Lógica de Predicados 1
|
|
|
- Eva Giménez San Martín
- hace 10 años
- Vistas:
Transcripción
1 Lógica de Predicados 1 rafael ramirez [email protected] Ocata 320
2 Porqué Lógica de Predicados La logica proposicional maneja bien afirmaciones compuestas de no, y, o, si entonces En situaciones con un conjunto finito (pequeño) de elementos, esto es suficiente para hablar de existe, todo, para todo. Ejemplo: si tenemos 3 estudiantes A, B y C, tomando p= A tiene ojos cafes, q= B tiene ojos cafes, r= C tiene ojos cafes la afirmacion existe un estudiante con ojos cafes se puede representar por p q r 2
3 Porqué Lógica de Predicados En situaciones con conjuntos infinitos (muy grandes) requríamos formulas infinitas, p.e. cada persona es hombre o mujer se traduciría como: (p0 q0) (p1 q1) (p2 p2) Que pasa si queremos representar el argumento: Todos los hombres son mortales, Socrates es un hombre, Por lo tanto, Socrates es mortal. 3
4 Lógica de Predicados La logica de predicados (tambien llamada logica de primer orden) es una extension de la logica proposicional que usa variables para los objetos. Si usamos x para representar a algun humano, la afirmacion cada persona es hombre o mujer se puede representar como x(h(x) M(x)) donde H(x)= x es hombre, M(x)= x es mujer Estas variables se pueden combinar con símbolos de función para representar objetos nuevos y con símbolos de predicado para describir ralaciones entre objetos. Ejemplo: si s(x) representa el padre de x, y M(x,y) representa x es menor que y, entonces toda persona es menor que su padre se representa por x M(x,s(x)) 4
5 Ejercicio Traduce: 5
6 Ejercicios Ejercicio P4-#3a no todas las aves pueden volar Ejercicio P4-#3b todos los hombres son mortales. Socrates es un hombre. Por lo tanto Socrates es mortal. Ejercicio P4-#3c Existe un hermano de Ana que le gusta a Blanca 6
7 Ejercicios Ejercicio P4-#3a no todas las aves pueden volar ( x (B(x) F(x))) Ejercicio P4-#3b todos los hombres son mortales. Socrates es un hombre. Por lo tanto Socrates es mortal. x (H(x) M(x)), H(s) M(s) Ejercicio P4-#3c Existe un hermano de Ana que le gusta a Blanca x (H(x,a) L(x,b)) 7
8 Correctez y completez Extenderemos los conceptos de interpretacion semántica y de deduccion natural a la logica de predicados. Obtenemos similares teoremas de correctez y completez: A1, A2, An B si y solo si A1, A2, An B 8
9 Alfabeto de la logica de 1er orden Símbolos de puntuación (, ) Variables x, y, z, x1, x2,, u, v Constantes a, b, c, a1, Símbolos de función f, g, f1, Simbolos de predicado p, q, r, p1, Conectivos Los mismos que logica proposicional +, 9
10 Términos y fórmulas atómicas TERMINOS Las variables y constantes son terminos Si f es una función de n argumentos y t1,,tn son terminos, entonces f(t1,,tn) es un término. FORMULAS ATOMICAS Si p es un predicado con n argumentos y t1,,tn son terminos, entonces p(t1,,tn) es una fórmula atómica. 10
11 Términos y fórmulas atómicas FORMULAS DE PRIMER ORDEN Una fórmula atómica es una fórmula (de 1er orden) Si A y B son fórmulas entonces A B, A, A B, A B, xa, xa son fórmulas 11
12 Algunas definiciones El alcance de un cuantificador es la formula a la cual se aplica. Una ocurrencia de una variable esta acotada si esta dentro del alcance de un cuantificador x Si no lo esta entonces la variable esta libre Una formula esta cerrada si no tiene ninguna ocurrencia libre de variables 12
13 Interpretaciones Una interpretación I para una formula A es: Un dominio D (un conjunto no vacío) Una relacion en el dominio D para cada símbolo de predicado en A Una funciones en el dominio D para vada símbolo de funcion en A Un elemento de D para cada constante en A En caso de que la formula sea abierta, un elemento de D para cada variable libre de A Nota que en el caso proposicional solo hay variables (p,q, ) y nuestro dominio D es el conjunto {T,F} 13
14 Modelos Sea A una formula cerrada Definicion: A es verdad en I, o I es una modelo de A, si v(a) = T bajo I. Notacion: I A Si A = x p(a,x) I1: D=N, p=, a=1 I1 A I2: D=N, p=, a=0 No I2 A I3: D=Z, p=, a=0 No I3 A 14
15 Satisfacibilidad Definicion: Una formula A es satisfacible si para alguna interpretación I, I A Definicion: Una formula A es válida (notación A) si para toda interpretación I, I A x p(a,x) satisfacible y es falsifiable Que tal x p(x) p(a)? Que tal x p(x) p(a)? 15
16 Fórmulas válidas (1) 16
17 Fórmulas válidas (2) 17
18 Tableaux semánticos 18
19 Tableaux semánticos Ejercicio: Determinar con un tableau semántico si la siguientes fórmulas son válidas o no x ( p(x) q(x) ) ( x p(x) x q(x) ) x A(x) x A(x) 19
Lógica de Predicados 1!
