INTRODUCCION A LA PROBABILIDAD
|
|
|
- Lorena Morales Hernández
- hace 8 años
- Vistas:
Transcripción
1 Capítulo 4 Probabilidad INTRODUCCION A LA PROBABILIDAD 4.1-1
2 Probabilidad La probabilidad es una medida de la posibilidad de que un evento incierto ocurra
3 Términos básicos En probabilidad, un experimento es cualquier proceso que se puede repetir y en el cual los resultados son inciertos. Ejemplos: Lanzar una moneda Tirar un dado Observar la cantidad de autos que pasan por cierta intersección Determinar la estatura de individuos en un grupo, etc
4 Términos básicos En probabilidad, el espacio muestral, S, de un experimento es la colección de todos los posibles resultados de ese experimento
5 Espacio muestral Algunos ejemplos de experimentos y sus espacios muestrales : En el experimento de lanzar una moneda justa una vez, las únicas posibilidades son obtener una cara o obtener una cruz. En el experimento de lanzar una moneda justa tres veces, cada posibilidad se describe con un triple ordenado. El conjunto de posibles resultados es: En el experimento de tirar un dado de seis caras, el conjunto de posibles resultados es
6 Términos básicos (cont.) Un evento es un subconjunto de los posibles resultados de un experimento. Ejemplo: El experimento consiste en lanzar una moneda 3 veces. Podemos definir un evento verbalmente como X= Lanzar una moneda 3 veces y obtener exactamente 2 caras y nombrando su espacio muestral, X= {(cara, cara,cruz), (cara, cruz cara), (cruz, cara, cara)}
7 Términos básicos (cont.) Una observación es uno de los resultados de un evento Ejemplo: Se obtiene un 5 al lanzar un dado justo de seis caras
8 EJEMPLO Identificar Eventos y el Espacio Muestral de un experimento Una bolsa contiene canicas blancas y negras. El experimento consiste en extraer tres canicas sucesivamente. 1. Determina el espacio muestral del experimento. S = 2. Defina el evento A = {extraer tres bolas del mismo color}. A = 3. Defina el evento C = {extraer una sola bola negra}. C = 4.1-8
9 EJEMPLO Identificar Eventos y el Espacio Muestral de un experimento Consideremos el experimento Tener dos hijos. (a) Determine el espacio muestral. (b) Defina el evento E = tener un solo varón
10 Modelo Probabilístico Un modelo probabilístico debe cumplir con las siguientes propiedades: 1. La probabilidad de cualquier evento, E, se denota P(E) P(E) La suma de las probabilidades de todos los posibles resultados de un experimento debe ser igual a
11 EJEMPLO Un Modelo Probabilístico En una bolsa de dulces de maní y chocolate M & M, los colores de los dulces pueden ser marrón, amarillo, rojo, azul, naranja o verde. Supongamos que un dulce es seleccionado al azar de una bolsa. La siguiente tabla muestra cada color y la probabilidad de elegir ese color. Es este un modelo probabilístico? Color Probabilidad Marrón 0.12 Amarillo 0.15 Rojo 0.12 Azul 0.23 Anaranjado 0.23 Verde 0.15 Solución:
12 Probabilidad de un evento Si un evento es imposible, la probabilidad de ese evento es igual a 0. Si es seguro que un evento ocurra, la probabilidad de ese evento es 1. Si un evento es raro, entonces la probabilidad de que ocurra es baja. Típicamente, un evento con una probabilidad de menos de 0.05 (o 5%) se considera raro
13 EJEMPLO Clasificar eventos raros. Cuando el fármaco Viagra se probó clínicamente, la probabilidad de que un paciente reportara dolores de cabeza era (basado en datos de Pfizer, Inc.). Según este número, es raro que un usuario de Viagra experimente dolores de cabeza? Solución:
14 Aproximar la probabilidad de un evento Una forma de aproximar la probabilidad de un evento E es usando la frecuencia relativa del evento. Realizamos un experimento (ie. observamos los resultados de realizar un procedimiento) y contamos la cantidad de veces que el evento E ocurre. P E frecuencia absoluta de E número de repeticiones de un experimento
15 EJEMPLO Calcular la probabilidad de un evento P E número de veces E ocurre número de repeticiones Durante un año reciente, ocurrieron 6,511,100 accidentes de autos diferentes entre los 135,670,000 vehículos registrados en los Estados Unidos (basado en datos del Statistical Abstract of the United States.) Calcule la probabilidad de que un auto elegido al azar estará en un choque este año. Solución:
16 EJEMPLO Calcular la probabilidad de un evento P E Supongamos que lanzamos dos dados 50 veces (teniendo el cuidado de tirar los dados de la misma manera cada vez) y que sumamos el valor de las caras superiores de los dados. Supongamos además que obtenemos los siguientes datos Calcular la probabilidad de que la suma de los dados sea menor o igual a 4. Solución: número de veces E ocurre número de repeticiones del experimento
