Amplificadores Operacionales. Corrimientos

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Amplificadores Operacionales. Corrimientos"

Transcripción

1 Amplificadores peracionales Corrimientos

2 En estudios previos de amplificadores operacionales asumimos muchas de sus características como ideales, sin embargo en ciertas aplicaciones los efectos de las características reales producen desplazamientos importantes en la tensión de salida que afectan la respuesta esperada. Dada nuestra intención de encarar el diseño de amplificadores operacionales de potencia, será importante conocer cuales son éstas características y comprender como pueden compensarse y /o corregirse en su origen. El desplazamiento de la tensión continua de salida obedece a la presencia de corriente de polarización en los terminales de entrada, influyendo tanto su magnitud como su diferencia, y también al desbalance de las tensiones internas de polarización de la primera etapa del amplificador. Ambos fenómenos se deben a las asimetrías en los dispositivos activos y componentes pasivos del amplificador.

3 Esquema interno típico de un amplificador CC SS Éste esquema con tecnología bipolar es solo un ejemplo, podría también construirse con FET, MSFET o tecnología híbrida

4 LM741 SNSC25C MAY 1998 RESED MARCH Absolute Maximum Ratings LM741A LM741 LM741C Supply oltage ±22 ±22 ±18 Power Dissipation 500 mw 500 mw 500 mw Differential nput oltage ±30 ±30 ±30 nput oltage ±15 ±15 ±15 utput Short Circuit Duration Continuous Continuous Continuous perating Temperature Range 55 C to 125 C 55 C to 125 C 0 C to 70 C Storage Temperature Range 65 C to 150 C 65 C to 150 C 65 C to 150 C Junction Temperature 150 C 150 C 100 C ESD Tolerance

5 Electrical Characteristics Unless otherwise specified, these specifications apply for S ±15, 55 C T A 125 C (LM741/LM741A). For the LM741C/LM741E, these specifications are limited to 0 C T A 70 C. Parameter Test Conditions LM741A LM741 LM741C Units nput ffset oltage T A 25 C Average nput ffset oltage Drift R S 10 kω R S 50Ω T AMN T A T AMAX R S 50Ω R S 10 kω Min Typ Max Min Typ Max Min Typ Max m m 15 μ/ C nput ffset oltage Adjustment Range T A 25 C, S ±20 ±10 ±15 ±15 m nput ffset Current T A 25 C na T AMN T A T AMAX Average nput 0.5 na/ C ffset Current Drift nput Bias Current T A 25 C na T AMN T A T AMAX μa nput Resistance T A 25 C, S ± MΩ T AMN T A T AMAX, S ± nput oltage Range T A 25 C ±12 ±13 T AMN T A T AMAX ±12 ±13 Large Signal oltage Gain T A 25 C, R L 2 kω /m S ±20, ±15 S ±15, ±10 T AMN T A T AMAX, R L 2 kω, S ±20, ±15 S ±15, ±10 S ±5, ± /m

6 Electrical Characteristics (continued) 10 Parameter Test Conditions LM741A LM741 LM741C Units Min Typ Max Min Typ Max Min Typ Max utput oltage Swing S ±20 R L 10 kω R L 2 kω ±16 ±15 S ±15 R L 10 kω R L 2 kω ±12 ±10 ±14 ±13 ±12 ±10 ±14 ±13 utput Short Circuit T A 25 C ma Current T AMN T A T AMAX Common-Mode T AMN T A T AMAX db Rejection Ratio R S 10 kω, CM ±12 R S 50Ω, CM ±12 Supply oltage Rejection Ratio T AMN T A T AMAX, S ±20 to S ±5 R S 50Ω R S 10 kω db Transient Response Rise Time vershoot T A 25 C, Unity Gain μs % Bandwidth (2) T A 25 C MHz Slew Rate T A 25 C, Unity Gain /μs Supply Current T A 25 C ma Power Consumption T A 25 C S ±20 S ± mw ffset Nulling Circuit

7 Tensión de salida ideal versus real C a CM C DEAL REAL a DF id id

8 Corrientes de polarización El amplificador real requiere corrientes de polarización en los terminales de entrada B1 B2 El signo de B1 e B2 dependerá de la tecnología interna del amplificador

9 Modelo de generadores de corriente Se define B como el promedio de las corrientes de polarización de entrada: B 2 B1 B2 Y la corriente offset de entrada como: S B1 B2 Notar que el signo de S es arbitrario debido a la dispersión de los dispositivos electrónicos

10 perando con las definiciones, se llega a: B1 B 2 S Redefinimos los generadores de corriente: B2 B 2 S S 2 B B

11 Ejemplo 1: Calcular el corrimiento de la tensión de salida B 1μA S 0

12 Solución: (solo en continua) SS < ˆ < CC id a 0 B R 2 0 R1 R2 B ( R //R ) BR 1μ A 1MΩ 1

13 Ejemplo 2: Compensación del corrimiento B1 a B2 Solución: Se comprobará la reducción del corrimiento para R R 3 1//R2

14 Polarización del Amplificador peracional SS < ˆ < CC id a 0 B1 B2 - a id 0 B1 R 3 B 2 ( R //R ) R R2 Si R3 R1 //R2 ( ) R 1 B1 B 2 S R1 Solo será 1 2 R 1 ( )( ) B1 B 2 R1 //R2 R2 0 si 0 Tener en cuenta! S 1 R 2 R 2

15 Tensión offset a la entrada En un amplificador real ocurre un corrimiento de la tensión de salida incluso cortocicuitando los terminales de entrada entre sí. id 0 a id 0 0

16 Se corrige el corrimiento aplicando a la entrada una tensión continua S a id S 0 Se comprueba que esa tensión resulta: S id a 0 La llamamos Tensión de offset a la entrada (offsetcorrimiento)

17 Se modeliza el amplificador operacional real como un amplificador ideal más un generador de tensión: S a Nota: en ésta representación no se consideraron las corrientes de polarización

18 Ejemplo 1: id R i a v id r G S R 1 R 2 S se considera aplicada a la entrada positiva Y las corrientes de polarización se han considerado nulas Resulta: Si es: 1 R 1 S para G R2 S 10m y R 1/R2 99 resultará 0 1

19 Ejemplo 2: id R i a v id r G S R 1 R 2 C S se considera aplicada a la entrada positiva Y las corrientes de polarización se han considerado nulas Resulta: Si es: S para G 0 S 10m resultará 10m

20 Modelo del amplificador operacional real S B S /2 B

21 Pautas para el diseño del amplificador Fundamentalmente deben estar apareados los transistores del par diferencial de entrada. Deben igualarse β y be en los TBJ a la vez que elegirlos con alto β. En los FET o MSFET deben igualarse GS e D SS. La carga del par diferencial, sea activa o pasiva, también debe diseñarse lo más simétrica posible.

