QUÍMICA INORGÁNICA AVANZADA NOCIONES DE RADIOQUÍMICA

Tamaño: px
Comenzar la demostración a partir de la página:

Download "QUÍMICA INORGÁNICA AVANZADA NOCIONES DE RADIOQUÍMICA"

Transcripción

1 QUÍMICA INORGÁNICA AVANZADA NOCIONES DE RADIOQUÍMICA Química nuclear Comprende el estudio de: reacciones nucleares (energía, tipo de decaimiento, energía de desactivación), propiedades de los elementos radiactivos, efectos de la radiación ionizante. Radioquímica 1895 Roentgen descubre los rayos X 1896 Becquerel descubre la radiactividad del uranio Crookes, Becquerel, Rutherford, Soddy, Dorn y otros estudian radioelementos 1898 P. y M. Curie descubren Po y Ra empleando el primer método radioquímico 1913 Fajans y Soddy explican las series radiactivas asumiendo la existencia de isótopos 1949 comienza en Argentina el uso de la energía nuclear con fines pacíficos 1950 se crea la Comisión Nacional de Energía Atómica (CNEA) 1953 se cuenta con un acelerador de partículas 1957 se inaugura el reactor RA-1 en el Centro Atómico Constituyentes 1968 se inaugura el reactor RA-3 diseñado y construido en el país en Ezeiza Actividades de la CNEA: radioquímica, metalurgia, minería del uranio, construcción y operación de reactores de investigación y sus combustibles, producción de radioisótopos, empleo de las radiaciones ionizantes para diagnóstico y tratamiento médico, nucleoelectricidad. Unidades ev 1 ev= 1,602x10-19 J Curie (Ci) 1 Ci= 3,70x10 10 desintegraciones/seg Becquerel (Bq) 1 Bq= 1 desintegración/seg Roentgen (R) 1 R= 2,58x10-4 C/kg capacidad ionizante de rayos X Núcleo atómico Diámetro de un átomo 10-8 cm, del núcleo cm, radio del átomo es 10 5 veces mayor que el radio del núcleo, el núcleo tiene una densidad de g/cm 3. Prácticamente la masa del átomo se concentra en el núcleo. Nucleido átomo con características nucleares específicas, caracterizado por el número de: protones ( número atómico, z) y neutrones (n). Isodiáfero: igual exceso de n. Isómero: igual A y z y distinto estado energético. 1

2 Elementos en el universo Abundancia de Fe (z= 26) y Ni (z= 28) núcleos estables, energía de unión. Se libera un exceso de energía si: dos núcleos con A < 56 se mezclan (fusión) un núcleo con A > 56 se divide (fisión). Serie de desintegración naturales Existen tres series: Th-232, U-238, Ac-227 y la serie Np-297: que debería haberse extinguido pruebas nucleares han liberado núcleos de la cadena radiactiva. N= número entero. Banda de estabilidad Hasta z 20 los isótopos estables en general tienen la misma cantidad de n que de p, a > z. Los isótopos estables tienen mayor cantidad de neutrones. 2

3 Tabla de nucleidos Tabla de Eggerbert Números mágicos: se ha establecido que los núcleos que presentan n o p igual a los siguiente números son más estables que otros núcleos: 2, 8, 20, 28, 50, 82, 126. Serían los números necesarios para completar todos los niveles en el modelo de capas. Modelo de capas: los n y p se ubican en capas de distintos niveles energéticos La estabilidad se puede lograr por una transformación o por una cadena de transformaciones, la desintegración radiactiva se produce al azar. Radiactividad: fenómeno por el cual núcleos inestables decaen espontáneamente emitiendo partículas de alta energía. 3

4 Tipos relevantes de desintegración: - α: núcleos de 4He, partículas energéticas y poco penetrantes, τ= 10-7 segundos a años, radiaciones α son monoenergéticas: 4-8 MeV, se explica por efecto túnel, esta energía es menor que la necesaria para superar la barrera de energía potencial de 20 MeV, cuanto más estrecha es la barrera de energía potencial, más probable y frecuente es la emisión α. Espectro de energía α para 212Bi 208Tl Regla de Geiger-Nuttal: los núcleos que experimentan desintegración con más frecuencia (menor τ) emiten las partículas α más energéticas. - β: electrones o positrones emitidos con un espectro continuo de energía, tienen todo un espectro continuo de energía (0 al valor máximo), para cumplir con el principio de la conservación de la energía y de momento angular se supuso la existencia del neutrino (descubierto en 1956), ni la partícula β ni el neutrino existen dentro del núcleo, se forman al emitirse. 4

5 Espectro de electrones (β-) emitidos por el Cs-137 β-: e- producidos como consecuencia de la conversión de un neutrón a un protón, n p + β- β+: positrones producidos por la conversión de un protón a un neutrón, p n + β+ Los positrones interaccionan con electrones dejando como saldo una radiación de aniquilamiento en forma de rayos γ. - γ: fotones de alta energía muy penetrantes. Tienen altas energías= varios MeV, las transiciones ocurren entre unos a 10-3 segundos. Espectro de Au-197 5

6 - Captura electrónica: si en algún momento hay un solapamiento entre el campo energético del núcleo y un orbital el electrón puede ser capturado por el núcleo, el electrón se neutraliza y un protón se convierte en un neutrón, es un proceso competitivo con emisión β+. El electrón pertenece generalmente (80 %) a la capa K, al saltar los electrones de las capas superiores se emiten rayos X, estos rayos X a su vez pueden arrancar otros electrones: electrones Auger. - Fisión espontánea: un núcleo inestable se rompe en dos núcleos prácticamente iguales, sucede en núcleos muy pesados (de U en adelante), por ejemplo en 1 kg de U-238 se producen 4, emisiones de partículas α por segundos. - Conversión interna: la energía de transición de un estado excitado es transferida a un electrón que luego es expelido del átomo. - Transición isomérica: el núcleo tiene un estado metaestable con un período definido y cae a un nivel energético menor emitiendo un rayo γ o algún otro proceso. Velocidad de desintegración La probabilidad de que un átomo radiactivo en particular se desintegre en la unidad de tiempo es independiente del destino de los átomos que lo rodean y de las condiciones físicas (independiente de las propiedades químicas), sólo depende de la estructura del núcleo, es un proceso gobernado por las leyes del azar por lo que se puede tratar por métodos estadísticos. La probabilidad se denomina constante de desintegración (λ), dn = -λn.dt, en el instante t 0 existen N átomos radiactivos, después de t 0 + dt se han desintegrado dn átomos. - dn/dt se denomina actividad, se mide en Cu o Bq, representa la velocidad de desintegración de un núcleo, no representa una velocidad de emisión de partículas. Por ejemplo, si bien el Mo-99 emite una partícula β- de 1,10 MeV sólo en un 17 % de las desintegraciones y en un 82 % una partícula β- de 0,143 MeV. Es importante para calcular la actividad medida por un detector o para cálculo de dosis recibidas. Integrando la ecuación fundamental de la desintegración radiactiva para N = N0 en el instante t=0: N= N0 e-λt, la vida media (τ, mean life) es el tiempo promedio de las vidas de los átomos iniciales: τ= 1/λ y el tiempo de vida media (half life, τ ½ ) es el intervalo de tiempo necesario para que el número de átomos iniciales se reduzca a la mitad: τ ½ = ln 2/λ= 0,693/λ. Interacción de la radiación con la materia Toda interacción de un isótopo radiactivo depende de la radiación emitida (energía y tipo de desintegración), es imprescindible conocerlos para protección. Radiación Energía Alcance en aire agua α 3-9 MeV 3-8 cm μm β 0-5 Mev 0-10 m 0-1 mm n 0-10 MeV m 0-1 m γ 0 kev-10 MeV cm-100 m mm-10 cm X ev-100 kev m-10 m μm-1 cm 6