17 EJEMPLO Calcular la probabilidad de un evento Examinen la tabla de frecuencia para una muestra de pacientes en una clínica ortopédica. Una enfermera anota la estatura del próximo paciente que entra a la clínica. Cuál es la probabilidad de que la altura del paciente esté en el intervalo 66 72? Solución: Estatura Frecuencia frecuencia =
18 EJEMPLO Calcular la probabilidad de un evento Resultados de pruebas del polígrafo Mintió el sujeto? No mintió Sí mintió Prueba del polígrafo indicó que el sujeto SI mintió Prueba del polígrafo indicó que el sujeto NO mintió 32 9 total de pruebas usadas = 98 Según estos datos, cuál es la probabilidad de que la prueba indique correctamente si un sujeto mintió o no durante la prueba? Solución:
19 La probabilidad teórica o clásica se puede calcular para eventos que vienen de un espacio muestral en el cual los resultados son igualmente probables. P E Probabilidad teórica número de resultados favorables número total de resultados posibles P E n(e) n(s) Ejemplo: Determinar la probabilidad de tirar un dado justo y obtener un número impar. Solución:
20 EJEMPLO Calcular la probabilidad clásica P E número de formas que E puede ocurrir número de eventos simples diferentes Cuál es la probabilidad de elegir al azar una carta con un número par? Solución:
21 EJEMPLO Calcular la probabilidad clásica P E número de formas que E puede ocurrir número de eventos simples diferentes Cuál es la probabilidad de que el apuntador elija el color rojo? Solución:
22 EJEMPLO Calcular la probabilidad clásica Note que en esta ruleta NO se puede aplicar la interpretación de la probabilidad clásica. NO podemos decir que la P(elegir color azul) =
23 Probabilidad empírica Probabilidad empírica o probabilidad experimental Es un estimado de la posibilidad de que evento ocurra basado en la frecuencia con que se produce el evento después de la recolección de datos o la ejecución de un experimento (en un gran número de ensayos). Se basa específicamente en las observaciones o experiencias directas. La probabilidad se estima formando la razón entre el número de observaciones favorables y el número total de observaciones. P E número de veces que se observa el evento número total de observaciones
24 Probabilidad empírica (cont.) Ejemplo Se realizó una encuesta para determinar la raza de perro favorita de un grupo de estudiantes. Cada alumno eligió una sola raza. Perro Collie Spaniel Lab Boxer PitBull Otro Num Cuál es la probabilidad de que la raza de perro favorita sea el Labrador? Solución:
25 EJEMPLO Construir un modelo de probabilidad Un grupo de 52 estudiantes jugó Pass the Pigs TM. Tiran los cerditos 3,939 veces. El número de veces que salió cada resultado está registrado en la tabla que se muestra. (Source: Resultado Frecuencia De costado (sin puntos) 1344 De costado (con puntos) 1294 Espalda abajo 767 De pie 365 Trompa abajo 137 Oreja y trompa contra piso
26 EJEMPLO Construir un modelo de probabilidad (cont.) Cuál es el significado de decir que la probabilidad de que el cerdito caiga con el costado con puntos hacia arriba es 0.329? Resultado De costado (sin puntos) De costado (con puntos) Espalda abajo De pie Trompa abajo Oreja y trompa contra piso Probabilidad
27 EJEMPLO Construir un modelo de probabilidad (cont.) Podemos considerar el evento Oreja y trompa contra piso un evento raro? Resultado De costado (sin puntos) De costado (con puntos) Espalda abajo De pie Trompa abajo Oreja y trompa contra piso Probabilidad
28 EJEMPLO Simulación Utilizaremos la TI 84 para simular el girar una ruleta (como la que se muestra) 100 veces
29 EJEMPLO Usar una similación (cont) Se presenta un histograma de la simulación de girar la ruleta. Construya una distribución de frecuencia para el experimento. Construya un modelo probabilístico para el experimento. Distribución de Frecuencias Valor Freq Distribución de Probabilidades Valor P(E)
30 EJEMPLO Usar una similación Cómo se compara la probabilidad empírica con la probabilidad teórica? Distribución de Probabilidades Valor P(E) La probabilidad teórica para cada valor es 1 4 = 0.25 Para lograr que la probabilidad empírica se acerque más a la probabilidad teórica debemos aumentar la cantidad de repeticiones del experimento
Probabilidad. INTER-CAMMC Matemática 4-6. Profa. Liza V. Rodríguez
Probabilidad INTER-CAMMC Matemática 4-6 Objetivos: Definir los conceptos probabilidad, probabilidad teórica y probabilidad experimental. Presentar ejemplos de cada concepto discutido. Vocabulario Experimento:
ESTADISTICA Y PROBABILIDAD ESTADÍSTICA
ESTADÍSTICA La estadística trata del recuento, ordenación y clasificación de los datos obtenidos por las observaciones, para poder hacer comprobaciones y sacar conclusiones. Un estudio estadístico consta
Conceptos. Experimento Aleatorio: Es un fenómeno en el que interviene el azar, es decir no se puede predecir el resultado.
