones
UNSL Repaso de Inducción, y Inducción Matemática (Sección 1.7 del libro) Supongamos que queremos demostrar enunciados del siguiente tipo: P(n) : La suma de los primeros n números naturales es n(n+1)
Métodos para escribir algoritmos: Diagramas de Flujo y pseudocódigo
TEMA 2: CONCEPTOS BÁSICOS DE ALGORÍTMICA 1. Definición de Algoritmo 1.1. Propiedades de los Algoritmos 2. Qué es un Programa? 2.1. Cómo se construye un Programa 3. Definición y uso de herramientas para
TEORÍA DE CONJUNTOS.
TEORÍA DE CONJUNTOS. NOCIÓN DE CONJUNTO: Concepto no definido del cual se tiene una idea subjetiva y se le asocian ciertos sinónimos tales como colección, agrupación o reunión de objetos abstractos o concretos.
Introducción a la Probabilidad
Introducción a la Probabilidad Tema 3 Ignacio Cascos Depto. Estadística, Universidad Carlos III 1 Ignacio Cascos Depto. Estadística, Universidad Carlos III 2 Objetivos Entender el concepto de experimento
Sumario: Teoría de Autómatas y Lenguajes Formales. Capítulo 2: Lenguajes Formales. Capítulo 2: Lenguajes Formales
Teoría de Autómatas y Lenguajes Formales Capítulo 2: Lenguajes Formales Holger Billhardt [email protected] Sumario: Capítulo 2: Lenguajes Formales 1. Concepto de Lenguaje Formal 2. Operaciones sobre
Enteros (Z):..., -3, -2, -1, 0, 1, 2, 3,... Números enteros (positivos o negativos), sin decimales. Incluye a los naturales.
Tema 1: Números Reales 1.1 Conjunto de los números Naturales (N): 0, 1, 2, 3. Números positivos sin decimales. Sirven para contar. Enteros (Z):..., -3, -2, -1, 0, 1, 2, 3,... Números enteros (positivos
Espacios Vectoriales
Espacios Vectoriales Espacios Vectoriales Verónica Briceño V. noviembre 2013 Verónica Briceño V. () Espacios Vectoriales noviembre 2013 1 / 47 En esta Presentación... En esta Presentación veremos: Espacios
SEGUNDA OLIMPIADA ESTATAL DE MATEMÁTICAS
PROBLEMAS PROPUESTOS PARA LA ETAPA DE ZONA PRIMER GRADO 1. Marcos tiene todas las letras del abecedario en tres tamaños: grandes, medianas y pequeñas: A,B,C,D,E,...,Z A,B,C,D,E,...,Z A,B,C,D,E,...,Z Usando
Probabilidad: Fórmulas y definiciones básicas. PROBABILIDAD Fórmulas y definiciones básicas
PROAILIDAD Fórmulas y definiciones básicas 1) Definiciones básicas Experimento aleatorio: Aquél en el que interviene el azar (no es posible predecir el resultado de cada realización del experimento). Resultado
Clase 09: AFN, AFD y Construcción de Thompson
Clase 09: AFN, AFD y Construcción de Thompson Solicitado: Ejercicios 07: Construcción de AFN scon Thompson M. en C. Edgardo Adrián Franco Martínez http://computacion.cs.cinvestav.mx/~efranco @efranco_escom
6. Autómatas a Pila. Grado Ingeniería InformáDca Teoría de Autómatas y Lenguajes Formales
6. Autómatas a Pila Araceli Sanchis de Miguel Agapito Ledezma Espino José A. Iglesias Mar
TEORÍA DE AUTÓMATAS Y LENGUAJES FORMALES Práctica 3
TEORÍA DE AUTÓMATAS Y LENGUAJES FORMALES Práctica 3 1. Equivalencia entre autómatas 1.1. Equivalencia entre AFD y AFN 1.1. Equivalencia entre AFD y AFλ 2. Ejercicios propuestos 1. Equivalencia entre autómatas
Introducción a la Geometría Computacional. Análisis de Algoritmos
Introducción a la Geometría Computacional Análisis de Algoritmos Geometría Computacional La Geometría Computacional surgió a finales de los 70s del área de diseño y análisis de algoritmos. Estudio sistemático
Expresiones Regulares y Derivadas Formales
y Derivadas Formales Las Derivadas Sucesivas. Universidad de Cantabria Esquema 1 2 3 Derivadas Sucesivas Recordemos que los lenguajes de los prefijos dan información sobre los lenguajes. Derivadas Sucesivas
Recopilación de ejercicios sobre expresiones regulares en exámenes de Compiladores e intérpretes
Recopilación de ejercicios sobre expresiones regulares en exámenes de Compiladores e intérpretes IG29: Compiladores e intérpretes Segunda sesión de teoría Bloque 1: Modelado Ejercicio 1 Modela mediante
Autómatas Mínimos. Encontrar el autómata mínimo. Universidad de Cantabria. Introducción Minimización de Autómatas Deterministas Resultados Algoritmo
Autómatas Mínimos Encontrar el autómata mínimo. Universidad de Cantabria Introducción Dado un lenguaje regular sabemos encontrar un autómata finito. Pero, hay autómatas más sencillos que aceptan el mismo
13.3. MT para reconocer lenguajes
13.3. MT para reconocer lenguajes Gramática equivalente a una MT Sea M=(Γ,Σ,,Q,q 0,f,F) una Máquina de Turing. L(M) es el lenguaje aceptado por la máquina M. A partir de M se puede crear una gramática
5 Autómatas de pila 5.1 Descripción informal. 5.2 Definiciones
1 Curso Básico de Computación 5 Autómatas de pila 5.1 Descripción informal Un autómata de pila es esencialmente un autómata finito que controla una cinta de entrada provista de una cabeza de lectura y
Programación en java. Estructuras algorítmicas
Programación en java Estructuras algorítmicas Estructuras algoritmicas 1. Conceptos basicos 1. Dato 2. Tipos de datos 3. Operadores 2. dsd Conceptos Basicos DATO: se considera una representación simbólica
Introducción al Álgebra
Capítulo 3 Introducción al Álgebra L a palabra álgebra deriva del nombre del libro Al-jebr Al-muqābāla escrito en el año 825 D.C. por el matemático y astrónomo musulman Mohamad ibn Mūsa Al-Khwārizmī. El
1. EJERCICIOS TEMAS 1 Y 2.
. EJERCICIOS TEMAS Y 2... Construir un analizador para direcciones web del tipo www.nombrededominio.extensión donde nombrededominio es cualquier palabra escrita en caracteres latinos de longitud máxima
SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD
Pág. 1 PÁGINA 191 EJERCICIOS Epresiones algebraicas 1 Haz corresponder cada enunciado con su epresión algebraica: La mitad de un número. El triple de la mitad de un número. La distancia recorrida en horas
Introducción a Autómatas Finitos
Introducción a e. Universidad de Cantabria Esquema 1 Introducción 2 3 Grafo de λ Transiciones Eliminación de las λ-transiciones 4 El Problema Podemos interpretar un autómata como un evaluador de la función
Nivel del ejercicio : ( ) básico, ( ) medio, ( ) avanzado.
Universidad Rey Juan Carlos Curso 2010 2011 Teoría de Autómatas y Lenguajes Formales Ingeniería Técnica en Informática de Sistemas Hoja de Problemas 10 Gramaticas Independientes del Contexto Nivel del