22 Ejemplo 3: Calcular en t100ms C R1KΩ C1µF Considerar C 0 en t 0

23 Solución: C C C t S S /2 id R i r R a v id B B S La corriente en C se calcula como: Y la tensión de salida resulta: S C B 2 S 1 C B 2 S R S R S t

24 Ejercicio: En un Circuito integrado cuádruple se utilizan solo tres A, cuál es la manera correcta de conectar el que no se utiliza?, será alguna de las siguientes? CC CC SS SS

25 Medición de los parámetros de corrimiento Éste circuito sencillo permite obtener todos los parámetros de corrimiento de un amplificador operacional (por medición con un simple multímetro). Reproducido del libro Circuitos Electrónicos de Rashid

26 Paso 1. Ensamblar el circuito. Los valores sugeridos de los componentes y la alimentación son: CC EE 15, C 0,01 µf, R 1 R F 100 KΩ a 1MΩ. Paso 2. Cerrar los interruptores S 1 y S 2. Medir el voltaje de salida. El circuito se convierte en un seguidor de voltaje. Esto es, S. Reproducido del libro Circuitos Electrónicos de Rashid Paso 3. Abrir el interruptor S 1 y cerrar el S 2. Medir el voltaje de salida. Usar el valor de S obtenido en el paso 2 para hallar la corriente de polarización B2. Paso 4. Cerrar el interruptor S 1 y abrir el S 2. Medir el voltaje de salida. El voltaje en la terminal () es S. Usar el valor de S obtenido en el paso 2 para calcular la corriente de polarización B1. S B1 R Paso 5. Abrir los dos interruptores S 1 y S 2. Medir el voltaje de salida. Usar el valor de S obtenido en el paso 2 para calcular la corriente de offset de entrada S. También con los datos de los pasos 3 y 4. B2 S R 1 R F 1 S S ( o R ) F S B1 B2

27 Compensación del corrimiento de la Tensión de salida Ejemplo 1 Compensa S

28 Compensación del corrimiento de la Tensión de salida Ejemplo 2 La ganancia de tensión en continua es 1, la mínima posible G 0 S S R 3

29 Compensación del corrimiento de la Tensión de salida Ejemplo 3 Ajuste manual del corrimiento Notar que se ha eliminado el capacitor del realimentador, por lo que resulta efectivo desde continua

30 Compensación del corrimiento de la Tensión de salida Ejemplo 4 DC Servo Auto ajuste del corrimiento

31 Tensión de offset y relación de rechazo de modo común El amplificador debe amplificar señales (tensiones) diferenciales rechazando las señales (tensiones) comunes a ambas entradas. dealmente la ganancia de tensión diferencial es independiente de la tensión de modo común en las entradas. El esquema general es el siguiente:

32 Exitación del amplificador: d 2 1

33 Exitación equivalente: d /2 d C d /2

34 Con las siguientes definiciones d 1 2 oltaje modo diferencial 1 2 c 2 oltaje modo común De dónde: 1 c d 2 2 c d 2

35 La tensión de salida es: también: Debe ser A A >> d A c d para obtener Por lo que se define la relación de rechazo de modo común como: A A d CMRR o d CMRR 20log en [ db] c d A c Ac A d d c Ad c A A c A d d

36 Completando el circuito equivalente como: d /2 d c d /2 d c Siendo: d A d d y c A c c

37 Consideramos ahora la tensión de offset equivalente de entrada: Δ d S c 0 S 0 Aplicamos una tensión diferencial para anular la tensión de salida: d S para 0

38 Usando el siguiente esquema: Δ d Δ c Aplicamos un incremento en la tensión de modo común para obtener una tensión de salida cualquiera: donde resulta c 0 0 A c c

39 Ahora aplicamos un incremento en la tensión diferencial de modo igualar el incremento obtenido anteriormente: Ac d c Ad Ad Finalmente lo aplicamos a la definición de rechazo de modo común, resultando: CMRR A A d c c d o0 os c Un alto valor de CMRR implica mayor tolerancia a las variaciones de modo común, c grande, o una menor tensión de corrimiento, os pequeña.

Temario. Tema 5. El amplificador operacional real OBJETIVOS DEL TEMA. Introducción

Temario. Tema 5. El amplificador operacional real OBJETIVOS DEL TEMA. Introducción Temario Tema Teo. Pro. 1. Amplificación 2h 1h 2. Realimentación 2.5h 1.5h 3. Amplificador operacional (AO) y sus etapas lineales 7h 4h 4. Comparadores y generadores de onda 7h 4h 5. El amplificador operacional

Más detalles

Problemas Tema 6. Figura 6.3

Problemas Tema 6. Figura 6.3 Problemas Tema 6 6.1. Se conecta una fuente de voltaje V s =1mV y resistencia interna R s =1MΩ a los terminales de entrada de un amplificador con una ganancia de voltaje en circuito abierto A v0 =10 4,

Más detalles

Electrónica 1. Práctico 1 Amplificadores Operacionales 1

Electrónica 1. Práctico 1 Amplificadores Operacionales 1 Electrónica 1 Práctico 1 Amplificadores Operacionales 1 Los ejercicios marcados con son opcionales. Además cada ejercicio puede tener un número, que indica el número de ejercicio del libro del curso (Microelectronic

Más detalles

Tema 2 El Amplificador Operacional

Tema 2 El Amplificador Operacional CICUITOS ANALÓGICOS (SEGUNDO CUSO) Tema El Amplificador Operacional Sebastián López y José Fco. López Instituto de Microelectrónica Aplicada (IUMA) Universidad de Las Palmas de Gran Canaria 3507 - Las

Más detalles

E.E.T Nº 460 GUILLERMO LEHMANN Departamento de Electrónica. Sistemas electrónicos analógicos y digitales TRABAJO PRÁCTICO

E.E.T Nº 460 GUILLERMO LEHMANN Departamento de Electrónica. Sistemas electrónicos analógicos y digitales TRABAJO PRÁCTICO Tema: El amplificador operacional. Objetivo: TRABAJO PRÁCTICO Determinar las limitaciones prácticas de un amplificador operacional. Comprender las diferencias entre un amplificador operacional ideal y

Más detalles

Diseño de un Amplificador Operacional totalmente integrado CMOS que funcione como driver para cargas capacitivas elevadas

Diseño de un Amplificador Operacional totalmente integrado CMOS que funcione como driver para cargas capacitivas elevadas Diseño de un Amplificador Operacional totalmente integrado CMOS que funcione como driver para cargas capacitivas elevadas Titulación: Sistemas Electrónicos Tutores: Francisco Javier del Pino Suárez Sunil

Más detalles

Anexo V: Amplificadores operacionales

Anexo V: Amplificadores operacionales Anexo V: Amplificadores operacionales 1. Introducción Cada vez más, el procesado de la información y la toma de decisiones se realiza con circuitos digitales. Sin embargo, las señales eléctricas analógicas

Más detalles

INTRODUCCIÓN: OBJETIVOS:

INTRODUCCIÓN: OBJETIVOS: INTRODUCCIÓN: En el desarrollo de esta práctica se observará experimentalmente el comportamiento del transistor bipolar BJT como amplificador, mediante el diseño, desarrollo e implementación de dos amplificadores

Más detalles

1.- Estudiar los diferentes modos de operaci on del BJT de la figura en función de v I (V BE ~ 0.7 V). IB VC VB IE

1.- Estudiar los diferentes modos de operaci on del BJT de la figura en función de v I (V BE ~ 0.7 V). IB VC VB IE Ejercicios relativos al transistor bipolar Problemas de transistores BJT en estática 1.- Estudiar los diferentes modos de operaci on del BJT de la figura en función de v I (V BE ~ 0.7 V). IC IB VC VB

Más detalles

Parcial_2_Curso.2012_2013

Parcial_2_Curso.2012_2013 Parcial_2_Curso.2012_2013 1. La función de transferencia que corresponde al diagrama de Bode de la figura es: a) b) c) d) Ninguna de ellas. w (rad/s) w (rad/s) 2. Dado el circuito de la figura, indique

Más detalles

Universidad de Costa Rica. Experimento

Universidad de Costa Rica. Experimento Universidad de Costa Rica Facultad de Ingeniería Escuela de Ingeniería Eléctrica IE0308 Laboratorio Eléctrico I II ciclo 2013 Anteproyecto Nombre1, Carné1 Nombre2, Carné2 Grupo 02 Profesor: 15 de marzo

Más detalles

PRÁCTICA 6. AMPLIFICADOR OPERACIONAL: INVERSOR, INTEGRADOR y SUMADOR

PRÁCTICA 6. AMPLIFICADOR OPERACIONAL: INVERSOR, INTEGRADOR y SUMADOR PRÁCTICA 6. AMPLIFICADOR OPERACIONAL: INVERSOR, INTEGRADOR y SUMADOR 1. Objetivo El objetivo de esta práctica es el estudio del funcionamiento del amplificador operacional, en particular de tres de sus

Más detalles

BJT como amplificador en configuración de emisor común con resistencia de emisor

BJT como amplificador en configuración de emisor común con resistencia de emisor Práctica 9 BJT como amplificador en configuración de emisor común con resistencia de emisor Índice General 9.1. Objetivos................................ 73 9.2. Introducción teórica..........................

Más detalles

Laboratorio Amplificador Diferencial Discreto

Laboratorio Amplificador Diferencial Discreto Objetivos Laboratorio mplificador Diferencial Discreto Verificar el funcionamiento de un amplificador discreto. Textos de Referencia Principios de Electrónica, Cap. 17, mplificadores Diferenciales. Malvino,

Más detalles

Electrónica 2. Práctico 3 Alta Frecuencia

Electrónica 2. Práctico 3 Alta Frecuencia Electrónica 2 Práctico 3 Alta Frecuencia Los ejercicios marcados con son opcionales. Además cada ejercicio puede tener un número, que indica el número de ejercicio del libro del curso (Microelectronic

Más detalles

M. H. Rashid, Microelectronics Circuits - Analysis and Design, PWS Publishing, 1999. Capítulos 6, 15 y 16. Introducción a la Electrónica

M. H. Rashid, Microelectronics Circuits - Analysis and Design, PWS Publishing, 1999. Capítulos 6, 15 y 16. Introducción a la Electrónica AMPLIFICADOR OPERACIONAL M. H. Rashid, Microelectronics Circuits - Analysis and Design, PWS Publishing, 1999. Capítulos 6, 15 y 16. Introducción Amplificador Operacional ideal. Modelo Diferentes tipos

Más detalles

TEMA 6: Amplificadores con Transistores

TEMA 6: Amplificadores con Transistores TEMA 6: Amplificadores con Transistores Contenidos del tema: El transistor como amplificador. Característica de gran señal Polarización. Parámetros de pequeña señal Configuraciones de amplificadores con

Más detalles

EL42A - Circuitos Electrónicos

EL42A - Circuitos Electrónicos ELA - Circuitos Electrónicos Clase No. 24: Amplificadores Operacionales (1) Patricio Parada pparada@ing.uchile.cl Departamento de Ingeniería Eléctrica Universidad de Chile 3 de Noviembre de 2009 ELA -

Más detalles

Podemos plantear un sencillo esquema de alarma como el de la figura: V REF 3600( ) T

Podemos plantear un sencillo esquema de alarma como el de la figura: V REF 3600( ) T Lección 4. MEDIDA DE LA EMPEAUA. Diseñe un sistema de alarma de temperatura utilizando una NC. Deberá activarse cuando la temperatura ascienda por encima de ºC con una exactitud de ºC. Datos: B36K, kω@5ºc,

Más detalles

Universidad de Costa Rica. Estudio de las Principales Características de los Amplificadores Operacionales

Universidad de Costa Rica. Estudio de las Principales Características de los Amplificadores Operacionales Universidad de Costa Rica Facultad de Ingeniería Escuela de Ingeniería Eléctrica IE0408 Laboratorio Eléctrico II I ciclo 2015 Reporte Estudio de las Principales Características de los Amplificadores Operacionales

Más detalles

Figura 1. (a) Diagrama de conexiones del LM741. (b) Diagrama de conexiones del TL084

Figura 1. (a) Diagrama de conexiones del LM741. (b) Diagrama de conexiones del TL084 Práctica No. Usos del Amplificador Operacional (OPAM) Objetivos. Comprobar las configuraciones típicas del amplificador operacional. Comprender en forma experimental el funcionamiento del amplificador

Más detalles

EXP204 REGULADOR DE VOLTAJE SERIE

EXP204 REGULADOR DE VOLTAJE SERIE EXP204 REGULADOR DE VOLTAJE SERIE I.- OBJETIVOS. Diseñar un regulador de voltaje serie ajustable Comprobar el funcionamiento del regulador. Medir la resistencia de salida del regulador Medir el por ciento

Más detalles

Determinar cuál es la potencia disipada por el transistor, y su temperatura de juntura.