Teresa Pérez P DíazD Profesora de matemática tica Conceptos Experimento Aleatorio: Es un fenómeno en el que interviene el azar, es decir no se puede predecir el resultado. Ejemplos: E : Lanzar un dado,
Probabilidad. Si lanzamos una moneda no sabemos de antemano si saldrá cara o cruz. Teoría de probabilidades
Experimentos deterministas Probabilidad Son los experimentos de los que podemos predecir el resultado antes de que se realicen. Si dejamos caer una piedra desde una ventana sabemos, sin lugar a dudas,
Son los experimentos de los que podemos predecir el resultado antes de que se realicen.
PROBABILIDAD Definición de probabilidad La probabilidad de un suceso es un número, comprendido entre 0 y 1, que indica las posibilidades que tiene de verificarse cuando se realiza un experimento aleatorio.
EJERCICIOS DE PROBABILIDAD
Ejercicio nº 1.- Qué es una experiencia aleatoria? De las siguientes experiencias, cuáles son aleatorias? a) En una caja hay cinco bolas amarillas, sacamos una bola y anotamos su color. b) Lanzamos una
Tema 6 Probabilidad. 0.-Introducción La probabilidad de un suceso es un número, comprendido entre 0 y
Tema 6 Probabilidad 0.-Introducción La probabilidad de un suceso es un número, comprendido entre 0 y 1, que indica las posibilidades que tiene de verificarse cuando se realiza un experimento aleatorio.
SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD
Pág. Página PRACTICA Muy probable, poco probable Tenemos muchas bolas de cada uno de los siguientes colores: negro (N), rojo (R), verde (V) y azul (A), y una gran caja vacía. Echamos en la caja R, 0 V
Son los experimentos de los que podemos predecir el resultado antes de que se realicen.
PROBABILIDAD La probabilidad de un suceso es un número, comprendido entre 0 y 1, que indica las posibilidades que tiene de verificarse cuando se realiza un experimento aleatorio. Experimentos deterministas
Matemáticas Propedéutico para Bachillerato. Introducción
Actividad 5. Nociones básicas de Probabilidad y Estadística. Introducción Alguna vez te has preguntado qué es la estadística? Y más aún eso a mi para qué me sirve? La estadística no es sino un sistema
Probabilidad es una manera de indicar la posibilidad de ocurrencia de un evento futuro
Probabilidad es una manera de indicar la posibilidad de ocurrencia de un evento futuro La probabilidad nos proporciona un modelo teórico para la generación de los datos experimentales Medidas de la Posibilidad
Experimento aleatorio, Espacio muestral, Suceso
El siguiente material se encuentra en etapa de corrección y no deberá ser considerado una versión final. Alejandro D. Zylberberg Versión Actualizada al: 4 de mayo de 2004
Estadística Aplicada
Estadística Aplicada Universidad Maimónides 2016 Clase 3. Algunos Conceptos de Probabilidad Pedro Elosegui Conceptos Probabilísticos - Probabilidad: valor entre cero y uno (inclusive) que describe la posibilidad
Lanzamos 1 dado y comprobamos cuál es el resultado que aparece en la cara superior.
Curso ON LINE Tema 01 SÓLO ENUNCIADOS. PROBABILIDADES I Lanzamos 1 dado y comprobamos cuál es el resultado que aparece en la cara superior. 001 002 003 004 005 Lanzamos 1 dado y comprobamos cuál es el
FICHA DE TRABAJO DE CÁLCULO DE PROBABILIDADES
FICHA DE TRABAJO DE CÁLCULO DE PROBABILIDADES EXPERIMENTO ALEATORIO: ESPACIO MUESTRAL Y SUCESOS 1) Se considera el experimento que consiste en la extracción de tres tornillos de una caja que contiene tornillos
UNIDAD XI Eventos probabilísticos
UNIDAD XI Eventos probabilísticos UNIDAD 11 EVENTOS PROBABILÍSTICOS Muchas veces ocurre que al efectuar observaciones en situaciones análogas y siguiendo procesos idénticos se logaran resultados diferentes;
Nombre: Fecha: Curso:
REPASO 1 Begoña tiene camisetas para hacer deporte de tres colores: blancas, grises y negras. Completa la siguiente tabla de frecuencias con los datos del dibujo. Cuántas camisetas tiene en total? frecuencia
UNIDAD II Eventos probabilísticos
UNIDAD II Eventos probabilísticos UNIDAD 2 EVENTOS PROBABILÍSTICOS Muchas veces ocurre que al efectuar observaciones en situaciones análogas y siguiendo procesos idénticos se logaran resultados diferentes;
TEMA 11. PROBABILIDAD
TEMA 11. PROBABILIDAD 11.1. Experimentos aleatorios. - Espacio muestral asociado a un experimento aleatorio. - Sucesos. Operaciones con sucesos. 11.2. Probabilidad. - Regla de Laplace 11.3. Experiencias
Probabilidad teórica (páginas )
A NOMRE FECHA PERÍODO Probabilidad teórica (páginas 8 ) La probabilidad teórica es la razón del número de maneras en que un evento puede ocurrir al número de resultados posibles. Calcula la probabilidad
OBJETIVOS CONTENIDOS PROCEDIMIENTOS. Experimento determinista. Experimento aleatorio. Espacio muestral. Suceso elemental.