7 Ionización: cuando una partícula cargada pasa cerca de un átomo actúan fuerzas electrostáticas entre la partícula y los electrones de los orbitales, un electrón puede adquirir energía suficiente para separarse del átomo, se forma un par de iones, la partícula pierde parte de su energía. En aire se requieren unos 32,5 ev para formar un par de iones, por ejemplo, si se dispone de 1 mci de un emisor α que proporciona partículas de 4 MeV y que transfiera esa energía al aire se produce una corriente de 7,2x10-7 A, la base para la medición de la actividad mediante corriente iónica. Excitación: se produce cuando la energía impartida al electrón no es suficiente para arrancarlo del átomo, pero es suficiente para adquiera mayor energía dentro del átomo, el átomo excitado vuelve al estado inicial emitiendo luz de radiación característica, es la base para la medición de la actividad por detección de radiaciones mediante contadores de centelleo. Ionización específica: se mide por par de iones por cm de recorrido, cuando una partícula atraviesa un medio dado, la longitud del recorrido dependerá de la energía inicial y de la velocidad con que esa energía se pierde por unidad de longitud de recorrido, por ejemplo es 4x104 para partículas α y 50 para las partículas beta. Bremsstrahlung: radiación electromagnética originada por el cambio en la velocidad de una partícula β cuando es desviada cerca de un núcleo, tiene propiedades similares a los rayos X, los mejores absorbentes de bremsstrahlung son los materiales de número atómico bajo. Autoabsorción: existe cuando un emisor de partículas β está uniformemente distribuido en un medio absorbente, depende de la energía y del espesor en mg/cm2, es importante para el conteo de emisores β de baja energía como el C-14 y el S-35. Aniquilación de positrones: cuando decrece la energía cinética de la partícula β+ aumenta la probabilidad de la interacción directa entre un electrón y la partícula β+, la energía de la masa de dos electrones se convierte en radiación electromagnética se forman dos fotones de 0,51 MeV cada uno. Radiación Cerenkov: la velocidad de la luz (c) en la materia depende del índice de refracción del medio, partículas β con E > 0,6 MeV se mueven en agua más rápidamente que la luz, cuando la velocidad de la partícula es > c use emite radiación electromagnética (color azulado). Los rayos γ interacciona con la materia mediante tres procesos conocidos: Efecto fotoeléctrico: la energía total es transferida a un electrón, predomina a bajas energías y en materiales de z alto. Efecto Compton: es un choque elástico, la energía total es compartida con el electrón, resultando un 7

8 rayo γ de menor energía y distinta dirección, predomina a energías medias. Producción de pares: si el fotón γ tiene energía suficiente y se halla cerca de un núcleo puede crear un par positrón-electrón, predomina a altas energías y en materiales de z elevado. Propiedades de las radiaciones - partículas α: por su alta ionización específica la distancia que pueden recorrer en un medio dado es pequeña, alcance (R) se mide en mg/cm 2 R (mg/cm 2 ) = 0,173 E 3/ α 2 A 1/3 z Az= PA del absorbente R (cm) = R (mg /cm2 ) 10 3 ρ(g/cm 3 ) densidad (ρ, g/cm3): - aire = 0, tejido 1,0 - Al = 2,70 - Cu= 8,96 En aire una partícula α de 3 MeV tiene un alcance de 1,6 cm y puede ser detenida por una lámina de aluminio de un espesor de aproximadamente 0,015 mm. - partículas β: abandona el núcleo con una velocidad aproximadamente igual a la de la luz, si pasa cerca de un electrón es desviada perdiendo energía, cuanto mayor es el número de átomos que encuentra más rápidamente pierde su energía hasta ser capturada por un átomo. Por ejemplo, se requieren unos 6 mm de Al para detener una partícula β de 3 MeV. R (g/cm 2 ) = ρ(g/cm 3 ) R(cm) Radiodosimetría Unidades de dosis de radiación: Rad 1 rad= 10-2 J/kg = 100 erg/g Gray (Gy) 1 Gy= 100 rad r: Roentgen rem: roentgen equivalente hombre Sievert (Sv) 1 Sv= 1 J/kg = 100 rem Dosis letal 50 % (DL50): dosis necesaria para matar el 50% de una población dada El efecto que producen las radiaciones en un medio depende de la energía depositada en el medio, si atraviesa el medio sin interactuar no produce efecto, si cede energía se producen cambios físicos, químicos o biológicos. Intensidad de dosis (ID, MeV/cm3 s): es la cantidad de entrega de energía por unidad de volumen y unidad de tiempo. Intensidad de la radiación (I, MeV/cm2 s): es la cantidad de energía por unidad de superficie y unidad de tiempo. Exposición a rayos X o γ (X, r): es una medida de la capacidad ionizante de los rayos X o γ en el aire, se tiene una exposición de 1 r cuando la ionización producida por electrones secundarios en 1 cm 3 de aire seco en CNPT es igual a la unidad electrostática de carga de cada signo. 8

9 Dosis absorbida (D, Gy): es la cantidad de energía por unidad de masa que es absorbida en un punto de interés. Tasa de dosis absorbida (Ḋ, Gy/s): es la cantidad de energía por unidad de masa y unidad de tiempo Dosis equivalente (H, Sv): es la dosis absorbida por la calidad de la radiación (Q) y un factor n que modifica la dosis de acuerdo a las condiciones: H = D. Q. n. Para conocer Q se debe conocer el tipo de radiación, valores de Q medio: Q= 1 para rayos X, γ y β- Q= 2,3 para neutrones térmicos Q= 10 para neutrones y β+ Q= 20 para partículas α Dosis equivalente efectiva (He, Sv): se estableció como magnitud limitante de dosis por el ICRP (Comisión Internacional de Protección Radiológica): He = t Ht. Wt, Ht= dosis absorbida por un órgano (tejido, t) en particular, wt= factor que indica la proporción de daño que sufre ese órgano en comparación con el daño total (por ejemplo, wt= 0,20 para gónadas; wt= 0,12 médula ósea, colon, estómago y pulmón; wt= 0,05 para tiroides, hígado; wt= 0,01 para piel, hueso). Dosimetría de fuente externa: la fuente de radiación se encuentra fuera del sistema al cual se someta para producir un determinado efecto, si se suponen fuentes puntuales y un haz de rayos paralelos a lo largo de un espesor x: N= N0 e-μx donde μ: es el coeficiente lineal de atenuación, da la probabilidad de interacción. Dosimetría de fuente interna: la fuente de radiación se introduce en el sistema al cual se someta para producir un determinado efecto, si se introduce en el organismos es metabolizado. El órgano crítico: es aquel que recibe la mayor dosis total de radiación, por ejemplo se usa 131 I para estudiar tiroides. Exposición a radiación ionizante Blindaje Se calcula el espesor de blindaje de tal manera de cumplir con las normas de seguridad. blindaje hacia adentro: si se conoce la distancia entre la fuente y el receptor. blindaje hacia afuera: se conoce la distancia de la fuente hacia la pared interna del blindaje. Por ejemplo, blindaje contra radiación γ, el caso más simple si se supone un sistema con geometría de haz estrecho y atenuación exponencial: I x = I 0 e-μx donde I x : intensidad con un absorbente de espesor x, I 0 : intensidad sin absorbente, μ: coeficiente de absorción lineal y x: espesor del absorbente. 9

Propiedades Generales de Radiación X y Gamma. Curso de actualización en Protección Radiológica Lic. Alejandro Germanier. 2013

Propiedades Generales de Radiación X y Gamma. Curso de actualización en Protección Radiológica Lic. Alejandro Germanier. 2013 Propiedades Generales de Radiación X y Gamma. Curso de actualización en Protección Radiológica Lic. Alejandro Germanier. 2013 Radiación. Radiación No ionizante Ionizante Directamente Ionizante. Indirectamente