Lógica de Predicados 1! rafael ramirez [email protected] 55.316 (Tanger) Porqué Lógica de Predicados! La logica proposicional maneja bien afirmaciones compuestas de no, y, o, si entonces En situaciones
MLM 1000 - Matemática Discreta
MLM 1000 - Matemática Discreta L. Dissett Clase 04 Resolución. Lógica de predicados c Luis Dissett V. P.U.C. Chile, 2003 Aspectos administrativos Sobre el tema vacantes: 26 personas solicitaron ingreso
Introducción. Lógica de proposiciones: introducción. Lógica de proposiciones. P (a) x. Conceptos
Introducción César Ignacio García Osorio Lógica y sistemas axiomáticos 1 La lógica ha sido históricamente uno de los primeros lenguajes utilizados para representar el conocimiento. Además es frecuente
Semántica de Primer Orden. Semántica de Primer Orden
Para interpretar una fórmula de la lógica de predicados de primer orden: determinar qué objetos representan los términos (Dominio) definir las funciones y qué propiedades/relaciones representan los predicados
Repaso de Lógica de Primer Orden
Repaso de Lógica de Primer Orden IIC3260 IIC3260 Repaso de Lógica de Primer Orden 1 / 29 Lógica de primer orden: Vocabulario Una fórmula en lógica de primer orden está definida sobre algunas constantes
Lógica Proposicional 1
Lógica Proposicional 1 rafael ramirez [email protected] Ocata 320 Lógica proposicional Un conjunto de variables p, q, r, que representan afirmaciones tales como Esta caja es roja La luna es de queso La
IIC 2252 - Matemática Discreta
IIC 2252 - Matemática Discreta L. Dissett Clase 04 Lógica de predicados. Reglas de inferencia en lógica de predicados. Lógica de predicados Definiciones básicas: Un predicado es una afirmación que depende
Significado de las f.b.f (fórmulas bien formadas) en términos de objetos, propiedades y relaciones en el mundo
Significado de las f.b.f (fórmulas bien formadas) en términos de objetos, propiedades y relaciones en el mundo Semánticas del cálculo de predicados proporcionan las bases formales para determinar el valor
Tema 6: Programación Lógica: semántica declarativa. Lenguajes y Paradigmas de Programación
Tema 6: Programación Lógica: semántica declarativa Lenguajes y Paradigmas de Programación Teoría de Modelos Se basa en el concepto de INTERPRETACIÓN, que consiste en: elegir un dominio D (en el que tomarán
La suma se realiza miembro a miembro. La suma de polinomios goza de las mismas propiedades que la suma de números. Ejemplo:
Tema 4. Polinomios 1. Definición Un polinomio es una expresión hecha con constantes, variables y exponentes, que están combinados. Los exponentes sólo pueden ser 0, 1, 2, 3,... etc. No puede tener un número
Lógica Proposicional IIC2212. IIC2212 Lógica Proposicional 1 / 56
Lógica Proposicional IIC2212 IIC2212 Lógica Proposicional 1 / 56 Inicio de la Lógica Originalmente, la Lógica trataba con argumentos en el lenguaje natural. Ejemplo Es el siguiente argumento válido? Todos
Historia y Filosofía de la Lógica
Historia y Filosofía de la Lógica Pablo Cobreros [email protected] Tema 1: El objeto de la lógica La lógica proposicional clásica El objeto de la lógica Consecuencia lógica La lógica proposicional El lenguaje
Objetivos. Contenidos. Revisar los principales conceptos de la lógica de primer orden
Especificación TEMA 1 formal de problemas Objetivos Revisar los principales conceptos de la lógica de primer orden Entender el concepto de estado de cómputo y cómo se modela con predicados lógicos Familiarizarse
CAPÍTULO III. FUNCIONES
CAPÍTULO III LÍMITES DE FUNCIONES SECCIONES A Definición de límite y propiedades básicas B Infinitésimos Infinitésimos equivalentes C Límites infinitos Asíntotas D Ejercicios propuestos 85 A DEFINICIÓN
Escenas de episodios anteriores
Clase 16/10/2013 Tomado y editado de los apuntes de Pedro Sánchez Terraf Escenas de episodios anteriores objetivo: estudiar formalmente el concepto de demostración matemática. caso de estudio: lenguaje
PROLOG Inteligencia Artificial Universidad de Talca, II Semestre 2005. Jorge Pérez R.