Probabilidad INTRODUCCIÓN El estudio matemático de la probabilidad surge históricamente vinculado a los juegos de azar. Actualmente la probabilidad se utiliza en muchas disciplinas unidas a la Estadística:
AREA ASIGNATURA: Estadística FECHA: PERÍODO: 1 DOCENTE: Susana Betancur Peláez
AREA ASIGNATURA: Estadística GRADO: SEXTO FECHA: PERÍODO: 1 DOCENTE: Susana Betancur Peláez LOGRO N 1: Interpreta Información estadística, proveniente de diversas fuentes y representaciones. TALLER 1.
PROBLEMAS DE PROBABILIDAD. 3. Calcula la probabilidad de que al lanzar dos dados la suma de sus puntos sea: a) igual a 5 b) mayor que 10
1. Se lanza un dado. Halla la probabilidad: a) de salir el 3 b) de salir un número par c) de salir un número mayor que 2 PROBLEMAS DE PROBABILIDAD 2. Calcula la probabilidad de que al lanzar dos monedas:
GUÍA DE EJERCICIOS N 14 PROBABILIDADES
LICEO CARMELA CARVAJAL DE PRAT PROVIDENCIA DPTO DE MATEMATICA GUÍA DE EJERCICIOS N PROBABILIDADES SECTOR: Matemática PROFESOR(es): Marina Díaz MAIL DE PROFESORES: [email protected] [email protected]
PROBABILIDAD SIMPLE 1.1.2,
PROBABILIDAD SIMPLE..2,.2..2.3 Resultado: Cualquier resultado posible o real de la acción considerada, como sacar un en un cubo numverado estándar o salir cruz al arrojar una moneda. Evento: Un resultado
3.Si A y B son incompatibles, es decir A B = entonces:
Axiomas de la probabilidad 1.La probabilidad es positiva y menor o igual que 1. 0 p(a) 1 2. La probabilidad del suceso seguro es 1. p(e) = 1 3.Si A y B son incompatibles, es decir A B = entonces: p(a B)
Nombre: Fecha: Curso:
Begoña tiene camisetas para hacer deporte de tres colores: blancas, grises y negras. Completa la siguiente tabla de frecuencias con los datos del dibujo. Cuántas camisetas tiene en total? camiseta blanca
Probabilidad. Experimento aleatorio
Probabilidad Pierre Simón Laplace 1749-1827 Astrónomo, físico y matemático francés. Creó una curiosa fórmula para expresar la probabilidad de que el sol saliera por el horizonte. Así: d 1 P d 2 Donde d
3.Si A y B son incompatibles, es decir A B = entonces:
Axiomas de la probabilidad 1.La probabilidad es positiva y menor o igual que 1. 0 p(a) 1 2. La probabilidad del suceso seguro es 1. p(e) = 1 3.Si A y B son incompatibles, es decir A B = entonces: p(a B)
Probabilidad y Estadística
Probabilidad y Estadística Probabilidad Conceptos como probabilidad, azar, aleatorio son tan viejos como la misma civilización. Y es que a diario utilizamos el concepto de probabilidad: Quizá llueva mañana
Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Estadística Básica COMISIÓN 1. 1 Cuatrimestre 2016
Universidad Nacional de Mar del Plata Facultad de Ingeniería Estadística Básica COMISIÓN 1 1 Cuatrimestre 2016 s. La palabra Estadística procede del vocablo Estado, pues era función principal de los Gobiernos
Actividad: Mucho, poquito o nada, qué posibilidad tienes?
Nivel: 2.º Medio Sector: Matemática Unidad temática: Estadística y probabilidad Ficha 14: Actividad: Mucho, poquito o nada, qué posibilidad tienes? Miles de millones de partidas de Scrabble (Escarbar)
Un juego de azar consiste en escoger 3 números distintos del 1 al 7. De cuántas formas se puede realizar esta selección?
. Un juego de azar consiste en escoger números distintos del al 7. De cuántas formas se puede realizar esta selección?. 7 0 4 840 De cuántas maneras distintas se pueden ordenar personas en un círculo?.
EJERCICIOS DE PROBABILIDAD
EJERCICIOS DE ROBABILIDAD Ejercicio nº 1.- Lanzamos dos dados sobre la mesa y anotamos los dos números obtenidos. a) Cuántos elementos tiene el espacio muestral? b) Describe los sucesos: A "Obtener al
DISTRIBUCIÓN N BINOMIAL
DISTRIBUCIÓN N BINOMIAL COMBINACIONES En muchos problemas de probabilidad es necesario conocer el número de maneras en que r objetos pueden seleccionarse de un conjunto de n objetos. A esto se le denomina
CAPÍTULO IV CONCEPTOS BÁSICOS DE PROBABILIDAD
CAPÍTULO IV CONCEPTOS BÁSICOS DE PROBABILIDAD Por qué hablar de Probabilidad En el primer capítulo cuando definimos algunos conceptos hablamos de población y de muestra, dijimos que cuando trabajamos con
Álgebra lineal. Curso Tema 5. Hoja 1. Tema 5. PROBABILIDAD. 1. Probabilidad: conceptos fundamentales. Regla de Laplace.