Más detalles

INTERACCION DE LAS RADIACIONES ELECTROMAGNETICAS CON LA MATERIA

INTERACCION DE LAS RADIACIONES ELECTROMAGNETICAS CON LA MATERIA NTERACCON DE LAS RADACONES ELECTROMAGNETCAS CON LA MATERA B.C. Paola Audicio Asistente de Radiofarmacia, CN Radiación ionizante: ionización del material atravesado M M + + e - excitación de las estructuras

Más detalles

J.M.L.C. IES Aguilar y Cano ALGUNOS DERECHOS RESERVADOS

J.M.L.C. IES Aguilar y Cano ALGUNOS DERECHOS RESERVADOS La radiactividad o radioactividad es un fenómeno físico natural, por el cual algunas sustancias o elementos químicos llamados radiactivos, emiten radiaciones que tienen la propiedad de impresionar placas

Más detalles

Radiactividad Medicina Nuclear (1993) Radioterapia y Radiodiagnóstico (2008) Facultad de Ingeniería, UNER

Radiactividad Medicina Nuclear (1993) Radioterapia y Radiodiagnóstico (2008) Facultad de Ingeniería, UNER Radiactividad Medicina Nuclear (1993) Radioterapia y Radiodiagnóstico (008) Facultad de Ingeniería, UNER 1. Ley de decaimiento En la naturaleza hay isótopos inestables y metaestables que pueden emitir

Más detalles

Conceptos básicos sobre interacción de la radiación ionizante con la materia

Conceptos básicos sobre interacción de la radiación ionizante con la materia Conceptos básicos sobre interacción de la radiación ionizante con la materia Martín Gascón Introducción al laboratorio de Física Nuclear Técnicas experimentales avanzadas Departamento de Física de Partículas

Más detalles

LOS RAYOS X FUNDAMENTOS FÍSICOS DE IMÁGENES DIAGNÓSTICAS - PILAR INFANTE L - FIACIBI

LOS RAYOS X FUNDAMENTOS FÍSICOS DE IMÁGENES DIAGNÓSTICAS - PILAR INFANTE L - FIACIBI LOS RAYOS X FUNDAMENTOS FÍSICOS DE IMÁGENES DIAGNÓSTICAS - PILAR INFANTE L - FIACIBI FUNDAMENTOS FÍSICOS DE IMÁGENES DIAGNÓSTICAS - PILAR INFANTE L - FIACIBI -Se propagan en línea recta. -Ionizan el aire.

Más detalles

Actividad y Leyes del Decaimiento Radiactivo

Actividad y Leyes del Decaimiento Radiactivo ctividad y Leyes del Decaimiento Radiactivo Características del Fenómeno de la Transformación Radiactiva Se denomina radiactividad al proceso de transformación espontánea nea de núcleos atómicos mediante

Más detalles

Interacción de las Radiaciones con la Materia Medicina Nuclear (1993) Radioterapia y Radiodiagnóstico (2008) Facultad de Ingeniería, UNER

Interacción de las Radiaciones con la Materia Medicina Nuclear (1993) Radioterapia y Radiodiagnóstico (2008) Facultad de Ingeniería, UNER Interacción de las Radiaciones con la Materia Medicina Nuclear (993) Radioterapia y Radiodiagnóstico (008) Facultad de Ingeniería, UNER. Interacción de la radiación ionizante con la materia Cuando la radiación

Más detalles

ESTRUCTURA DE LA MATERIA VICENTE PUCHADES PUCHADES. SERVICIO DE RADIOFÍSICA Y PROTECCIÓN RADIOLÓGICA DEL HGU SANTA LUCÍA. CARTAGENA.

ESTRUCTURA DE LA MATERIA VICENTE PUCHADES PUCHADES. SERVICIO DE RADIOFÍSICA Y PROTECCIÓN RADIOLÓGICA DEL HGU SANTA LUCÍA. CARTAGENA. ESTRUCTURA DE LA MATERIA VICENTE PUCHADES PUCHADES. SERVICIO DE RADIOFÍSICA Y PROTECCIÓN RADIOLÓGICA DEL HGU SANTA LUCÍA. CARTAGENA. INDICE Qué es la materia? Modelos de la materia Fuerzas Fundamentales

Más detalles

INTERACCIÓN DE LA RADIACIÓN IONIZANTE CON LA MATERIA.

INTERACCIÓN DE LA RADIACIÓN IONIZANTE CON LA MATERIA. CAPÍTULO 2 INTERACCIÓN DE LA RADIACIÓN IONIZANTE CON LA MATERIA. La radiación ionizante es aquella capaz de excitar y ionizar átomos en la materia con que interactúa. Entre las radiaciones ionizantes tenemos

Más detalles

Resolución PRÁCTICO 9

Resolución PRÁCTICO 9 Resolución PRÁCTICO 9 1- Complete las siguientes ecuaciones nucleares, remplazando las X por los símbolos o números correspondientes (Nota: X toma diferentes números y símbolos en cada una de las situaciones):

Más detalles

Interacción de neutrones con la materia. Laura C. Damonte 2014

Interacción de neutrones con la materia. Laura C. Damonte 2014 Interacción de neutrones con la materia Laura C. Damonte 2014 Interacción de neutrones con la materia La interacción de los neutrones con la materia tiene interés tanto experimental y teórico como también

Más detalles

Núcleo Atómico. El núcleo es una masa muy compacta formada por protones y neutrones.

Núcleo Atómico. El núcleo es una masa muy compacta formada por protones y neutrones. Núcleo Atómico Profesor: Robinson Pino H. 1 COMPONENTES DEL NÚCLEO ATÓMICO El núcleo es una masa muy compacta formada por protones y neutrones. PROTÓN PROTÓN(p + ) Es una partícula elemental con carga

Más detalles

Masterclass Aceleradores de partículas

Masterclass Aceleradores de partículas Unidad de Divulgación Científica del Centro Nacional de Aceleradores (CNA) Masterclass Aceleradores de partículas 1. Técnicas experimentales empleadas en el CNA 2. Ley de decaimiento radiactivo y su aplicación

Más detalles

ANEXO II. Estimación de dosis por exposición externa

ANEXO II. Estimación de dosis por exposición externa ANEXO II. Estimación de dosis por exposición externa A) Definición de los términos utilizados en el presente anexo Dosis equivalente ambiental H* (d): dosis equivalente en un punto determinado de un campo

Más detalles

EL NÚCLEO ATÓMICO. (8p, pn) y O 8. (8p, 8n), O 8. Los núcleidos O 8

EL NÚCLEO ATÓMICO. (8p, pn) y O 8. (8p, 8n), O 8. Los núcleidos O 8 EL NÚCLEO ATÓMICO Los núcleos retienen sus identidades en los procesos químico, y las propiedades nucleares, con excepción de la carga, influyen en el comportamiento químico de modos tan sólo indirectos

Más detalles

N está formado por 7 protones y 8 neutrones, luego su masa teórica debería ser:

N está formado por 7 protones y 8 neutrones, luego su masa teórica debería ser: 01. Calcular la energía de enlace por nucleón del isótopo 15 N sabiendo que su masa es 15,0001089 u. Datos: 1 u = 1, 10-2 g ; m p = 1,002 u; m n = 1,0085 u El núcleo 15 N está formado por protones y 8

Más detalles

Tema 1: Núcleo atómico y Desintegración

Tema 1: Núcleo atómico y Desintegración Tema 1: Núcleo atómico y Desintegración Núcleo atómico. Radiactividad. Modos de Decaimiento N ú c l e o t ó m i c o El núcleo atómico es la parte del átomo que contiene toda la carga positiva y la mayoría

Más detalles

TUTORIA 3: EFECTO DE LA RADIACIÓN RESUMEN Radiactividad natural: determinados isótopos de algunos elementos, de forma espontánea: Se desintegran,

TUTORIA 3: EFECTO DE LA RADIACIÓN RESUMEN Radiactividad natural: determinados isótopos de algunos elementos, de forma espontánea: Se desintegran, RESUMEN Radiactividad natural: determinados isótopos de algunos elementos, de forma espontánea: Se desintegran, convirtiéndose en otros elementos Emitiendo diferentes tipos de radiación Radiactividad artificial:

Más detalles

Slide 1 / 33. Slide 2 / 33. Slide 3 / El número atómico es equivalente a cuál de los siguientes? A El número de neutrones del átomo.