Determinar cuál es la potencia disipada por el transistor, y su temperatura de juntura. Circuitos Electrónicos II (66.10) Guía de Problemas Nº 3: Amplificadores de potencia de audio 1.- Grafique un circuito eléctrico que realice la analogía del fenómeno que involucra la potencia disipada

Más detalles

Electrónica 1. Práctico 2 Amplificadores operacionales 2

Electrónica 1. Práctico 2 Amplificadores operacionales 2 Electrónica 1 Práctico 2 Amplificadores operacionales 2 Los ejercicios marcados con son opcionales. Además cada ejercicio puede tener un número, que indica el número de ejercicio del libro del curso (Microelectronic

Más detalles

Ejercicios de ELECTRÓNICA ANALÓGICA

Ejercicios de ELECTRÓNICA ANALÓGICA 1. Calcula el valor de las siguientes resistencias y su tolerancia: Código de colores Valor en Ω Tolerancia Rojo, rojo, rojo, plata Verde, amarillo, verde, oro Violeta, naranja, gris, plata Marrón, azul,

Más detalles

Unidad IV Sistemas de Adquisición de Datos

Unidad IV Sistemas de Adquisición de Datos Unidad IV Sistemas de Adquisición de Datos Tarjeta DAQ Circuitos de entrada analógicos para medir y convertir señales de voltaje de entrada analógica a formato digital (A/D) Circuitos de salida analógicos

Más detalles

Transistor BJT como Amplificador

Transistor BJT como Amplificador Transistor BJT como Amplificador Lección 05.2 Ing. Jorge Castro-Godínez Escuela de Ingeniería Electrónica Instituto Tecnológico de Costa Rica II Semestre 2013 Jorge Castro-Godínez Transistor BJT como Amplificador

Más detalles

FACULTAD DE INGENIERÍA MECÁNICA Y ELÉCTRICA AMPLIFICADORES OPERACIONALES PRÁCTICA 1 AMPLIFICADOR INVERSOR

FACULTAD DE INGENIERÍA MECÁNICA Y ELÉCTRICA AMPLIFICADORES OPERACIONALES PRÁCTICA 1 AMPLIFICADOR INVERSOR AMPLIFICADORES OPERACIONALES PRÁCTICA 1 AMPLIFICADOR INVERSOR Prof. Carlos Navarro Morín 2010 practicas del manual de (Opamps) Haciendo uso del amplificador operacional LM741 determinar el voltaje de salida

Más detalles

Marco Antonio Andrade Barrera 1 Diciembre de 2015

Marco Antonio Andrade Barrera 1 Diciembre de 2015 Diseño, simulación, construcción, medición y ajuste de un filtro pasa-bajas activo de segundo orden con coeficientes de Bessel, configuración Sallen-Key, ganancia unitaria y una frecuencia de corte f c

Más detalles

UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS Facultad de Ingeniería Departamento de Ing. Eléctrica Electrónica II AMPLIFICADORES OPERACIONALES

UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS Facultad de Ingeniería Departamento de Ing. Eléctrica Electrónica II AMPLIFICADORES OPERACIONALES AMPLIFICADORES OPERACIONALES LAURA MAYERLY ÁLVAREZ JIMENEZ (20112007040) MARÍA ALEJANDRA MEDINA OSPINA (20112007050) RESUMEN En esta práctica de laboratorio se implementarán diferentes circuitos electrónicos

Más detalles

MULTIMETRO DIGITAL (MARCA FLUKE. MODELO 87) INTRODUCCIÓN

MULTIMETRO DIGITAL (MARCA FLUKE. MODELO 87) INTRODUCCIÓN MULTIMETRO DIGITAL (MARCA FLUKE. MODELO 87) INTRODUCCIÓN Este es un compacto y preciso multímetro digital de 4 ½ dígitos, opera con batería y sirve para realizar mediciones de voltaje y corriente de C.A.

Más detalles

CONSULTA PREVIA La información necesaria para el desarrollo de la práctica, se encuentra disponible al menos en las siguientes referencias.

CONSULTA PREVIA La información necesaria para el desarrollo de la práctica, se encuentra disponible al menos en las siguientes referencias. OBJETIVOS. Entender el comportamiento y las características del amplificador operacional.. Medir ganancia, impedancia de entrada y salida de las configuraciones básicas del amplificador operacional: amplificador

Más detalles

Herramientas Integradas para Laboratorios de Electrónica

Herramientas Integradas para Laboratorios de Electrónica Herramientas Integradas para Laboratorios de Electrónica NI Educational Laboratory Virtual Instrumentation Suite (NI ELVIS) Integración y funcionalidad con múltiples instrumentos. Combina instrumentación,

Más detalles

Laboratorio Nº3. Procesamiento de señales con transistores

Laboratorio Nº3. Procesamiento de señales con transistores Laboratorio Nº3 Procesamiento de señales con transistores Objetivos iseñar redes de polarización para operar transistores JT y JFT en modo activo, y evaluar la estabilidad térmica de puntos de operación,

Más detalles

CONSEJOS PRÁCTICOS PARA LA RESOLUCIÓN DE PROBLEMAS

CONSEJOS PRÁCTICOS PARA LA RESOLUCIÓN DE PROBLEMAS Universidad Nacional de Rosario Facultad de Ciencias Exactas, Ingeniería y Agrimensura Escuela de Ingeniería Electrónica Departamento de Electrónica ELECTRÓNICA III CONSEJOS PRÁCTICOS PARA LA RESOLUCIÓN

Más detalles

PRÁCTICA 12. AMPLIFICADOR OPERACIONAL II

PRÁCTICA 12. AMPLIFICADOR OPERACIONAL II PRÁCTICA 12. AMPLIFICADOR OPERACIONAL II 1. Objetivo El objetivo de esta práctica es el estudio del funcionamiento del amplificador operacional (op-amp), en particular de tres de sus montajes típicos que

Más detalles

Práctica 3. LABORATORIO

Práctica 3. LABORATORIO Práctica 3. LABORATORIO Electrónica de Potencia. 2004 Inversor de 50Hz controlado por ancho de pulso con modulación senoidal SPWM 1. Diagrama de Bloques El inversor que va a montar tiene el siguiente diagrama

Más detalles

APLICACIONES LINEALES DEL AMPLIFICADOR OPERACIONAL

APLICACIONES LINEALES DEL AMPLIFICADOR OPERACIONAL UNIVERSIDAD DEL VALLE ESCUELA DE INGENIERIA ELÉCTRICA Y ELÉCTRONICA CÁTEDRA DE PERCEPCIÓN Y SISTEMAS INTELIGENTES LABORATORIO N Fundamentos de Electrónica APLICACIONES LINEALES DEL AMPLIFICADOR OPERACIONAL

Más detalles

Ejercicio 2.1. Calcular el valor de tensión del generador VX

Ejercicio 2.1. Calcular el valor de tensión del generador VX Ejercicio 2.1. Calcular el valor de tensión del generador y los valores de tensión sobre cada una de las resistencias. Solución: 13.88[ ] 720.63 640 2.18 1.98 10.34 9 [ ] [ ] 8 9 1 m 2 4 7 m 3 5 6 Ejercicio

Más detalles

Diapositiva 1. El transistor como resistencia controlada por tensión. llave de control. transistor bipolar NPN colector. base de salida.

Diapositiva 1. El transistor como resistencia controlada por tensión. llave de control. transistor bipolar NPN colector. base de salida. Diapositiva 1 El transistor como resistencia controlada por tensión transistor bipolar NPN colector llave de control base corriente de salida emisor e b c 2N2222 corriente de entrada 6.071 Transistores

Más detalles

Amplificadores diferenciales, de instrumentación y de puente

Amplificadores diferenciales, de instrumentación y de puente 3 mplificadores diferenciales, de instrumentación y de puente 3. Introducción En este capítulo se estudian los circuitos amplificadores diferenciales, de instrumentación y de puente. La aplicación de estos

Más detalles

OBJETIVOS CONSULTA PREVIA. La información necesaria para el desarrollo de la práctica, se encuentra disponible al menos en las siguientes referencias.