Álgebra lineal. Curso 2007-2008. Tema 5. Hoja 1 Tema 5. PROBABILIDAD. 1. Probabilidad: conceptos fundamentales. Regla de Laplace. 1. Un dado se lanza dos veces. Se pide: (a) Construir el espacio muestral.
Prueba Matemática Coef. 1 NM-4
1 Centro Educacional San Carlos de Aragón. Sector: Matemática. Prof.: Ximena Gallegos H. Prueba Matemática Coef. 1 NM-4 Nombre: Curso: Fecha. Porcentaje de Logro Ideal: 100% Porcentaje Logrado: Nota: Unidad:
Probabilidad. Generalidades
robabilidad Generalidades a probabilidad estudia experimentos en los que se pueden esperar varios resultados y no solamente uno. os experimentos se pueden clasificar como aleatorios o determinísticos.
Ejercicios de Cálculo de Probabilidades
Ejercicios de Cálculo de Probabilidades Ejercicio nº 1.- De una bolsa que tiene 10 bolas numeradas del 0 al 9, se extrae una bola al azar. a Cuál es el espacio muestral? b Describe los sucesos: A "Mayor
INTRODUCCIÓN AL ANÁLISIS DE DATOS ORIENTACIONES (TEMA 5)
TEMA 5 NOCIONES BÁSICAS DE PROBABILIDAD OBJETIVOS DE APRENDIZAJE: Conocer los conceptos de experimento aleatorio y espacio muestral. Distinguir los distintos tipos de sucesos que forman parte del espacio
Tiempo completo Tiempo parcial Total Mujeres Hombres Total
ASIGNACION DE ROBABILIDAD A manera de introducción al tema analicemos las diferencias entre eventos mutuamente excluyentes, no mutuamente excluyentes, dependientes e independientes. Ejemplo : En un grupo
Distribuciones muestrales. Distribución muestral de Medias
Distribuciones muestrales. Distribución muestral de Medias TEORIA DEL MUESTREO Uno de los propósitos de la estadística inferencial es estimar las características poblacionales desconocidas, examinando
METODOS DE CONTEO Y PROBABILIDAD
METODOS DE CONTEO Y PROBABILIDAD PROBABILIDAD Cuando realizamos un experimento, diremos que es: Determinista: dadas unas condiciones iniciales, el resultado es siempre el mismo. Aleatorio: dadas unas condiciones
HOJA DE TRABAJO UNIDAD 3
HOJA DE TRABAJO UNIDAD 3 1. Defina que es probabilidad Es el estudio de experimentos aleatorios o libres de determinación, el resultado es al azar. Se refiere al estudio de la aleatoriedad y a la incertidumbre.
EXPERIMENTOS ALEATORIOS ESPACIO MUESTRAL SUCESO. Probabilidad de un suceso. Ley de Laplace. Resolución de problemas
EXPERIMENTOS ALEATORIOS ESPACIO MUESTRAL SUCESO Tipos de sucesos Probabilidad de un suceso Frecuencia absoluta y relativa de un suceso - Imposible - Seguro - Incompatibles - Compatibles - Contrarios -
TEMA 17: PROBABILIDAD
TEMA 17: PROBABILIDAD Probabilidad de un suceso aleatorio es un numero entre 0 y 1 (más cerca del 0, mas difícil que ocurra. Más cerca del 1 más fácil que ocurra). Suceso seguro: Su probabilidad es 1.
Ámbito Científico-Tecnológico Módulo IV Bloque 6 Unidad 6 Cara o cruz
Ámbito Científico-Tecnológico Módulo IV Bloque 6 Unidad 6 Cara o cruz Me tocará? No me tocará? Si jugamos al parchís, sacaré un cinco para salir de casa? No lo sabemos, todo depende de la suerte o el azar.
Unidad Temática 2 Probabilidad
Unidad Temática 2 Probabilidad Responda verdadero o falso. Coloque una letra V a la izquierda del número del ítem si acepta la afirmación enunciada, o una F si la rechaza. 1. El experimento que consiste
Probabilidad: Introducción
Probabilidad: Introducción La probabilidad mide la frecuencia con la que aparece un resultado determinado cuando se realiza un experimento. Ejemplo: tiramos un dado al aire y queremos saber cual es la
Tablas de frecuencias con datos agrupados
Tablas de frecuencias con datos agrupados Cuando los valores de la variable son muchos, conviene agrupar los datos en intervalos o clases para así realizar un mejor análisis e interpretación de ellos.