PROLOG Inteligencia Artificial Universidad de Talca, II Semestre 2005 Jorge Pérez R. 1 Introducción a PROLOG PROLOG es un lenguaje interpretado basado en la lógica de predicados de primer orden. Puede
Una (muy) breve introducción a la teoría de la computación
Una (muy) breve introducción a la teoría de la computación Marcelo Arenas M. Arenas Una (muy) breve introducción a la teoría de la computación 1 / 48 Ciencia de la computación Cuál es el objeto de estudio
Departamento de Cs. e Ingeniería de la Computación Universidad Nacional del Sur
Departamento de Cs. e Ingeniería de la Computación Universidad Nacional del Sur Lógica para Ciencias de la Computación Trabajo Práctico N 4 Cálculo de Predicados Primer Cuatrimestre de 2009 Observación
El sistema de Hilbert: Lógica de Primer Orden
El sistema de Hilbert: Lógica de Primer Orden El sistema de deducción de Hilbert para la lógica de primer orden consta de los siguientes elementos: IIC2213 Lógica de Primer Orden 55 / 65 El sistema de
Tema 12: Teorema de Herbrand
Facultad de Informática Grado en Ingeniería Informática Lógica 1/12 PARTE 3: DEMOSTRACIÓN AUTOMÁTICA Tema 12: Teorema de Herbrand Profesor: Javier Bajo [email protected] Madrid, España 26/11/2012 Introducción.
Seminario: Expresividad semántica y lógica de segundo orden:
Seminario: Expresividad semántica y lógica de segundo orden: Eduardo Barrio Javier Castro Albano UBA 1er cuatrimestre de 2008 1.- Definiciones: L: Lenguaje: conjunto de expresiones. LP: Lenguaje de primer
UNIDAD I: LÓGICA PROPOSICIONAL
UNIDAD I: LÓGICA PROPOSICIONAL ASIGNATURA: INTRODUCCIÓN A LA COMPUTACIÓN CARRERAS: LICENCIATURA Y PROFESORADO EN CIENCIAS DE LA COMPUTACIÓN DEPARTAMENTO DE INFORMÁTICA FACULTAD DE CIENCIAS FÍSICO MATEMÁTICA
2.3.- Modelo relacional de datos (aproximación lógica) 2.3.1.- La lógica de 1er orden. 2.3.1.- La lógica de 1er orden. 2.3.1.- La lógica de 1er orden
2.3.- Modelo relacional de datos (aproximación lógica). Existen dos lenguajes lógicos de manipulación para el modelo relacional: El Cálculo Relacional de Tuplas. El Cálculo Relacional de Dominios. La perspectiva
Estructuras Discretas. César Bautista Ramos Carlos Guillén Galván Daniel Alejandro Valdés Amaro
Estructuras Discretas César Bautista Ramos Carlos Guillén Galván Daniel Alejandro Valdés Amaro Facultad de Ciencias de la Computación Benemérita Universidad Autónoma de Puebla 1. CONJUNTOS Y CLASES 1
Funciones uno-uno, sobre y biunívocas
Funciones uno-uno, sobre y biunívocas La inversa (biunívocas) de una función es una regla que actúa en la salida de la función y produce la entrada correspondiente. Así, la inversa deshace o invierte lo
2.3.- Modelo relacional de datos (aproximación lógica)
2.3.- Modelo relacional de datos (aproximación lógica) Existen dos lenguajes lógicos de manipulación para el modelo relacional: El Cálculo Relacional de Tuplas. El Cálculo Relacional de Dominios. La perspectiva
Tema 5. Aproximación funcional local: Polinomio de Taylor. 5.1 Polinomio de Taylor
Tema 5 Aproximación funcional local: Polinomio de Taylor Teoría Los polinomios son las funciones reales más fáciles de evaluar; por esta razón, cuando una función resulta difícil de evaluar con exactitud,
Descomposición factorial de polinomios
Descomposición factorial de polinomios Contenidos del tema Introducción Sacar factor común Productos notables Fórmula de la ecuación de segundo grado Método de Ruffini y Teorema del Resto Combinación de
Lógica de Predicados de Primer Orden
Lógica de Predicados de Primer Orden La lógica proposicional puede ser no apropiada para expresar ciertos tipos de conocimiento. Por ejemplo: Algunas manzanas son rojas Esta afirmación no se refiere específicamente
A estas alturas de nuestros conocimientos vamos a establecer dos reglas muy prácticas de cómo sumar dos números reales:
ADICIÓN Y RESTA DE NUMEROS REALES ADICIÓN L a adición o suma de números reales se representa mediante el símbolo más (+) y es considerada una operación binaria porque se aplica a una pareja de números,
POLINOMIOS. División. Regla de Ruffini.