OBJETIVOS CONSULTA PREVIA. La información necesaria para el desarrollo de la práctica, se encuentra disponible al menos en las siguientes referencias. OBJETIVOS 1. Evaluar e interpretar las características fundamentales del amplificador diferencial. 2. Analizar las ventajas y desventajas de las diferentes formas de polarización del amplificador diferencial.

Más detalles

Objetivo. Desarrollo. Reporte. Práctica 4 Concepto de error. Pasos para cuantificación de errores

Objetivo. Desarrollo. Reporte. Práctica 4 Concepto de error. Pasos para cuantificación de errores Autor: Pedro I. López Contacto: dreilopz@gmail.com www.dreilopz.me Licencia: Creative Commons Attribution 3.0 Unported (CC BY 3.0 http://creativecommons.org/licenses/by/3.0/) Fecha: Febrero 2012. En ninguna

Más detalles

Circuitos con fuentes independientes de corriente y resistencias, circuitos R, I

Circuitos con fuentes independientes de corriente y resistencias, circuitos R, I MÉTODO DE LOS NUDOS Es un método general de análisis de circuitos que se basa en determinar los voltajes de todos los nodos del circuito respecto a un nodo de referencia. Conocidos estos voltajes se pueden

Más detalles

LABORATORIO DE ELECTRÓNICA DE POTENCIA PRÁCTICA N 4

LABORATORIO DE ELECTRÓNICA DE POTENCIA PRÁCTICA N 4 ESCUELA POLITÉCNICA NACIONAL Campus Politécnico "J. Rubén Orellana R." FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA Carrera de Ingeniería Electrónica y Control Carrera de Ingeniería Eléctrica LABORATORIO

Más detalles

Determinar la relación entre ganancias expresada en db (100 ptos).

Determinar la relación entre ganancias expresada en db (100 ptos). ELECTRONICA Y TELECOMUNICACIONES Competencia rupal Niel Segunda Instancia PROBLEMA N 1 El personal técnico de una empresa que se dedica a caracterizar antenas se ha propuesto determinar la relación entre

Más detalles

Laboratorio de Electrónica III Práctica I

Laboratorio de Electrónica III Práctica I Laboratorio de Electrónica III Práctica I Características Eléctricas de los Amplificadores Operacionales OBJETIO: Al término de esta práctica el alumno aprenderá medir las características eléctricas más

Más detalles

Circuitos Electrónicos II (66.10) Guía de Problemas Nº 1: Realimentación negativa y Corrimientos

Circuitos Electrónicos II (66.10) Guía de Problemas Nº 1: Realimentación negativa y Corrimientos Circuitos Electrónicos II (66.10) Guía de Problemas Nº 1: Realimentación negativa y Corrimientos 1.- Para los siguientes circuitos, hallar vo/vg considerando Avol op ; Ro op = 0; Ri op 1.1) 1.2) 2.- A

Más detalles

Laboratorio 4 Fuente no regulada y regulada

Laboratorio 4 Fuente no regulada y regulada Laboratorio 4 Fuente no regulada y regulada Jeison David Mateus González, Wilmer Ferney Romero Avellaneda, Ovalle Triana Ángel Daniel Corporación Unificada Nacional de Educación Superior CUN Ingeniería

Más detalles

1.7 LA SERIE DE FOURIER Y LAS REDES ELECTRICAS

1.7 LA SERIE DE FOURIER Y LAS REDES ELECTRICAS ARMONICAS 1.6 DEFINICIONES Elemento lineal: es aquel elemento de redes eléctricas cuyo valor permanece constante independientemente del valor de la corriente que circula por él o del voltaje que se le

Más detalles

Circuitos Sample & Hold y Conversores. Introducción

Circuitos Sample & Hold y Conversores. Introducción Circuitos Sample & Hold y Conversores Introducción Los circuitos de muestreo y retención se utilizan para muestrear una señal analógica en un instante dado y mantener el valor de la muestra durante tanto

Más detalles

COLECCIÓN DE EJERCICIOS TEORÍA DE CIRCUITOS I

COLECCIÓN DE EJERCICIOS TEORÍA DE CIRCUITOS I COLECCÓN DE EJECCOS TEOÍA DE CCUTOS ngeniería de Telecomunicación Centro Politécnico Superior Curso 9 / Aspectos Fundamentales de la Teoría de Circuitos Capítulo Problema.. (*) En cada uno de los dispositivos

Más detalles

Amplificador inversor y no inversor

Amplificador inversor y no inversor Facultad Escuela Lugar de Ejecución : Ingeniería. : Electrónica : Fundamentos Generales (Edificio 3, 2da planta) Amplificador inversor y no inversor Objetivo General Implementar los circuitos amplificadores

Más detalles

Comparadores de tensión

Comparadores de tensión Universidad Nacional de Rosario Facultad de Ciencias Exactas, Ingeniería y Agrimensura Escuela de Ingeniería Electrónica ELECTRÓNICA II NOTAS DE CLASE Comparadores de tensión OBJETIVOS - CONOCIMIENTOS

Más detalles

DISMINUCIÓN DE RUIDO ELECTROMAGNÉTICO ECTROMAGNÉTICO EN EL PATRÓN DE TENSIÓN ELÉCTRICA CONTINUA EN BASE

DISMINUCIÓN DE RUIDO ELECTROMAGNÉTICO ECTROMAGNÉTICO EN EL PATRÓN DE TENSIÓN ELÉCTRICA CONTINUA EN BASE DISMINUCIÓN DE RUIDO ELECTROMAGNÉTICO ECTROMAGNÉTICO EN EL PATRÓN DE TENSIÓN ELÉCTRICA CONTINUA EN BASE AL EFECTO JOSEPHSON DEL CENAM David Avilés David Avilés Dionisio Hernández Enrique Navarrete Introducción

Más detalles

PROFESOR: JORGE ANTONIO POLANIA PUENTES CURSO 2: CIRCUITOS SERIE

PROFESOR: JORGE ANTONIO POLANIA PUENTES CURSO 2: CIRCUITOS SERIE PROFESOR: JORGE ANTONIO POLANIA PUENTES CURSO 2: CIRCUITOS SERIE UNIDAD 1: CIRCUITO SERIE TEORÍA El circuito serie es el circuito que más se encuentra en el análisis de circuitos eléctricos y electrónicos,

Más detalles

Trabajo práctico: Amplificador Operacional

Trabajo práctico: Amplificador Operacional Problema 1 El amplificador operacional de la figura posee resistencia de entrada infinita, resistencia de salida cero y ganancia de lazo abierto A LA =50. Calcule la ganancia de lazo cerrado Ar=Vo/Vi si

Más detalles

DIE UPM. Se dispone de una etapa amplificadora conectada a una resistencia de carga R L de valor 1KΩ en paralelo con un condensador C L.