Probabilidad. Contenidos. Objetivos. 1. Experimentos aleatorios Espacio muestral y sucesos Operaciones con sucesos Sucesos compatibles, incompatibles
CUADERNO Nº 12 NOMBRE: FECHA: / / Probabilidad Contenidos 1. Experimentos aleatorios Espacio muestral y sucesos Operaciones con sucesos Sucesos compatibles, incompatibles 2. Probabilidad de un suceso La
HOJA 32: EJERCICIOS DE REPASO DE PROBABILIDAD
pág.45 HOJA 32: EJERCICIOS DE REPASO DE PROBABILIDAD 1.- De una baraja española de 40 cartas se extrae una al azar, cuál es la probabilidad de que sea bastos o menor que 5? 2.- Dos jugadores (A y B) inician
Probabilidad. La probabilidad mide la frecuencia con la que aparece un resultado determinado cuando se realiza un experimento.
Matemáticas segundo medio COLEGIO SSCC CONCEPCION NOMBRE: Clase Teórica Práctica Nº 30 Probabilidad Probabilidad: Introducción La probabilidad mide la frecuencia con la que aparece un resultado determinado
Estadística y sus aplicaciones en Ciencias Sociales 1. Introducción a la probabilidad
Estadística y sus aplicaciones en Ciencias Sociales 1. Introducción a la probabilidad Facultad de Ciencias Sociales Universidad de la República Curso 2016 Índice 1.1. Aleatoriedad e incertidumbre 1.2 Probabilidad
Maestría en Bioinformática Probabilidad y Estadística: Clase 1
Maestría en Bioinformática Probabilidad y Estadística: Clase 1 Gustavo Guerberoff [email protected] Facultad de Ingeniería Universidad de la República Abril de 2010 Contenidos 1 Introducción 2 Teoría
Probabilidad y Estadística
Capítulo 13 Probabilidad y Estadística H istóricamente el hombre ha querido saber que es lo que le prepara el destino, conocer el futuro para poder prepararse, y hasta el día de hoy no hemos logrado tener
Probabilidad. Literature de ficción para níños. Literature de no ficción para níños. Literature de ficción para adultos. Otras
C APÍTULO 0 Probabilidad Resumen del contenido El Capítulo 0 presenta unos conceptos básicos de probabilidad, incluyendo clases especiales de eventos, valores esperados y permutaciones y combinaciones
TEMA 11: LA PROBABILIDAD
TEMA 11: LA PROBABILIDAD 1-T 11--2ºESO 1.- Experimentos Aleatorios y Deterministas. Nuestro entorno está lleno de vida, y en todo momento estamos rodeados de lo que se llaman fenómenos sociales colectivos,
Tema 9: Probabilidad: Definiciones
Tema 9: Probabilidad: Definiciones 1. CONCEPTOS Experimento aleatorio Suceso Espacio muestral 2. DEFINICIÓN DE PROBBILIDD Enfoque clásico Enfoque frecuencialista 3. PROBBILIDD CONDICIONL 4. TEOREMS BÁSICOS
1.º ESO INICIANDO LA PROBABILIDAD
1.º ESO INICIANDO LA PROBABILIDAD Realiza varias tiradas en la ruleta y responde: a. Observa las veces que aparece cada color. b. Qué color crees que va a salir en la próxima tirada? Tira y compruébalo.
Fortalecimiento para la asignatura de matemáticas II. Nombre: Grupo: Núm. Lis. PROFESOR: FRANCISCO JAVIER VENTURA MORALES.
BLOQUE I Eje: Sentido numérico y pensamiento algebraico 1. En un día de invierno, la temperatura era de 2 bajo cero y tres horas después fue de 7 bajo cero. Qué número con signo representa cuánto cambió
Curso de Estadística Básica
Curso de SESION 5 TEOREMA DE CHEBYSHEV, REGLA EMPÍRICA Y CASO MCC. Manuel Uribe Saldaña MCC. José Gonzalo Lugo Pérez Objetivo Comprender y aplicar el teorema de Chebyshev y la regla empírica para una distribución
Capítulo 4 Probabilidad TÉCNICAS DE CONTEO Copyright 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved.
Capítulo 4 Probabilidad TÉCNICAS DE CONTEO Copyright 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved. 4.1-1 Técnicas de conteo En muchos problemas de probabilidad, el reto mayor es encontrar
Ejercicios elementales de Probabilidad
Ejercicios elementales de Probabilidad 1. Se extrae una carta de una baraja de 52 naipes. Halla la probabilidad de que sea: (a) Un rey. (b) Una carta roja. (c) El 7 de tréboles. (d) Una figura de diamantes.