POLINOMIOS. División. Regla de Ruffini. Recuerda: Un monomio en x es una expresión algebraica de la forma a x tal que a es un número real y n es un número natural. El real a se llama coeficiente y n se
La derivada. 5.2 La derivada de una función
Capítulo 5 La derivada 5. La derivada de una función A continuación trataremos uno de los conceptos fundamentales del Cálculo, que es el de la derivada. Este concepto es un ite que está estrecamente ligado
Lógica Clásica de Primer Orden con Igualdad
Lógica Clásica de Primer Orden con Igualdad José Alfredo Amor Facultad de Ciencias Universidad Nacional Autónoma de México [email protected] 1 Introducción La lógica clásica de primer orden con
Para representar los conjuntos, los elementos y la relación de pertenencia, mediante símbolos, tendremos en cuenta las siguientes convenciones:
2. Conjuntos 2.1 Introducción El concepto de conjunto, de singular importancia en la ciencia matemática y objeto de estudio de una de sus disciplinas más recientes, está presente, aunque en forma informal,
Campos conservativos. f(x) = f (x) = ( f x 1
Capítulo 1 Campos conservativos En este capítulo continuaremos estudiando las integrales de linea, concentrándonos en la siguiente pregunta: bajo qué circunstancias la integral de linea de un campo vectorial
Números y desigualdades
1/59 Números y desigualdades 2/59 Distintas clases de números 3/59 Números naturales Los números naturales 1,2,3,.... El conjunto de todos ellos se representa por N. 4/59 Números enteros Los números enteros...,-2,-1,0,1,2,...
Números Reales. MathCon c 2007-2009
Números Reales z x y MathCon c 2007-2009 Contenido 1. Introducción 2 1.1. Propiedades básicas de los números naturales....................... 2 1.2. Propiedades básicas de los números enteros........................
Juegos estáticos y juegos estocásticos
Capítulo 1 Juegos estáticos y juegos estocásticos La teoría de juegos estudia modelos matemáticos de situaciones de cooperación o de conflicto en el que participan dos o más entidades (personas, empresas,
TALLER DE MATEMÁTICAS NOTAS. Toda expresión algebraica del tipo. a n x n + a n 1 x n 1 +... + a 1 x + a 0. es un polinomio de grado n, si a n 0.