DIE UPM. Se dispone de una etapa amplificadora conectada a una resistencia de carga R L de valor 1KΩ en paralelo con un condensador C L. UNIVERSIDAD POLITÉCNICA DE MADRID ESCUELA TÉCNICA SUPERIOR DE INGENIEROS INDUSTRIALES UPM DIE DEPARTAMENTO DE AUTOMÁTICA, INGENIERÍA ELECTRÓNICA E INFORMÁTICA INDUSTRIAL DIVISIÓN DE INGENIERÍA ELECTRÓNICA

Más detalles

PROBLEMAS SOBRE FUENTES REGULADAS

PROBLEMAS SOBRE FUENTES REGULADAS UNIVERSIDAD NACIONAL DE ROSARIO FACULTAD DE CIENCIAS EXACTAS, INGENIERÍA Y AGRIMENSURA DEPARTAMENTO DE ELECTRÓNICA ELECTRÓNICA III PROBLEMAS SOBRE FUENTES REGULADAS Autores: Francisco S. López, Federico

Más detalles

70. SIEMENS S.A. Contacto: Magda Carolina Toquita S. Dirección: Carrera 65 No , Bogotá D.C.

70. SIEMENS S.A. Contacto: Magda Carolina Toquita S. Dirección: Carrera 65 No , Bogotá D.C. 70. SIEMENS S.A. Contacto: Magda Carolina Toquita S. Dirección: Carrera 65 No. 11-83, Bogotá D.C. Teléfono: (+1) 4253871 - Fax: (+1) 2627910 - e-mail: magda.toquica@siemens.com Resolución 1655 del 28 de

Más detalles

ELECTRÓNICA ANALÓGICA

ELECTRÓNICA ANALÓGICA Universidad Nacional de Misiones ELECTRÓNICA ANALÓGICA Introducción a los Amplificadores Operacionales y sus principales aplicaciones 1 Historia 1947 Surge el transistor 1954 Primer transistor de Si 1959

Más detalles

SIFeIS. CONCAyNT PLANTA EXTERIOR E IPR. CONCAyNT ELECTRÓNICA

SIFeIS. CONCAyNT PLANTA EXTERIOR E IPR. CONCAyNT ELECTRÓNICA ELECTRÓNICA PLANTA EXTERIOR E IPR GUÍA DE ESTUDIOS DE ELECTRÓNICA PARA IPR Un agradecimiento especial al Co. FRANCISCO HERNANDEZ JUAREZ por la oportunidad y el apoyo para realizar este trabajo, así como

Más detalles

Grado de Óptica y Optometría Asignatura: FÍSICA Curso: Práctica nº 5. MEDIDAS DE RESISTENCIAS, VOLTAJES Y CORRIENTES: MULTÍMETRO

Grado de Óptica y Optometría Asignatura: FÍSICA Curso: Práctica nº 5. MEDIDAS DE RESISTENCIAS, VOLTAJES Y CORRIENTES: MULTÍMETRO FCULTD DE CIENCIS UNIERSIDD DE LICNTE Grado de Óptica y Optometría signatura: FÍSIC Curso: 200- Práctica nº 5. MEDIDS DE RESISTENCIS, OLTJES Y CORRIENTES: MULTÍMETRO Material Fuente de alimentación de

Más detalles

2 Electrónica Analógica TEMA II. Electrónica Analógica

2 Electrónica Analógica TEMA II. Electrónica Analógica TEMA II Electrónica Analógica Electrónica II 2007 1 2 Electrónica Analógica 2.1 Amplificadores Operacionales. 2.2 Aplicaciones de los Amplificadores Operacionales. 2.3 Filtros. 2.4 Transistores. 2 1 2.1

Más detalles

MODELOS DE PEQUEÑA SEÑAL: EL MODELO HÍBRIDO π Se eliminan las fuentes DC. El modelo también aplica para transistores pnp sin cambio de polaridades

MODELOS DE PEQUEÑA SEÑAL: EL MODELO HÍBRIDO π Se eliminan las fuentes DC. El modelo también aplica para transistores pnp sin cambio de polaridades MODELOS DE PEQUEÑA SEÑAL: EL MODELO HÍBRIDO π Se eliminan las fuentes DC El modelo también aplica para transistores pnp sin cambio de polaridades MODELOS DE PEQUEÑA SEÑAL: EL MODELO T Se eliminan las fuentes

Más detalles

Laboratorio Integrador y Diferenciador con AO

Laboratorio Integrador y Diferenciador con AO Objetivos Laboratorio Integrador y Diferenciador con AO El propósito de este práctico es comprender el funcionamiento de un integrador y de un diferenciador construido con un LM741. Textos de Referencia

Más detalles

PRÁCTICA 4: RESPUESTA EN FRECUENCIA Y COMPENSACION P P T T T. 1.-Objetivos.

PRÁCTICA 4: RESPUESTA EN FRECUENCIA Y COMPENSACION P P T T T. 1.-Objetivos. PRÁCTICA 4: RESPUESTA E FRECUECIA Y COMPESACIO 1.-Objetivos. P P P P Medir y conocer la respuesta en frecuencia de los amplificadores. Medir correctamente la ganancia de tensión de un amplificador, en

Más detalles

Amplificador Operacional: caracterización y aplicación

Amplificador Operacional: caracterización y aplicación Amplificador Operacional: caracterización y aplicación E. de Barbará, G. C. García *, M. Real y B. Wundheiler ** Laboratorio de Electrónica Facultad de Ciencias Exactas y Naturales Departamento de Física

Más detalles

Circuitos resistivos activos. Primera parte

Circuitos resistivos activos. Primera parte Circuitos resistivos activos. Primera parte Objetivos 1. Analizar circuitos equivalentes de transistores constituidos por resistores y fuentes dependientes. 2. Explicar las características del amplificador

Más detalles

Condensadores. Parte I.

Condensadores. Parte I. Condensadores. Parte I. Introducción La experiencia, que consta de varias partes, tiene como finalidad familiarizar a los alumnos con los condensadores, sobre la base de realizar unos experimentos, éstos,

Más detalles

IES GUSTAVO ADOLFO BÉCQUER DEPARTAMENTO DE TECNOLOGÍA TECNOLOGÍAS 4ºESO PLAN DE RECUPERACIÓN SEPTIEMBRE Nombre:... Curso:...