Slide 1 / 33. Slide 2 / 33. Slide 3 / El número atómico es equivalente a cuál de los siguientes? A El número de neutrones del átomo. Slide 1 / 33 Slide 2 / 33 3 El número atómico es equivalente a cuál de los siguientes? Slide 3 / 33 A El número de neutrones del átomo. B El número de protones del átomo C El número de nucleones del átomo.

Más detalles

La estructura atómica: el núcleo

La estructura atómica: el núcleo Tema 1 La estructura atómica: el núcleo Introducción. Modelos atómicos Composición del átomo. Partículas fundamentales Estructura del núcleo Estabilidad nuclear y energía de enlace nuclear Aplicaciones

Más detalles

---- Debe indicarse claramente nombres y números de lista de los alumnos integrantes del grupo.

---- Debe indicarse claramente nombres y números de lista de los alumnos integrantes del grupo. LICEO Confederación Suiza SECTOR: Química GUÍA DE APRENDIZAJE NIVEL: 4 Medio PROFESOR(A): Genny Astudillo Castillo UNIDAD TEMÁTICA: Química Nuclear CONTENIDO: Fisión y fusión nuclear OBJETIVO DE APRENDIZAJE:

Más detalles

EL ÁTOMO CONTENIDOS. ANTECEDENTES HISTÓRICOS. ( ) MODELOS ATÓMICOS. RAYOS CATÓDICOS. MODELO DE THOMSON.

EL ÁTOMO CONTENIDOS. ANTECEDENTES HISTÓRICOS. ( ) MODELOS ATÓMICOS. RAYOS CATÓDICOS. MODELO DE THOMSON. EL ÁTOMO CONTENIDOS. 1.- Antecedentes históricos.( ) 2.- Partículas subatómicas. ( ) 3.- Modelo atómico de Thomsom. 4.- Los rayos X. 5.- La radiactividad. 6.- Modelo atómico de Rutherford. 7.- Radiación

Más detalles

JORNADA SOBRE EVALUACION DE UNIDADES TECNICAS DE PROTECCION RADIOLOGICA RADIACIONES IONIZANTES

JORNADA SOBRE EVALUACION DE UNIDADES TECNICAS DE PROTECCION RADIOLOGICA RADIACIONES IONIZANTES JORNADA SOBRE EVALUACION DE UNIDADES TECNICAS DE PROTECCION RADIOLOGICA RADIACIONES IONIZANTES TECNICAS DE ANALISIS Y GESTION DE AGENTES FISICOS. RADIACIONES IONIZANTES. INSTALACIONES RADIOLOGICAS CENTRO

Más detalles

Radiactividad y Física Nuclear (I): Radiactividad Natural diferentes tipos de radiación

Radiactividad y Física Nuclear (I): Radiactividad Natural diferentes tipos de radiación Radiactividad y Física Nuclear (I): Radiactividad Natural diferentes tipos de radiación 1896 : Becquerel descubre la Pechblenda( mineral de uranio), capaz de impresionar placas fotográficas en ausencia

Más detalles

1. Aspectos Administrativos (10 Minutos) 2. Teoría de la Radiación (20 Minutos) 5. Sesión de Preguntas (10 Minutos)

1. Aspectos Administrativos (10 Minutos) 2. Teoría de la Radiación (20 Minutos) 5. Sesión de Preguntas (10 Minutos) Radioactividad 1. Aspectos Administrativos (10 Minutos) 2. Teoría de la Radiación (20 Minutos) 3. Características de la Radiación (15 Minutos) 5. Sesión de Preguntas (10 Minutos) Aspectos Administrativos

Más detalles

Tema 15 RADIACIONES IONIZANTES Y NO IONIZANTES

Tema 15 RADIACIONES IONIZANTES Y NO IONIZANTES Tema 15 RADIACIONES IONIZANTES Y NO IONIZANTES CONCEPTO DE RADIACION Concepto y tipos de radiaciones Radiaciones ionizantes Unidades de medida Efectos biológicos: radiosensibilidad Reglamento de protección

Más detalles

INTERACCION DE LA RADIACION CON LA MATERIA

INTERACCION DE LA RADIACION CON LA MATERIA Pág. 1 de 11 INTERACCION DE LA RADIACION CON LA MATERIA Cuando se habla de reacciones nucleares se hace referencia a todo tipo de interacción con los núcleos atómicos. Un tema más general, que engloba

Más detalles

ESPECTROMETRÍA DE RAYOS GAMMA DE MUESTRAS DE AU 198 USANDO UN DETECTOR DE INa(TI)

ESPECTROMETRÍA DE RAYOS GAMMA DE MUESTRAS DE AU 198 USANDO UN DETECTOR DE INa(TI) ESPECTROMETRÍA DE RAYOS GAMMA DE MUESTRAS DE AU 198 USANDO UN DETECTOR DE INa(TI) Llaneza, Natalia Orso, josé A. Resumen: Se utilizan varias muestras radiactivas de Au 198 para obtener su periodo de semidesintegración

Más detalles

RADIACIONES IONIZANTES. PRODUCCIÓN. INTERACCIÓN CON LA MATERIA. MEDIDA DE LA RADIACIÓN. MAGNITUDES Y UNIDADES.

RADIACIONES IONIZANTES. PRODUCCIÓN. INTERACCIÓN CON LA MATERIA. MEDIDA DE LA RADIACIÓN. MAGNITUDES Y UNIDADES. RADIACIONES IONIZANTES. PRODUCCIÓN. INTERACCIÓN CON LA MATERIA. MEDIDA DE LA RADIACIÓN. MAGNITUDES Y UNIDADES. Xavier Pifarré Scio Radiofísica Hospital Puerta de Hierro Mayo 2014 Desde la antigüedad el

Más detalles

Problemas de Física moderna. Nuclear 2º de bachillerato. Física

Problemas de Física moderna. Nuclear 2º de bachillerato. Física 1 Problemas de Física moderna. Nuclear º de bachillerato. Física 1. El isótopo 34 U tiene un periodo de semidesintegración de 50000 años. Si partimos de una muestra de 10 gramos de dicho isótopo, determine:

Más detalles

Qué es la energía nuclear? Tema1

Qué es la energía nuclear? Tema1 Toda la materia del universo está formada por moléculas que a su vez están constituidas por átomos, pequeñísimas unidades que durante mucho tiempo se consideraron invisibles. En la actualidad sabemos que

Más detalles

Ejercicios de Física cuántica y nuclear. PAU (PAEG)

Ejercicios de Física cuántica y nuclear. PAU (PAEG) 1. Las longitudes de onda del espectro visible están comprendidas, aproximadamente, entre 390 nm en el violeta y 740 nm en el rojo. Qué intervalo aproximado de energías, en ev, corresponde a los fotones

Más detalles

Radiactividad en el estado de Chihuahua. Un peligro para la salud. Dr. Luis H. Colmenero Sujo Secretario de la IMGA Capítulo México

Radiactividad en el estado de Chihuahua. Un peligro para la salud. Dr. Luis H. Colmenero Sujo Secretario de la IMGA Capítulo México Radiactividad en el estado de Chihuahua. Un peligro para la salud Dr. Luis H. Colmenero Sujo Secretario de la IMGA Capítulo México Jueves 25 de febrero 2016 Radiactividad en el estado de Chihuahua. Un