NOTAS Toda expresión algebraica del tipo es un polinomio de grado n, si a n 0. a n x n + a n 1 x n 1 +... + a 1 x + a 0 RELACIONES DE DIVISIBILIDAD 1) x n a n = (x a)(x n 1 + ax n 2 + a 2 x n 3 +... +
1. Producto escalar, métrica y norma asociada
1. asociada Consideramos el espacio vectorial R n sobre el cuerpo R; escribimos los vectores o puntos de R n, indistintamente, como x = (x 1,..., x n ) = n x i e i i=1 donde e i son los vectores de la
Semana 08 [1/15] Axioma del Supremo. April 18, 2007. Axioma del Supremo
Semana 08 [1/15] April 18, 2007 Acotamiento de conjuntos Semana 08 [2/15] Cota Superior e Inferior Antes de presentarles el axioma del supremo, axioma de los números reales, debemos estudiar una serie
Revista digital Matemática, Educación e Internet (www.cidse.itcr.ac.cr/revistamate/). Vol. 8, N o 2. 2007
Sección Tecnologías de Internet Revista digital Matemática, Educación e Internet (www.cidse.itcr.ac.cr/revistamate/). Vol. 8, N o 2. 2007 Hacia una propuesta didáctica para la enseñanza de Métodos Numéricos
March 25, 2010 CAPÍTULO 2: LÍMITES Y CONTINUIDAD DE FUNCIONES EN EL ESPACIO EUCLÍDEO
March 25, 2010 CAPÍTULO 2: LÍMITE Y CONTINUIDAD DE FUNCIONE EN EL EPACIO EUCLÍDEO 1. Producto Escalar en R n Definición 1.1. Dado x = (x 1,..., x n ), y = (y 1,..., y n ) R n, su producto escalar está
Tablas. Estas serán las tablas que usaremos en la mayoría de ejemplos. Empleado
Álgebra Relacional Un álgebra es un sistema matemático constituido por Operandos: objetos (valores o variables) desde los cuales nuevos objetos pueden ser construidos. Operadores: símbolos que denotan
Espacios generados, dependencia lineal y bases
Espacios generados dependencia lineal y bases Departamento de Matemáticas CCIR/ITESM 14 de enero de 2011 Índice 14.1. Introducción............................................... 1 14.2. Espacio Generado............................................
Lenguajes y Compiladores
2015 Estructura de la materia a grandes rasgos: Primera Parte: Lenguaje imperativo Segunda Parte: Lenguaje aplicativo puro, y lenguaje aplicativo con referencias y asignación Ejes de contenidos de la primer
Ejercicios de Funciones, límites y continuidad.
Matemáticas 1ºBach CNyT. Ejercicios Funciones. Pág 1/12 Ejercicios de Funciones, límites y continuidad. 1. Estudia el dominio de las siguientes funciones 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14.
Matrices equivalentes. El método de Gauss
Matrices equivalentes. El método de Gauss Dada una matriz A cualquiera decimos que B es equivalente a A si podemos transformar A en B mediante una combinación de las siguientes operaciones: Multiplicar
Ejercicio 3: -Realiza las siguientes operaciones, y después, calcula el dominio resultante. Grupo F7
Ejercicio 3: -Realiza las siguientes operaciones, y después, calcula el dominio resultante. Grupo F7 Apartado A Sabiendo que f(x)= 3x+3 y g(x)= x^2-7 la operación f(x)+g(x) consiste en sumar los miembros
Funciones de dos variables. Gráficas y superficies.
Univ. de Alcalá de Henares Ingeniería de Telecomunicación Cálculo. Segundo parcial. Curso 2004-2005 Funciones de dos variables. Gráficas y superficies. Puede ser conveniente la visualización en pantalla
Tarea 4 Soluciones. la parte literal es x3 y 4
Tarea 4 Soluciones Extracto del libro Baldor. Definición. Término.-es una expresión algebraica que consta de un solo símbolo o de varios símbolos no separados entre sí por el signo + o -. Así, a, 3b, 2xy,
TEMA 3: CONTINUIDAD DE FUNCIONES
TEMA 3: CONTINUIDAD DE FUNCIONES. Valor Absoluto Trabajaremos en el campo de los números reales, R. Para el estudio de las propiedades de las funciones necesitamos el concepto de valor absoluto de un número
Lógica de Primer Orden. Esquema. Tema 6. Introducción
Lógica de Primer Orden Tema 6 Transparencias IA (F29) MMarcos, 2002 (Figuras c SRussell & PNorvig, 1998) Tema 6 1 Introducción Esquema Sintaxis y semántica de la Lógica de Primer Orden Variaciones en la
1. Sintaxis de Prolog
1. Sintaxis de Prolog Términos: Constantes: enteros (Ejs: 3, 4), átomos (Ejs: juan, pi) (en minúscula). Variables: Ejs: X, Casa (en mayúscula) Estructuras: functor, seguido de uno o más argumentos, es
Universidad de Puerto Rico Departamento de Matemáticas MATE 3023 Repaso 2(Lógica)
Universidad de Puerto Rico Departamento de Matemáticas MATE 3023 Repaso 2(Lógica) Apellidos: No. Estudiante: Nombre: Sección: Conceptos Básicos de Lógica: Lógica es el estudio de como razonar correctamente.