IES GUSTAVO ADOLFO BÉCQUER DEPARTAMENTO DE TECNOLOGÍA TECNOLOGÍAS 4ºESO PLAN DE RECUPERACIÓN SEPTIEMBRE Nombre:... Curso:... DEPARTAMENTO DE TECNOLOGÍA TECNOLOGÍAS 4ºESO PLAN DE RECUPERACIÓN SEPTIEMBRE 2010 Nombre:... Curso:... Se recomienda realizar los ejercicios propuesto y un resumen por cada tema. Presentación de los trabajos:

Más detalles

4.3.- EL AMPLIFICADOR DE INSTRUMENTACIÓN

4.3.- EL AMPLIFICADOR DE INSTRUMENTACIÓN Ignacio Moreno elasco..- EL MPLIFICDO DE INSTUMENTCIÓN nte las exigencias de medida que imponen los sensores, se necesitan amplificadores específicos llamados de instrumentación que deben cumplir unos

Más detalles

6.071 Prácticas de laboratorio 4 Amplificadores operacionales

6.071 Prácticas de laboratorio 4 Amplificadores operacionales 6.071 Prácticas de laboratorio 4 Amplificadores operacionales 29 de abril de 2002 1 Ejercicios previos AVISO: en las anteriores prácticas de laboratorio, se han presentado numerosos estudiantes sin los

Más detalles

ELECTRÓNICA Y CIRCUITOS

ELECTRÓNICA Y CIRCUITOS ELECTRÓNICA Y CIRCUITOS EJERCICIOS TEMA 1 1.- Dado el dispositivo de la figura, en el que = V, obtener el valor de su parámetro, R, para que la corriente que lo atraviesa tenga un valor =0 ma. Resolver

Más detalles

BJT 1. V γ V BE +V CC =12V. R C =0,6kΩ I C. R B =43kΩ V I I B I E. Figura 1 Figura 2

BJT 1. V γ V BE +V CC =12V. R C =0,6kΩ I C. R B =43kΩ V I I B I E. Figura 1 Figura 2 J 1. n este ejercicio se trata de estudiar el funcionamiento del transistor de la figura 1 para distintos valores de la tensión V I. Para simplificar el análisis se supondrá que la característica de entrada

Más detalles

CONSTANTE DIELÉCTRICA

CONSTANTE DIELÉCTRICA ONSTANTE DIELÉTRIA. OBJETIVO En esta práctica se calculará experimentalmente el valor de la constante eo (permitividad del espacio libre), y se estudiará un material dieléctrico determinándose su constante

Más detalles

PRÁCTICA 6 AMPLIFICADOR MULTIETAPA CONFIGURACION EMISOR COMUN CON AUTOPOLARIZACION.

PRÁCTICA 6 AMPLIFICADOR MULTIETAPA CONFIGURACION EMISOR COMUN CON AUTOPOLARIZACION. PRÁCTIC 6 MPLIFICDOR MULTIETP CONFIGURCION EMISOR COMUN CON UTOPOLRIZCION. DESRROLLO 1.- rme el circuito de la siguiente figura y aplique a la señal de entrada una señal sinusoidal de 1 KHz. de frecuencia,

Más detalles

LABORATORIOS DE: DISPOSITIVOS DE ALMACENAMIENTO Y DE ENTRADA/SALIDA. MEMORIAS Y PERIFÉRICOS.

LABORATORIOS DE: DISPOSITIVOS DE ALMACENAMIENTO Y DE ENTRADA/SALIDA. MEMORIAS Y PERIFÉRICOS. LABORATORIOS DE: DISPOSITIVOS DE ALMACENAMIENTO Y DE ENTRADA/SALIDA. MEMORIAS Y PERIFÉRICOS. OBJETIVO DE LA PRÁCTICA. PRÁCTICA #2 EL AMPLIFICADOR OPERACIONAL Hacer la comprobación experimental de la función

Más detalles

Trabajo Práctico N o 4 Mediciones con Corriente Continua. Antonio, Pablo Oscar Frers, Wenceslao

Trabajo Práctico N o 4 Mediciones con Corriente Continua. Antonio, Pablo Oscar Frers, Wenceslao Física II A Trabajo Práctico N o 4 Mediciones con Corriente Continua Antonio, Pablo Oscar Frers, Wenceslao XXXXX XXXXX 2. do cuatrimestre 2006 ÍNDICE Índice 1. Resumen 2 2. Introducción 2 3. Método experimental

Más detalles

Circuito de Offset

Circuito de Offset Figura 3.3 Conexión del Amplificador Los cálculos para la ganancia son simples y se muestran en la ecuación (3.), en estas se puede observar que para el cálculo de la ganancia es necesario establecer el

Más detalles

EL TRANSISTOR MOSFET CURVAS CARACTERÍSTICAS DE UN MOSFET CANAL N DE ENRIQUECIMIENTO

EL TRANSISTOR MOSFET CURVAS CARACTERÍSTICAS DE UN MOSFET CANAL N DE ENRIQUECIMIENTO EL TRANSISTOR MOSFET CURVAS CARACTERÍSTICAS DE UN MOSFET CANAL N DE ENRIQUECIMIENTO FORMA DE PRESENTACIÓN DE LAS ECUACIONES DEL MOSFET DE ENRIQUECIMIENTO De la ecuación que define el umbral VDS = VGS -Vth

Más detalles

TRANSIENTES EN CIRCUITOS RC y SU APLICACION A LA MEDIDA DE CAPACITANClAS

TRANSIENTES EN CIRCUITOS RC y SU APLICACION A LA MEDIDA DE CAPACITANClAS PRÁCTICA DE LABORATORIO II-09 TRANSIENTES EN CIRCUITOS RC y SU APLICACION A LA MEDIDA DE CAPACITANClAS OBJETIVOS Estudiar los fenómenos transientes que se producen en circuitos RC de corriente directa.

Más detalles

EL AMPLIFICADOR CON BJT

EL AMPLIFICADOR CON BJT 1 Facultad: Estudios Tecnologicos. Escuela: Electrónica. Asignatura: Electronica Analogica Discresta. EL AMPLIFICADOR CON BJT Objetivos específicos Determinar la ganancia de tensión, corriente y potencia

Más detalles

Laboratorio de Electricidad PRACTICA - 4 PROPIEDADES DE LOS CIRCUITOS SERIE-PARALELO LEYES DE KIRCHHOFF (PARA UN GENERADOR)

Laboratorio de Electricidad PRACTICA - 4 PROPIEDADES DE LOS CIRCUITOS SERIE-PARALELO LEYES DE KIRCHHOFF (PARA UN GENERADOR) PRACTICA - 4 PROPIDADS D LOS CIRCUITOS SRI-PARALLO LYS D KIRCHHOFF (PARA UN GNRADOR) I - Finalidades 1.- Comprobar experimentalmente que la resistencia total R T de una combinación de resistencias en conexión

Más detalles

Amplificadores Operacionales

Amplificadores Operacionales Amplificadores Operacionales Introducción l amplificador operacional es básicamente un amplificador de tensión con la particularidad de tener dos entradas, y amplificar solo la señal diferencia entre ellas.