Más detalles

TÉCNICAS EXPERIMENTALES V FÍSICA CUÁNTICA

TÉCNICAS EXPERIMENTALES V FÍSICA CUÁNTICA TÉCNICAS EXPERIMENTALES V FÍSICA CUÁNTICA P1 Medida de la Constante de Planck. Efecto fotoeléctrico. RNB P2 Experimento de Franck-Hertz. Niveles de energía de los átomos RNB P3 Dispersión de Rutherford

Más detalles

QUIMICA GENERAL. Docente : Raquel Villafrades Torres

QUIMICA GENERAL. Docente : Raquel Villafrades Torres Universidad Pontificia Bolivariana QUIMICA GENERAL Docente : Raquel Villafrades Torres TEORIA ATOMICA DE DALTON (1808) BASES Ley de conservación de la masa: La masa total de las sustancias presentes después

Más detalles

Medición y comparación del coeficiente de atenuación lineal de líquidos (con y sin gas)

Medición y comparación del coeficiente de atenuación lineal de líquidos (con y sin gas) Medición y comparación del coeficiente de atenuación lineal de líquidos (con y sin gas) Marlen Hernández Ortiz Héctor Antonio Durán Muñoz Eduardo Manzanares Acuña Héctor René Vega Carrillo Unidad de Académica

Más detalles

Conceptos Básicos de la Energía Nuclear

Conceptos Básicos de la Energía Nuclear Conceptos Básicos de la Energía Nuclear El átomo En la naturaleza el átomo más simple que hay es el hidrógeno, cuenta con un protón y un electrón. Por tanto, para explicar el resto de los átomos, ha de

Más detalles

UNIDAD 1 LA ENERGÍA, LA MATERIA Y SUS CAMBIOS. 1.3 El sol, horno nuclear

UNIDAD 1 LA ENERGÍA, LA MATERIA Y SUS CAMBIOS. 1.3 El sol, horno nuclear UNIDAD 1 LA ENERGÍA, LA MATERIA Y SUS CAMBIOS 1.3 El sol, horno nuclear RADIACTIVIDAD Y DESINTEGRACIÓN NUCLEAR HISTORIA DEL ÁTOMO Hace aproximadamente 2500 años, los filósofos griegos, afirmaron que la

Más detalles

Procesos Físicos. Los rayos gamma son un tipo de radiación electromagnética de muy alta energía. Sus características son:

Procesos Físicos. Los rayos gamma son un tipo de radiación electromagnética de muy alta energía. Sus características son: Capítulo 3. Procesos Físicos. 3.1. Rayos Gamma Los rayos gamma son un tipo de radiación electromagnética de muy alta energía. Sus características son: Frecuencia: Mayores a 1 x 10 20 Hz Longitud de Onda:

Más detalles

CAPÍTULO 2. RADIACIÓN IONIZANTE

CAPÍTULO 2. RADIACIÓN IONIZANTE CAPÍTULO 2. RADIACIÓN IONIZANTE 2.1 Introducción La radiación ionizante está en todas partes. Llega desde el espacio exterior en forma de rayos cósmicos, está en el aire en forma de emisiones del radón

Más detalles

Programas de formación especializada y capacitación específica para el licenciamiento de personal de instalaciones radiactivas Clase I

Programas de formación especializada y capacitación específica para el licenciamiento de personal de instalaciones radiactivas Clase I Programas de formación especializada y capacitación específica para el licenciamiento de personal de instalaciones radiactivas Clase I GUÍA AR 10 REVISIÓN 0 Aprobada por Resolución ARN Nº 3/04 Autoridad

Más detalles

Magnitudes y Unidades en Protección Radiológica. César F. Arias carias@fi.uba.ar

Magnitudes y Unidades en Protección Radiológica. César F. Arias carias@fi.uba.ar Magnitudes y Unidades en Protección Radiológica César F. Arias carias@fi.uba.ar Publicaciones de: Principales Fuentes de Información Comisión Internacional de Unidades de Radiación ICRU (En Particular

Más detalles

Universidad Nacional de Villa Mercedes Facultad de Ciencias Médicas Lic. en Kinesiología y Fisiatría

Universidad Nacional de Villa Mercedes Facultad de Ciencias Médicas Lic. en Kinesiología y Fisiatría Universidad Nacional de Villa Mercedes Facultad de Ciencias Médicas Lic. en Kinesiología y Fisiatría ONDAS DEFINICION: Propagación de una perturbación (fenómeno ondulatorio) Propiedad de un medio, (densidad,

Más detalles

TEMAS SELECTOS DE FÍSICA CONTEMPORÁNEA. 1. Introducción a la mecánica cuántica Nanotecnología 18

TEMAS SELECTOS DE FÍSICA CONTEMPORÁNEA. 1. Introducción a la mecánica cuántica Nanotecnología 18 TEMAS SELECTOS DE FÍSICA CONTEMPORÁNEA 3 horas a la semana 6 créditos 3 horas teóricas y 0 de laboratorio OBJETIVO: Que el alumno adquiera conceptos básicos de física contemporánea y que construya una

Más detalles

Capítulo 24. Emisión y absorción de la luz. Láser

Capítulo 24. Emisión y absorción de la luz. Láser Capítulo 24 Emisión y absorción de la luz. Láser 1 Absorción y emisión La frecuencia luminosa depende de los niveles atómicos entre los que se produce la transición electrónica a través de: hν = E f E

Más detalles

Problemas. Cuestiones. Física 2º Bach. Física moderna 20/05/09 DEPARTAMENTO DE FÍSICA E QUÍMICA. Nombre: [2 PUNTOS /UNO]

Problemas. Cuestiones. Física 2º Bach. Física moderna 20/05/09 DEPARTAMENTO DE FÍSICA E QUÍMICA. Nombre: [2 PUNTOS /UNO] Física 2º Bach. Física moderna 20/05/09 DEPARTAMENTO DE FÍSICA E QUÍMICA Problemas Nombre: [2 PUNTOS /UNO] 1. Al iluminar una célula fotoeléctrica con radiación electromagnética de longitud de onda 185

Más detalles

INTERACTIVEBOOK - Física y Química 4º ESO McGraw-Hill Education Dalton 1.2. Thomson: Descubrimiento del electrón. 1.3.

INTERACTIVEBOOK - Física y Química 4º ESO McGraw-Hill Education Dalton 1.2. Thomson: Descubrimiento del electrón. 1.3. El modelo de átomo INTERACTIVEBOOK - Física y Química 4º ESO McGraw-Hill Education INDICE 1. El modelo de átomo 1.1. Dalton 1.2. Thomson: Descubrimiento del electrón. 1.3. Rutherford: 1.3.1. Radioactividad

Más detalles

BACHILLERATO FÍSICA 14. FÍSICA NUCLEAR. Dpto. de Física y Química. R. Artacho

BACHILLERATO FÍSICA 14. FÍSICA NUCLEAR. Dpto. de Física y Química. R. Artacho BACHILLERATO FÍSICA 14. FÍSICA NUCLEAR R. Artacho Dpto. de Física y Química ÍNDICE 1. El camino hacia el núcleo atómico 2. El descubrimiento del núcleo 3. Tamaño y densidad de los núcleos 4. Estabilidad

Más detalles

Espectrometría de rayos gamma del molibdeno mediante un detector de INa(Tl)

Espectrometría de rayos gamma del molibdeno mediante un detector de INa(Tl) Espectrometría de rayos gamma del molibdeno mediante un detector de INa(Tl) Julián Giles En el siguiente trabajo se realizó un análisis del decaimiento radiactivo de una sal de molibdeno activada neutrónicamente,

Más detalles

Tema 5: Interacción Radiación-Materia

Tema 5: Interacción Radiación-Materia Tema 5: Interacción Radiación-Materia 1. Interacción de partículas cargadas pesadas con la materia Partículas cargadas: excitación o ionización de los átomos del medio. Partículas pesadas (respecto al