Funciones de varias variables
Funciones de varias variables Derivadas parciales. El concepto de función derivable no se puede extender de una forma sencilla para funciones de varias variables. Aquí se emplea el concepto de diferencial
Presentación IIC3432
Presentación IIC3432 Data Integration: A Theoretical Perspective (Maurizio Lenzerini) 09-Abril-2007 Fernanda Campos (PUC) Presentación IIC3432 IIC3432 1 / 44 Estructura de la presentación Seguirá la estructura
TEMA 2 EXPERIMENTOS ALEATORIOS Y CÁLCULO DE PROBABILIDADES
TEMA 2 EXPERIMENTOS ALEATORIOS Y CÁLCULO DE PROBABILIDADES EXPERIMENTOS: EJEMPLOS Deterministas Calentar agua a 100ºC vapor Soltar objeto cae Aleatorios Lanzar un dado puntos Resultado fútbol quiniela
5 Ecuaciones lineales y conceptos elementales de funciones
Programa Inmersión, Verano 206 Notas escritas por Dr. M Notas del cursos. Basadas en los prontuarios de MATE 300 y MATE 3023 Clase #6: martes, 7 de junio de 206. 5 Ecuaciones lineales y conceptos elementales
Tema 3. Secuencias y transformada z
Ingeniería de Control Tema 3. Secuencias y transformada z Daniel Rodríguez Ramírez Teodoro Alamo Cantarero Contextualización del tema Conocimientos que se adquieren en este tema: Concepto de secuencia
(A) Primer parcial. si 1 x 1; x 3 si x>1. (B) Segundo parcial
CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN GLOBAL E700 1) x 5 > 1. A) Primer parcial ) Sean las funciones ft) t +,gy) y 4&hw) w. Encontrar f/h, g f, f g y sus dominios. ) Graficar la función x + six
Aritmética finita y análisis de error
Aritmética finita y análisis de error Escuela de Ingeniería Informática de Oviedo (Dpto. de Matemáticas-UniOvi) Computación Numérica Aritmética finita y análisis de error 1 / 47 Contenidos 1 Sistemas decimal
Lógica Proposicional Cálculo Proposicional de Orden Cero (Cero)
Introducción a la Computación (TFA) Lógica Proposicional Cálculo Proposicional de Orden Cero (Cero) Teoría de Lógica Proposicional - Autor: Ana Garis Modificaciones: E. Benegas Temas a Desarrollar - Motivaciones
Clase 4: Probabilidades de un evento
Clase 4: Probabilidades de un evento Definiciones A continuación vamos a considerar sólo aquellos experimentos para los que el EM contiene un número finito de elementos. La probabilidad de la ocurrencia
Apuntes de Matemática Discreta 1. Conjuntos y Subconjuntos
Apuntes de Matemática Discreta 1. Conjuntos y Subconjuntos Francisco José González Gutiérrez Cádiz, Octubre de 2004 Universidad de Cádiz Departamento de Matemáticas ii Lección 1 Conjuntos y Subconjuntos
Álgebra. Curso 2007-2008
Álgebra. Curso 2007-2008 11 de septiembre de 2008 Resolución Ejercicio. 1. Sea A un anillo conmutativo. (1) Demostrar que cualesquiera ideales a, b de A verifican (a b)(a + b) ab. (2) Para A = Z[X] dar
Notas de Clase para IL
Notas de Clase para IL 5. Deducción en Lógica de Primer Orden Rafel Farré, Robert Nieuwenhuis, Pilar Nivela, Albert Oliveras, Enric Rodríguez, Josefina Sierra 3 de septiembre de 2009 1 1. Formas normales
1. División de polinomios por monomios
1. División de polinomios por monomios El cociente de dos monomios (si es posible) es igual a otro monomio que tiene: como coeficiente, el cociente de los coeficientes; como parte literal, las letras que
Límite de una función
Límite de una función Idea intuitiva de límite El límite de la función f(x) en el punto x 0, es el valor al que se acercan las imágenes (las y) cuando los originales (las x) se acercan al valor x 0. Es
Matemáticas Discretas TC1003
Matemáticas Discretas TC1003 en FOL Departamento de Matemáticas / Centro de Sistema Inteligentes ITESM en FOL Matemáticas Discretas - p. 1/23 En esta lectura veremos principalmente cómo se construyen argumentos