Más detalles

CAPACITORES INDUCTORES. Mg. Amancio R. Rojas Flores

CAPACITORES INDUCTORES. Mg. Amancio R. Rojas Flores CAPACITORES E INDUCTORES Mg. Amancio R. Rojas Flores A diferencia de resistencias, que disipan la energía, condensadores e inductores no se disipan, pero almacenan energía, que puede ser recuperada en

Más detalles

PRÁCTICA 3 TRANSISTORES BIPOLARES: POLARIZACIÓN Y GENERADORES DE CORRIENTE

PRÁCTICA 3 TRANSISTORES BIPOLARES: POLARIZACIÓN Y GENERADORES DE CORRIENTE PÁCTCA 3 TANSSTOES BPOLAES: POLAZACÓN Y GENEADOES DE COENTE 1. OBJETVO. Se pretende que el alumno tome contacto, por primera vez en la mayor parte de los casos, con transistores bipolares, y que realice

Más detalles

CUESTIONES DEL TEMA - IV

CUESTIONES DEL TEMA - IV ema 5: Osciladores de elajación... Presentación En el tema 5 se tratan distintos circuitos que producen en su salida ondas de tipo cuadradas, triangulares, pulso, etc. : a) Se analiza el comportamiento

Más detalles

Fuentes de corriente

Fuentes de corriente Fuentes de corriente 1) Introducción En Electrotecnia se estudian en forma teórica las fuentes de corriente, sus características y el comportamiento en los circuitos. Desde el punto de vista electrónico,

Más detalles

GUÍA 7: AMPLIFICADORES OPERACIONALES

GUÍA 7: AMPLIFICADORES OPERACIONALES 3º Electrónica ogelio Ortega B GUÍA 7: AMPLIFICADOES OPEACIONALES El término de ampliicador operacional (operational ampliier o OA o op -amp) ue asignado alrededor de 940 para designar una clase de ampliicadores

Más detalles

TEMA 6 ESTABILIDAD EN EL PUNTO DE TRABAJO

TEMA 6 ESTABILIDAD EN EL PUNTO DE TRABAJO TEMA 6 ESTABILIDAD EN EL PUNTO DE TRABAJO (Guía de lases) Asignatura: Dispositivos Electrónicos I Dpto. Tecnología Electrónica ONTENIDO Introducción Estabilidad en el punto de trabajo Punto de trabajo

Más detalles

ÍNDICE OBJETIVOS... 3 INTRODUCCIÓN... 4

ÍNDICE OBJETIVOS... 3 INTRODUCCIÓN... 4 5 CIRCUITOS ELÉCTRICOS. LEYES Y TEOREMAS Electrónica Analógica ÍNDICE OBJETIVOS... 3 INTRODUCCIÓN... 4 1.1. CIRCUITO EQUIVALENTE... 5 1.. leyes de hirchhoff... 9 1.3. teorema de thevenin... 11 1.4. teorema

Más detalles

PRACTICA Nº 1 MEDICIONES SOBRE CIRCUITOS ELECTRONICOS

PRACTICA Nº 1 MEDICIONES SOBRE CIRCUITOS ELECTRONICOS UNIVERSIDAD SIMON BOLIVAR DPTO. ELECTRONICA Y CIRCUITOS CIRCUITOS ELECTRONICOS I EC1177 PRACTICA Nº 1 MEDICIONES SOBRE CIRCUITOS ELECTRONICOS OBJETIVO Familiarizar al estudiante con los conceptos fundamentales

Más detalles

EXP207 REGLAS DE FUNCIONAMIENTO EN OP-AMPS.

EXP207 REGLAS DE FUNCIONAMIENTO EN OP-AMPS. EXP207 REGLAS DE FUNCIONAMIENTO EN OP-AMPS. I.- OBJETIVOS. Comprobar experimentalmente las reglas de funcionamiento líneas del amplificador lineal del amplificador operacional. Comprobar el funcionamiento

Más detalles

Test de Fundamentos de Electrónica Industrial (4 puntos). 3º GITI. TIEMPO: 40 minutos May 2013

Test de Fundamentos de Electrónica Industrial (4 puntos). 3º GITI. TIEMPO: 40 minutos May 2013 1) Cual de las siguientes expresiones es correcta A) A+B+B =A+B B) A+B+(A.B )=A C) (A.B)+(A.C)+(B.C)=(A.B)+(B.C) D) A.B =A +B 2) La figura adjunta se corresponde con la estructura interna de un circuito:

Más detalles

Transistor BJT; Respuesta en Baja y Alta Frecuencia

Transistor BJT; Respuesta en Baja y Alta Frecuencia Transistor BJT; Respuesta en Baja y Alta Frecuencia Universidad de San Carlos de Guatemala, Facultad de Ingeniería, Escuela de Mecánica Eléctrica, Laboratorio de Electrónica 2, Segundo Semestre 206, Aux.

Más detalles

TRABAJO PRÁCTICO Nº 2 ANÁLISIS DE CIRCUITOS DE CORRIENTE CONTINUA

TRABAJO PRÁCTICO Nº 2 ANÁLISIS DE CIRCUITOS DE CORRIENTE CONTINUA E.T. Nº 17 - D.E. X Reg. PRÁCTCAS UNFCADAS 1 ntroducción Teórica TRABAJO PRÁCTCO Nº 2 ANÁLSS DE CRCUTOS DE CORRENTE CONTNUA a Multímetro digital: El multímetro digital es un instrumento electrónico de

Más detalles

Cuando dos condensadores se conectan en serie, almacenan la misma carga Q:

Cuando dos condensadores se conectan en serie, almacenan la misma carga Q: CONSTANTE DIELÉCTRICA. OBJETIVO En esta práctica se calculará experimentalmente el valor de la constante eo (permitividad del espacio libre), y se estudiará un material dieléctrico determinándose su constante

Más detalles

3. Operar un generador de señales de voltaje en función senoidal, cuadrada, triangular.

3. Operar un generador de señales de voltaje en función senoidal, cuadrada, triangular. Objetivos: UNIVERSIDAD FRANCISCO DE PAULA SANTANDER Al terminar la práctica el alumno estará capacitado para: 1. El manejo de los controles del osciloscopio (encendido, ajuste de intensidad, barrido vertical,

Más detalles

UNIVERSIDAD DE ANTIOQUIA FACULTAD DE INGENIERÍA DEPARTAMENTO DE INGENIERIA ELECTRÓNICA LABORATORIO DE CIRCUITOS II PRÁCTICA N 5 "GENERADORES DE SEÑAL"

UNIVERSIDAD DE ANTIOQUIA FACULTAD DE INGENIERÍA DEPARTAMENTO DE INGENIERIA ELECTRÓNICA LABORATORIO DE CIRCUITOS II PRÁCTICA N 5 GENERADORES DE SEÑAL UNIVERSIDAD DE ANTIOQUIA FACULTAD DE INGENIERÍA DEPARTAMENTO DE INGENIERIA ELECTRÓNICA LABORATORIO DE CIRCUITOS II PRÁCTICA N 5 "GENERADORES DE SEÑAL" OBJETIVOS: Conocer el funcionamiento de circuitos

Más detalles