Más detalles

Fenómenos nucleares II: fisión y fusión nuclear SGUICEL002QM11-A16V1

Fenómenos nucleares II: fisión y fusión nuclear SGUICEL002QM11-A16V1 Fenómenos nucleares II: fisión y fusión nuclear SGUICEL002QM11-A16V1 Ítem Alternativa Habilidad 1 E Comprensión 2 B Aplicación 3 D Aplicación 4 E ASE 5 B Aplicación 6 C Aplicación 7 A Reconocimiento 8

Más detalles

Radiaciones Ionizantes: Utilización y Riesgos RIUR. Guía de estudio

Radiaciones Ionizantes: Utilización y Riesgos RIUR. Guía de estudio Radiaciones Ionizantes: Utilización y Riesgos RIUR . Estructura y radiaciones atómicas Esta guía describe el conjunto de actividades que forman el tema 2 del módulo 1: " Estructura y radiaciones atómicas"

Más detalles

Unidad 1 Estructura atómica de la materia. Teoría cuántica

Unidad 1 Estructura atómica de la materia. Teoría cuántica Unidad 1 Estructura atómica de la materia. Teoría cuántica 1.El átomo y la constitución de la materia DALTON NO ACEPTADO POR LOS FÍSICOS que creían en la idea de que los átomos se encontraban como disueltos

Más detalles

Interacción nuclear PONENCIA DE FÍSICA DE ANDALUCÍA. CURSO

Interacción nuclear PONENCIA DE FÍSICA DE ANDALUCÍA. CURSO Interacción nuclear Cuestiones (96-E) Comente cada una de las frases siguientes: a) Isótopos son aquellos núclidos de igual número atómico pero distinto número másico. b) Si un núclido emite una partícula

Más detalles

a Po b Po a b Po E a t t 0 tiene un punto de inflexión en t inf = 1 a Log( a b P 0

a Po b Po a b Po E a t t 0 tiene un punto de inflexión en t inf = 1 a Log( a b P 0 Tarea 3 1. Las funciones Log y Exp 1. Calcule con mathematica las siguientes expresiones: a) ln 3 27 b) log 10 58 c) log 3 3 ln 52 ln 3 7 + 9 E 2 ln 4 b) Grafique las funciónes t y t 50. Cuál diverge a

Más detalles

Ejercicios de Física cuántica y nuclear. PAEG

Ejercicios de Física cuántica y nuclear. PAEG 1. Las longitudes de onda del espectro visible están comprendidas, aproximadamente, entre 390 nm en el violeta y 740 nm en el rojo. Qué intervalo aproximado de energías, en ev, corresponde a los fotones

Más detalles

Espectrometría de Radiación gamma

Espectrometría de Radiación gamma Espectrometría de Radiación gamma B.C. Paola Audicio Asistente de Radiofarmacia, CIN Fundamento La espectrometría gamma consiste en la obtención del espectro de las radiaciones gamma emitidas por los radionucleidos.

Más detalles

GUÍA QUÍMICA NUCLEAR NÚCLEO ATÓMICO Y RADIOACTIVIDAD

GUÍA QUÍMICA NUCLEAR NÚCLEO ATÓMICO Y RADIOACTIVIDAD Departamento Química º año medio 20. Página de 9 GUÍA QUÍMICA NUCLEAR NÚCLEO ATÓMICO Y RADIOACTIVIDAD Nombre: º DESCUBRIMIENTO DE LAS PARTICULAS RADIOACTIVAS Las reacciones químicas en general implican

Más detalles

13 Física nuclear. Actividades del interior de la unidad

13 Física nuclear. Actividades del interior de la unidad 13 Física nuclear ctividades del interior de la unidad 1. Indica brevemente la diferencia entre radiactividad natural y radiactividad artificial. La radiactividad natural proviene de sustancias que se

Más detalles

REACCIONES NUCLEARES EN CADENA

REACCIONES NUCLEARES EN CADENA FISIÓN NUCLEAR Cuando un núcleo se fisiona se divide en varios fragmentos más pequeños. Estos fragmentos, o los productos de la fisión, son aproximadamente la mitad de la masa original. Dos o tres neutrones

Más detalles

PREGUNTA Ing. Enrique Morales Rodríguez.-

PREGUNTA Ing. Enrique Morales Rodríguez.- PREGUNTA 15.2 15.4 Ing. Enrique Morales Rodríguez.- RESIDUOS RADIACTIVOS DE UNA CENTRAL NUCLEAR: Residuos de baja actividad: herramientas y utensilios ligeramente contaminados con radioisótopos de vida

Más detalles

Actividad: Cuál es la diferencia entre una reacción nuclear y una reacción química?

Actividad: Cuál es la diferencia entre una reacción nuclear y una reacción química? Cuál es la diferencia entre una reacción nuclear y una reacción química? Nivel: 4º medio Subsector: Ciencias químicas Unidad temática: Actividad: Cuál es la diferencia entre una reacción nuclear y una

Más detalles

ÁTOMO ~ m NÚCLEO ~ mnucleón < m. MATERIA ~ 10-9 m. Átomo FÍSICA MATERIALES PARTÍCULAS

ÁTOMO ~ m NÚCLEO ~ mnucleón < m. MATERIA ~ 10-9 m. Átomo FÍSICA MATERIALES PARTÍCULAS ESTRUCTURA DE LA MATERIA Grupo D CURSO 20011 2012 EL NÚCLEO ATÓMICO DE QUÉ ESTÁN HECHAS LAS COSAS? MATERIA ~ 10-9 m Átomo FÍSICA MATERIALES ÁTOMO ~ 10-10 m NÚCLEO ~ 10-14 mnucleón < 10-15 m Electrón Protón

Más detalles

31/03/2015 NUCLEO ESTABLE E INESTABLE FÍSICA DE LAS RADIACIÓNES

31/03/2015 NUCLEO ESTABLE E INESTABLE FÍSICA DE LAS RADIACIÓNES NUCLEO ESTABLE E INESTABLE Los átomos que tienen un mismo número atómico, pero distintos números de masa se llaman isótopos. Todos los isótopos de un mismo elemento se deben colocar en el mismo lugar de

Más detalles

Curso de SUPERVISORES de instalaciones radiactivas (IR) MÓDULO BÁSICO TEMA 2: INTERACCIÓN DE LA RADIACIÓN CON LA MATERIA

Curso de SUPERVISORES de instalaciones radiactivas (IR) MÓDULO BÁSICO TEMA 2: INTERACCIÓN DE LA RADIACIÓN CON LA MATERIA TEMA 2: INTERACCIÓN DE LA RADIACIÓN CON LA MATERIA CSN-2013 INDICE 1. INTRODUCCIÓN... 3 2.- INTERACCIÓN DE FOTONES CON LA MATERIA... 3 2.1. Atenuación... 3 2.2. Procesos de interacción... 4 Efecto fotoeléctrico...

Más detalles

TEMA 1 EL ÁTOMO Miguel Alcaraz Baños Objetivos generales

TEMA 1 EL ÁTOMO Miguel Alcaraz Baños Objetivos generales TEMA 1 EL ÁTOMO Miguel Alcaraz Baños Objetivos generales 1. Describir las partes del átomo y enumerar los componentes más importantes. 2. Enunciar que es el numero atómico Z. 3. Explicar qué propiedades

Más detalles

Modelo atómico de Dalton(1808)

Modelo atómico de Dalton(1808) El átomo Modelos atómicos Como no se podían ver los átomos los científicos crearon modelos para describirlos, éstos fueron evolucionando a lo largo de la historia a medida que se descubrieron nuevas cosas.