3. OPERACIONES CON FUNCIONES.
3. OPERACIONES CON FUNCIONES. Las operaciones de suma, resta, multiplicación y división entre funciones son posibles y semejantes a las correspondientes efectuadas con los números. En esta sección definiremos
EJERCICIOS RESUELTOS DE LOS TEOREMAS DEL VALOR MEDIO
MATEMÁTICAS EJERCICIOS RESUELTOS DE LOS TEOREMAS DEL VALOR MEDIO Juan Jesús Pascual TEOREMAS DEL VALOR MEDIO. Es aplicable el teorema de Rolle a la función f( x) = x 5x 6 en [ 0, 5 ]? El teorema de Rolle
Cap. 24 La Ley de Gauss
Cap. 24 La Ley de Gauss Una misma ley física enunciada desde diferentes puntos de vista Coulomb Gauss Son equivalentes Pero ambas tienen situaciones para las cuales son superiores que la otra Aquí hay
4 APLICACIONES LINEALES. DIAGONALIZACIÓN
4 APLICACIONES LINEALES DIAGONALIZACIÓN DE MATRICES En ocasiones, y con objeto de simplificar ciertos cálculos, es conveniente poder transformar una matriz en otra matriz lo más sencilla posible Esto nos
Características de funciones que son inversas de otras
Características de funciones que son inversas de otras Si f es una función inyectiva, llamamos función inversa de f y se representa por f 1 al conjunto. f 1 = a, b b, a f} Es decir, f 1 (x, y) = { x =
1. Dominio, simetría, puntos de corte y periodicidad
Estudio y representación de funciones 1. Dominio, simetría, puntos de corte y periodicidad 1.1. Dominio Al conjunto de valores de x para los cuales está definida la función se le denomina dominio. Se suele
ETS Caminos Santander. Curso 2012. Ejercicios de introducción a la programación.
Ejercicio 1. Saludo. El programa preguntará el nombre al usuario y a continuación le saludará de la siguiente forma "Hola, NOMBRE" donde NOMBRE es el nombre del usuario. Ejercicio 2. Suma. El programa
Polinomios y fracciones algebraicas
UNIDAD Polinomios y fracciones algebraicas U n polinomio es una expresión algebraica en la que las letras y los números están sometidos a las operaciones de sumar, restar y multiplicar. Los polinomios,
1. Números Reales 1.1 Clasificación y propiedades
1. Números Reales 1.1 Clasificación y propiedades 1.1.1 Definición Número real, cualquier número racional o irracional. Los números reales pueden expresarse en forma decimal mediante un número entero,
UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES )
UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES ) HOJA : Límites continuidad de funciones en R n. -. Dibuja cada uno de los subconjuntos de R siguientes. Dibuja su
{} representa al conjunto vacío, es decir, aquel que no contiene elementos. También se representa por.
2. Nociones sobre Teoría de Conjuntos y Lógica Para llevar a cabo nuestro propósito de especificar formalmente los problemas y demostrar rigurosamente la correctitud de nuestro programas, introduciremos
Problemas fáciles, difíciles y muy difíciles
Problemas fáciles, difíciles y muy difíciles Santiago Figueira Universidad de Buenos Aires Facultad de Ciencias Exactas y Naturales Departamento de Computación Semana de la Computación 2006 Métodos efectivos
ELEMENTOS DE LÓGICA Y TEORÍA DE CONJUNTOS. Dra. Patricia Kisbye Dr. Alejandro L. Tiraboschi
ELEMENTOS DE LÓGICA Y TEORÍA DE CONJUNTOS Dra. Patricia Kisbye Dr. Alejandro L. Tiraboschi 3 INTRODUCCIÓN Estas notas han sido elaboradas con el objetivo de ofrecer al ingresante a las carreras de la
PROBLEMAS. EL AMPLIFICADOR OPERACIONAL. 1. El circuito de la figura(1) muestra un Amplificador Operacional ideal salvo que tiene una ganancia finita A. Unas medidas indican que vo=3.5v cuando vi=3.5v.