Conceptos de Probabilidad (II)
Conceptos de Probabilidad (II) Jhon Jairo Padilla A., PhD. Necesidad Es común escuchar frases como: Juan Probablemente ganará el torneo de tenis Tengo posibilidad de ganarme la lotería esta noche La mayoría
Distribución Chi (o Ji) cuadrada (χ( 2 )
Distribución Chi (o Ji) cuadrada (χ( 2 ) PEARSON, KARL. On the Criterion that a Given System of Deviations from the Probable in the Case of a Correlated System of Variables is such that it Can Reasonably
MODELO DE RESPUESTAS Objetivos del 1 al 9
PRUEBA INTEGRAL LAPSO 05-764 - /9 Universidad Nacional Abierta Probabilidad y Estadística I (Cód. 764) Vicerrectorado Académico Cód. Carrera: 6 Fecha: 0-04-06 MODELO DE RESPUESTAS Objetivos del al 9 OBJ
Probabilidades. Universidad de las Américas Instituto de Matemática, Física y Estadística. Centro de Aprendizaje Matemático - CAM
Universidad de las Américas Instituto de Matemática, Física y Estadística. Centro de Aprendizaje Matemático - CAM Probabilidades P(A) = Casos favorables Casos posibles Objetivos: Definir el concepto de
Ms. C. Marco Vinicio Rodríguez [email protected] http://mvrurural.wordpress.com/
Ms. C. Marco Vinicio Rodríguez [email protected] http://mvrurural.wordpress.com/ La estadística descriptiva Le concierne el resumen de datos recogidos de eventos pasados. Por ejemplo los precios de
Conceptos Fenomenos Aleatorios
Probabilidad Conceptos Fenomenos Aleatorios Conceptos de Probabilidad Qué es Probabilidad? En general, es un numero que evalúa la posibilidad de que algo suceda. Valor que va desde 0 hasta 1,inclusive,
Tema 5 Algunas distribuciones importantes
Algunas distribuciones importantes 1 Modelo Bernoulli Distribución Bernoulli Se llama experimento de Bernoulli a un experimento con las siguientes características: 1. Se realiza un experimento con dos
Probabilidad y Estadística Descripción de Datos
Descripción de Datos Arturo Vega González [email protected] Division de Ciencias e Ingenierías Universidad de Guanajuato Campus León Universidad de Guanajuato, DCI, Campus León 1 / 28 Contenido 1 Probabilidad
Calculando la probabilidad de eventos independientes
Bitácora del Estudiante Calculando la de eventos independientes Realiza las siguientes actividades, mientras trabajas con el tutorial. 1. Cuántas alternativas tiene Dígito para el primer tramo de la pista
En el diagrama de árbol, las monedas aparecen en céntimos. 1 = 100 cént. b) P [NINGUNA DE 1 ] = 4 9( 3 8 + 3 8) + 3 9( 4 8 + 2 8) =
0 Soluciones a Ejercicios y problemas PÁGIN Pág. 8 Javier tiene monedas de cinco céntimos, de veinte y de un euro. Si coge dos al azar, halla la probabilidad de estos sucesos: a) Que las dos sean de cinco
4.12 Ciertos teoremas fundamentales del cálculo de probabilidades
1 de 9 15/10/2006 05:57 a.m. Nodo Raíz: 4. Cálculo de probabilidades y variables Siguiente: 4.14 Tests diagnósticos Previo: 4.10 Probabilidad condicionada e independencia de 4.12 Ciertos teoremas fundamentales
Tema 4. Probabilidad Condicionada
Tema 4. Probabilidad Condicionada Presentación y Objetivos. En este tema se dan reglas para actualizar una probabilidad determinada en situaciones en las que se dispone de información adicional. Para ello
APROXIMACIÓN DE LA DISTRIBUCIÓN BINOMIAL A LA NORMAL, LA CALCULADORA Y LAS TIC
APROXIMACIÓN DE LA DISTRIBUCIÓN BINOMIAL A LA NORMAL, LA CALCULADORA Y LAS TIC SIGMA 28 Abel Martín (*) y Rosana Álvarez García (**) En dos artículos anteriores ya hemos estudiado la distribución Binomial
MOOC UJI: La Probabilidad en las PAU
4. Probabilidad Condicionada: Teoremas de la Probabilidad Total y de Bayes 4.1. Probabilidad Condicionada Vamos a estudiar como cambia la probabilidad de un suceso A cuando sabemos que ha ocurrido otro
EXPERIMENTO ALEATORIO, ESPACIO MUESTRAL Y SUCESO
EXPERIMENTO ALEATORIO, EPAIO MUETRAL Y UEO Experimento aleatorio: Es una acción o proceso que puede tener distintos resultados posibles, y cuyo resultado no se conoce hasta que no se lleva a cabo. Ejemplos:
PROBABILIDAD. Ejercicio nº 1.- Qué es una experiencia aleatoria? De las siguientes experiencias cuáles son aleatorias?