Más detalles

RADIACTIVIDAD NATURAL

RADIACTIVIDAD NATURAL RADIACTIVIDAD ATURAL En 1896 Becquereldescubrió en forma accidental que los cristales de sal de uranio oscurecían una placa fotográfica. Posteriormente Pierre y Marie Curiea fines de 1898 aislaronun material

Más detalles

Capítulo 26. Física Nuclear

Capítulo 26. Física Nuclear Capítulo 26 Física Nuclear 1 Energía de enlace El núcleo de un átomo se designa mediante su símbolo químico, su número atómico Z y su número de masa A de la forma: A ZX La unidad de masa atómica unificada

Más detalles

de electrone aceleración iones

de electrone aceleración iones 1 Química Nuclear 1.1 Definiciones preliminares 1.2 El núcleo atómico: nucleones, número atómico, número másico e isótopos 1.3 La estabilidad de los núcleos atómicos 1.4 Radiactividad. Series radiactivas.

Más detalles

Centro de Investigaciones Nucleares TECNOLOGÍA DE LA PROTECCIÓN RADIOLÓGICA

Centro de Investigaciones Nucleares TECNOLOGÍA DE LA PROTECCIÓN RADIOLÓGICA Centro de Investigaciones Nucleares TECNOLOGÍA DE LA PROTECCIÓN RADIOLÓGICA Tipos de exposición a la radiación Interna Ingestión o inhalación de radionucleídos Externa Fuentes radiactivas o equipos generadores

Más detalles

CONCEPTOS BASICOS SOBRE RADIACTIVIDAD

CONCEPTOS BASICOS SOBRE RADIACTIVIDAD Campaña Energía Marzo 2005 CONCEPTOS BASICOS SOBRE RADIACTIVIDAD 1. Radiactividad natural y artificial La radioactividad es un fenómeno natural por el cual ciertos átomos cambian su estructura. La comprensión

Más detalles

UNIVERSIDAD VERACRUZANA FACULTAD DE INGENIERÍA CIVIL REGIÓN XALAPA. Cálculo de Blindajes para Atenuar la Radiación Electromagnética Gamma MONOGRAFÍA

UNIVERSIDAD VERACRUZANA FACULTAD DE INGENIERÍA CIVIL REGIÓN XALAPA. Cálculo de Blindajes para Atenuar la Radiación Electromagnética Gamma MONOGRAFÍA UNIVERSIDAD VERACRUZANA FACULTAD DE INGENIERÍA CIVIL REGIÓN XALAPA Cálculo de Blindajes para Atenuar la Radiación Electromagnética Gamma MONOGRAFÍA QUE PARA OBTENER EL TÍTULO DE INGENIERO CIVIL PRESENTA

Más detalles

Medicina Nuclear. Es la especialidad médica que utiliza los radionúclidos (isótopos radiactivos) en el diagnóstico, la terapia y la investigación

Medicina Nuclear. Es la especialidad médica que utiliza los radionúclidos (isótopos radiactivos) en el diagnóstico, la terapia y la investigación Medicina Nuclear Es la especialidad médica que utiliza los radionúclidos (isótopos radiactivos) en el diagnóstico, la terapia y la investigación Medicina Nuclear Diagnóstica: Estudios funcionales Radioinmunoamálisis

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2002 QUÍMICA TEMA 2: LA ESTRUCTURA DEL ÁTOMO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2002 QUÍMICA TEMA 2: LA ESTRUCTURA DEL ÁTOMO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2002 QUÍMICA TEMA 2: LA ESTRUCTURA DEL ÁTOMO Junio, Ejercicio 2, Opción A Reserva 1, Ejercicio 2, Opción A Reserva 2, Ejercicio 3, Opción B Reserva 3, Ejercicio

Más detalles

DENOMINACIÓN ASIGNATURA: FÍSICA II GRADO: INGENIERÍA BIOMÉDICA CURSO: 1º CUATRIMESTRE: 2º (*)

DENOMINACIÓN ASIGNATURA: FÍSICA II GRADO: INGENIERÍA BIOMÉDICA CURSO: 1º CUATRIMESTRE: 2º (*) DENOMINACIÓN ASIGNATURA: FÍSICA II GRADO: INGENIERÍA BIOMÉDICA CURSO: 1º CUATRIMESTRE: 2º CRONOGRAMA ASIGNATURA DESCRIPCIÓN DEL CONTENIDO DE LA SESIÓN SE- MA- NA SE- SIÓN 1 1 T1. La primera ley de la Termodinámica

Más detalles

PROGRAMA ANALÍTICO Y BIBLIOGRAFIA ESPECÍFICA DEL CURSO: RADIOFISICA SANITARIA Y BIOFÍSICA ONDULATORIA

PROGRAMA ANALÍTICO Y BIBLIOGRAFIA ESPECÍFICA DEL CURSO: RADIOFISICA SANITARIA Y BIOFÍSICA ONDULATORIA PROGRAMA ANALÍTICO Y BIBLIOGRAFIA ESPECÍFICA DEL CURSO: RADIOFISICA SANITARIA Y BIOFÍSICA ONDULATORIA NOTA: LA CÁTEDRA DE BIOFÍSICA PARTICIPA CON RESPONSABILIDAD PRIMARIA EN LOS MODULOS CUYAS BIBLIOGRAFIAS

Más detalles

MANUAL DE OPERACIONES

MANUAL DE OPERACIONES MANUAL DE OPERACIONES CALIBRADOR DE DOSIS MODELO DIGICAL I Industria Argentina 1 INDICE Nota de Advertencia 3 Descripción general 5 Instalación 6 Fundamentos del medidor de dosis 7 Funciones del teclado

Más detalles

DESINTEGRACIONES RADIACTIVAS

DESINTEGRACIONES RADIACTIVAS DESINTEGRACIONES RADIACTIVAS CONTENIDOS Producción y desintegración. Masa y actividad. Periodo de semidesintegración Vida media. Actividad. Unidades. Series Radiactivas. 1 ISÓTOPOS 2 LEY DE DESINTEGRACIÓN

Más detalles

TEMA 9. INTRODUCCIÓN A LA FÍSICA NUCLEAR 1a. COMPOSICIÓN DEL NÚCLEO DEL ÁTOMO

TEMA 9. INTRODUCCIÓN A LA FÍSICA NUCLEAR 1a. COMPOSICIÓN DEL NÚCLEO DEL ÁTOMO TEMA 9. INTRODUCCIÓN A LA FÍSICA NUCLEAR a. COMPOSICIÓN DEL NÚCLEO DEL ÁTOMO El descubrimiento de la radiactividad por Henri Bequerel en 898 es el inicio de lo que hoy se conoce como física nuclear. Este

Más detalles

M. Eugenia Villaseca R. Licenciada y Profesora de Biología PUCV

M. Eugenia Villaseca R. Licenciada y Profesora de Biología PUCV M. Eugenia Villaseca R. Licenciada y Profesora de Biología PUCV Comprender la utilidad de los modelos atómicos y de la teoría atómica para explicar los procesos de transformación físico-química de la materia

Más detalles

Puntos de ebullición.

Puntos de ebullición. 1.-Indica el tipo de enlace de los siguientes hidruros. Ayundándote de la siguiente tabla comenta la polaridad de los enlaces. Hidruro % carácter iónico HF 43 HCl 17 HBr 11 HI 6 Representa gráficamente

Más detalles

Unidad. Formas en que se presenta la energía. Física y Química 4. ESO. La energía. Energía interna. Energía mecánica. Energía electromagnética

Unidad. Formas en que se presenta la energía. Física y Química 4. ESO. La energía. Energía interna. Energía mecánica. Energía electromagnética La energía Puede ser de tres tipos mecánica interna electromagnética Se presenta como Se presenta como Se presenta como química térmica nuclear cinética potencial elástica luminosa o radiante potencial

Más detalles

Experimento 12 LÍNEAS ESPECTRALES. Objetivos. Teoría. Postulados de Bohr. El átomo de hidrógeno, H

Experimento 12 LÍNEAS ESPECTRALES. Objetivos. Teoría. Postulados de Bohr. El átomo de hidrógeno, H Experimento 12 LÍNEAS ESPECTRALES Objetivos 1. Describir el modelo del átomo de Bohr 2. Observar el espectro del H mediante un espectrómetro de rejilla 3. Medir los largos de onda de las líneas de la serie

Más detalles

La radiación es el transporte o la propagación de energía en forma de partículas u

La radiación es el transporte o la propagación de energía en forma de partículas u La radiación es el transporte o la propagación de energía en forma de partículas u ondas. Si la radiación es debida a fuerzas eléctricas o magnéticas se llama radiación electromagnética. Pero la materia

Más detalles

RADIACIÓN ELECTROMAGNÉTICA Y ESPECTROS ATÓMICOS. Tipos de radiaciones electromagnéticas según λ.