Los polinomios. Un polinomio es una expresión algebraica con una única letra, llamada variable. Ejemplo: 9x 6 3x 4 + x 6 polinomio de variable x
Los polinomios Los polinomios Un polinomio es una expresión algebraica con una única letra, llamada variable. Ejemplo: 9x 6 3x 4 + x 6 polinomio de variable x Elementos de un polinomio Los términos: cada
AXIOMAS DE CUERPO (CAMPO) DE LOS NÚMEROS REALES
AXIOMASDECUERPO(CAMPO) DELOSNÚMEROSREALES Ejemplo: 6 INECUACIONES 15 VA11) x y x y. VA12) x y x y. Las demostraciones de muchas de estas propiedades son evidentes de la definición. Otras se demostrarán
IES Fco Ayala de Granada Junio de 2012 (General Modelo 4) Soluciones Germán-Jesús Rubio Luna
IES Fco Ayala de Granada Junio de 01 (General Modelo 4) Soluciones Germán-Jesús Rubio Luna SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS JUNIO 01 MODELO 4 (COMÚN) OPCIÓN A EJERCICIO 1 (A) Sea el recinto determinado
2 año secundario. Función Lineal MINISTERIO DE EDUCACIÓN. Se llama función lineal porque la potencia de la x es 1. Su gráfico es una recta.
año secundario Función Lineal Se llama función lineal porque la potencia de la x es. Su gráfico es una recta. Y en general decimos que es de la forma : f(x)= a. x + b donde a y b son constantes, a recibe
INTRODUCCION A LA LOGICA
INTRODUCCION A LA LOGICA Renato Lewin Pontificia Universidad Católica de Chile I Parte LOGICA PROPOSICIONAL Introducción 1 Lógica Cuando deseamos establecer una verdad, cuando queremos convencer a alguien
LA CIRCUNFERENCIA EN EL PLANO CARTESIANO
LA CIRCUNFERENCIA EN EL PLANO CARTESIANO Si un hombre es perseverante, aunque sea duro de entendimiento se hará inteligente; y aunque sea débil se transformará en fuerte Leonardo Da Vinci TRASLACION DE
Álgebras de Boole. Juan Medina Molina. 25 de noviembre de 2003
Álgebras de Boole Juan Medina Molina 25 de noviembre de 2003 Introducción Abordamos en este tema el estudio de las álgebras de Boole. Este tema tiene una aplicación directa a la electrónica digital ya
RELACIONES DE RECURRENCIA
Unidad 3 RELACIONES DE RECURRENCIA 60 Capítulo 5 RECURSIÓN Objetivo general Conocer en forma introductoria los conceptos propios de la recurrencia en relación con matemática discreta. Objetivos específicos
Programación n declarativa: lógica y restricciones
Programación n declarativa: lógica y restricciones Programación Lógica con Restricciones Constraint Logic Programming (CLP) Mari Carmen Suárez de Figueroa Baonza [email protected] Introducción n (I) CLP
by Tim Tran: https://picasaweb.google.com/lh/photo/sdo00o8wa-czfov3nd0eoa?full-exif=true
by Tim Tran: https://picasaweb.google.com/lh/photo/sdo00o8wa-czfov3nd0eoa?full-exif=true I. FUNDAMENTOS 3. Representación de la información Introducción a la Informática Curso de Acceso a la Universidad
3.- DETERMINANTES. a 11 a 22 a 12 a 21
3.- DETERMINANTES. 3.1. -DEFINICIÓN Dada una matriz cuadrada de orden n, se llama determinante de esta matriz (y se representa por A o deta al polinomio cuyos términos son todos los productos posibles
Límites. Problemas básicos de límites. José de Jesús Angel Angel
Límites Problemas básicos de ites José de Jesús Angel Angel [email protected] c 2007-2008 Contenido 1. Límites 2 2. Límites con ɛ δ 4 3. Límites con simple evaluación 12 4. Límites con una diferencia de
EXPRESIONES ALGEBRAICAS
EXPRESIONES ALGEBRAICAS Trabajar en álgebra consiste en manejar relaciones numéricas en las que una o más cantidades son desconocidas. Estas cantidades se llaman V A R I A B L ES, I N C Ó G N I T A S o
Observaciones del profesor:
Calificación total máxima: 10 puntos. Tiempo: 60 minutos. OPCIÓN A Ejercicio 1. (Puntuación máxima: 4 puntos) Se considera la matriz: A=( ) a) Determina la matriz B= A 2-2A 1,5 PUNTOS b) Determina los
Estas visiones de la información, denominadas vistas, se pueden identificar de varias formas.
El primer paso en el diseño de una base de datos es la producción del esquema conceptual. Normalmente, se construyen varios esquemas conceptuales, cada uno para representar las distintas visiones que los
ESTIMACIÓN. puntual y por intervalo
ESTIMACIÓN puntual y por intervalo ( ) Podemos conocer el comportamiento del ser humano? Podemos usar la información contenida en la muestra para tratar de adivinar algún aspecto de la población bajo estudio