PROBABILIDAD Ejercicio nº 1.- a Al lanzar un dado sacar puntuación par. b Lanzar un dado y sacar una puntuación mayor que 6. c Bajar a la planta baja en ascensor. Ejercicio nº 2 a En una caja hay cinco
ESTADÍSTICA INFERENCIAL
ESTADÍSTICA INFERENCIAL ESTADÍSTICA INFERENCIAL 1 Sesión No. 2 Nombre: Probabilidad Contextualización En la sesión anterior analizamos cómo a largo plazo un fenómeno aleatorio o probabilístico posee un
Matemáticas 2.º Bachillerato. Intervalos de confianza. Contraste de hipótesis
Matemáticas 2.º Bachillerato Intervalos de confianza. Contraste de hipótesis Depto. Matemáticas IES Elaios Tema: Estadística Inferencial 1. MUESTREO ALEATORIO Presentación elaborada por el profesor José
2012-2013 2º ESO APLICACIÓN DE LAS FRACCIONES Y DE LA PRORCIONALIDAD AL CÁLCULO DE LA PROBABILIDAD
º ESO APLICACIÓN DE LAS FRACCIONES Y DE LA PRORCIONALIDAD AL CÁLCULO DE LA PROBABILIDAD Experiencias aleatorias La lotería, las rifas, el lanzar un dado, la bola de un bingo, etc. Son hechos, acciones,
Problema 15.3. Observa las siguientes urnas y contesta las cuestiones que siguen:
15 Probabilidad Ejercicio 15.1. Indica cuáles de los siguientes sucesos son aleatorios y cuáles no: a) Lanzar una moneda. b) Aprobar un examen de matemáticas. c) Acertar una quiniela de fútbol. d) Lanzar
Tipos de sucesos. Suceso elemental
Definición de probabilidad Experimentos deterministas Son los experimentos de los que podemos predecir el resultado antes de que se realicen. Si dejamos caer una piedra desde una ventana sabemos, sin lugar
Tema 3: Probabilidad. Bioestadística
Tema 3: Probabilidad Bioestadística SUCESOS DETERMINISTAS Y ALEATORIOS Cuando realizamos un experimento, diremos que es: Determinista: dadas unas condiciones iniciales, el resultado es siempre el mismo.
PROBABILIDAD. Espacio muestral. El espacio muestral de un experimento aleatorio es el conjunto de todos los resultados posibles de un experimento.
PROBABILIDAD. CONTENIDOS: Experimentos aleatorios. Espacio muestral. Sucesos. Operaciones con sucesos. Suceso contrario y sucesos incompatibles. Idea intuitiva del concepto de probabilidad. Propiedades.
RELACIÓN EJERCICIOS PROBABILIDAD 4º B CURSO
RELACIÓN EJERCICIOS PROBABILIDAD 4º B CURSO 00- Sea el experimento consistente en lanzar un dado cúbico y los sucesos A={,,3} y B={3,4}. Halla A I B Lanzamos un dado cúbico, cuál es la probabilidad de
4. NÚMEROS PSEUDOALEATORIOS.
4. NÚMEROS PSEUDOALEATORIOS. En los experimentos de simulación es necesario generar valores para las variables aleatorias representadas estas por medio de distribuciones de probabilidad. Para poder generar
1.- Hallar la probabilidad de obtener al menos una cara al tirar n veces una moneda.
.- Hallar la probabilidad de obtener al menos una cara al tirar n veces una moneda. Si A sacar al menos una cara en n lanzamientos entonces A no sacar ninguna cara en n lanzamientos. Si A i sacar cara
Tema 4 Variables Aleatorias
Tema 4 Variables Aleatorias 1 Introducción En Estadística Descriptiva, se estudiaron las distribuciones de frecuencias de conjuntos de datos y posteriormente se vimos los fundamentos de la teoría de probabilidades.
SESION 12 LA DISTRIBUCIÓN BINOMIAL
SESION LA DISTRIBUCIÓN BINOMIAL I. CONTENIDOS:. La distribución omial.. Variables aleatorias en una distribución omial. 3. Descripciones de la distribución omial. 4. Distribución de Poisson. II. OBJETIVOS:
5. MODELOS PROBABILISTICOS.
5. MODELOS PROBABILISTICOS. 5.1 Experimento de Bernoulli Un modelo probabilístico, es la forma que pueden tomar un conjunto de datos obtenidos aleatoriamente. Pueden ser modelos probabilísticos discretos
Conceptos básicos estadísticos
Conceptos básicos estadísticos Población Población, en estadística, también llamada universo o colectivo, es el conjunto de elementos de referencia sobre el que se realizan las observaciones. El concepto
Unidad II: Fundamentos de la teoría de probabilidad
Unidad II: Fundamentos de la teoría de probabilidad 2.1 Teoría elemental de probabilidad El Cálculo de Probabilidades se ocupa de estudiar ciertos experimentos que se denominan aleatorios, cuya característica
Probabilidad Hoja de trabajo #1. Actividad: Buscando todos los resultados de un experimento
Probabilidad Hoja de trabajo #1 Actividad: Buscando todos los resultados de un experimento Instrucciones: En cada uno de los siguientes experimentos determina todos los posibles resultados al llevarlo
TEC Tecnológico. de Costa Rica TEC. Teoría de conjuntos y probabilidad. Jornada de capacitación CIEMAC: Alajuela 2016
TEC Tecnológico de Costa Rica Jornada de capacitación CIEMAC: Alajuela 2016 Teoría de conjuntos y probabilidad Jornada de capacitación CIEMAC Alajuela 2016 Página 2 de 13 Conocimientos: Eventos Relaciones
PREPARACION OLIMPIADA MATEMATICA CURSO
Comenzaremos recordando algunos conocimientos matemáticos que nos son necesarios. Para ello veamos el concepto de factorial de un número natural. Es decir, es un producto decreciente desde el número que