RADIACIÓN ELECTROMAGNÉTICA Y ESPECTROS ATÓMICOS. Tipos de radiaciones electromagnéticas según λ. RADIACIÓN ELECTROMAGNÉTICA Y ESPECTROS ATÓMICOS λ Tipos de radiaciones electromagnéticas según λ. Rayos γ Rayos X Rayos UV Radiación visible. Rayos IR Microondas Ondas de radio Ondas de radar Ondas de

Más detalles

BLOQUE 5.2 FÍSICA NUCLEAR

BLOQUE 5.2 FÍSICA NUCLEAR BLOQUE 5. FÍSIC NUCLER -EL NÚCLEO TÓMICO El núcleo de los átomos se acepta universalmente que está formado por PROTONES y NEUTRONES (llamados genéricamente NUCLEONES), en una cantidad que varía de unos

Más detalles

3.1 Fisica Atómica y Rayos X

3.1 Fisica Atómica y Rayos X 3.1 Fisica Atómica y Rayos X (Formulas & Ejercicios) Dr. Willy H. Gerber Instituto de Fisica Universidad Austral Valdivia, Chile Objetivos: Comprender como se comportan el cuerpo humano ante la radiación

Más detalles

Isótopos. Tema 7: M ateria y Radiación. electrones. O tros isótopos:

Isótopos. Tema 7: M ateria y Radiación. electrones. O tros isótopos: Tema 7: M ateria y Radiación Isótopos protón Núcleo atómico diámetro 10-15 metros 99.9% de la masa del átom o electrones N úm ero m ásico: total neutrones y protones O rbitales electrónicos diámetro 10-10

Más detalles

MODELOS ATOMICOS. Solución Å; Ultravioleta; 1106 m/s

MODELOS ATOMICOS. Solución Å; Ultravioleta; 1106 m/s MODELOS ATOMICOS 1. Calcular el valor del radio de la órbita que recorre el electrón del hidrogeno en su estado normal. Datos. h = 6 63 10 27 erg s, m(e ) = 9 1 10 28 gr, q(e ) = 4 8 10-10 u.e.e. Solución.

Más detalles

DETECCIÓN Y DOSIMETRÍA DE LA RADIACIÓN DAVID RAMOS AMORES. SERVICIO DE RADIOFÍSICA Y PROTECCIÓN RADIOLÓGICA. HGU SANTA LUCÍA

DETECCIÓN Y DOSIMETRÍA DE LA RADIACIÓN DAVID RAMOS AMORES. SERVICIO DE RADIOFÍSICA Y PROTECCIÓN RADIOLÓGICA. HGU SANTA LUCÍA DETECCIÓN Y DOSIMETRÍA DE LA RADIACIÓN DAVID RAMOS AMORES. SERVICIO DE RADIOFÍSICA Y PROTECCIÓN RADIOLÓGICA. HGU SANTA LUCÍA INTRODUCCIÓN El organismo humano no esta preparado para percibir las radiaciones

Más detalles

Curso de SUPERVISORES de instalaciones radiactivas (IR) MÓDULO BÁSICO TEMA 3: MAGNITUDES Y UNIDADES RADIOLÓGICAS

Curso de SUPERVISORES de instalaciones radiactivas (IR) MÓDULO BÁSICO TEMA 3: MAGNITUDES Y UNIDADES RADIOLÓGICAS EMA 3: MAGNIUDES Y UNIDADES RADIOLÓGICAS CSN-2014 ABLA DE CONENIDOS 1.- INRODUCCIÓN... 3 2.- CLASIFICACIÓN DE LAS MAGNIUDES RADIOLÓGICAS... 4 2.1 Magnitudes físicas fundamentales... 4 2.2 Magnitudes de

Más detalles

Estructura de la materia y Sistema Periódico

Estructura de la materia y Sistema Periódico Estructura de la materia y Sistema Periódico 1 - Respecto el número cuántico «n» que aparece en el modelo atómico de Bohr indicar de manera razonada cuáles de las siguientes frases son correctas y cuáles

Más detalles

Universidad de San Carlos de Guatemala. Facultad de Ingeniería. Escuela de Ciencias. Departamento de Química. Catedrática: Tania de León.

Universidad de San Carlos de Guatemala. Facultad de Ingeniería. Escuela de Ciencias. Departamento de Química. Catedrática: Tania de León. Universidad de San Carlos de Guatemala. Facultad de Ingeniería. Escuela de Ciencias. Departamento de Química. Catedrática: Tania de León. Química General. Código: 0348. Primer semestre. Hoja de trabajo.

Más detalles

RADIACIONES IONIZANTES

RADIACIONES IONIZANTES RADIACIONES IONIZANTES OBJETIVOS Evitar efectos nocivos sobre la salud Conocer tipos de radiación n y su origen Precisar los efectos orgánicos y fisiológicos ESTRUCTURA ATOMICA Elemento :Sustancia pura

Más detalles

Curso Básico de Metodología de los Radisótopos - C.I.N.

Curso Básico de Metodología de los Radisótopos - C.I.N. Curso Básico de Metodología de los Radisótopos - C.I.N. Inestabilidad nuclear y Modos de decaimiento Dra. Q.F. Lourdes Mallo FUERZAS NUCLEARES Para que el núcleo sea estable debe existir una fuerza atractiva

Más detalles

ÁREA ACADÉMICA DE QUÍMICA INTRODUCCIÓN A LA SEGURIDAD RADIOLÓGICA MONOGRAFÍA QUE PARA OBTENER EL TITULO DE LICENCIADO EN QUÍMICA P R E S E N T A

ÁREA ACADÉMICA DE QUÍMICA INTRODUCCIÓN A LA SEGURIDAD RADIOLÓGICA MONOGRAFÍA QUE PARA OBTENER EL TITULO DE LICENCIADO EN QUÍMICA P R E S E N T A UNIVERSIDAD AUTÓNOMA DEL ESTADO DE HIDALGO INSTITUTO DE CIENCIAS BÁSICAS E INGENIERÍA ÁREA ACADÉMICA DE QUÍMICA MONOGRAFÍA QUE PARA OBTENER EL TITULO DE LICENCIADO EN QUÍMICA P R E S E N T A JOSÉ LUIS

Más detalles

Principios Básicos de la Protección Radiológica

Principios Básicos de la Protección Radiológica Principios Básicos de la Protección Radiológica JUSTIFICACIÓN OPTIMIZACIÓN LIMITES Y RESTRICCIONES DE LAS DOSIS Límite de dosis para el trabajador: 20mS al año Límite de dosis para el público en general:

Más detalles

Radiología General. Magnitudes y Unidades en Radiología. Miguel Pombar Facultad de Medicina y Odontología (USC)

Radiología General. Magnitudes y Unidades en Radiología. Miguel Pombar Facultad de Medicina y Odontología (USC) Radiología General Magnitudes y Unidades en Radiología Miguel Pombar Facultad de Medicina y Odontología (USC) Magnitudes y unidades radiológicas Actividad Exposición Dosis Absorbida Dosis Equivalente Dosis

Más detalles