Primera Ley Sistemas Abiertos
|
|
|
- María Aurora Luna Quiroga
- hace 8 años
- Vistas:
Transcripción
1 Cap. 10 Primera Ley Sistemas Abiertos INTRODUCCIÓN Este capìtulo complementa el anterior de Sistemas Cerrados para tener toda la gama de màquinas termodinàmicas; tambièn contiene teorìa de las válvulas (Coeficiente de Joule-Thompson) y la interpretaciòn de - v dp. Se finaliza con la aplicaciòn de Sistemas Abiertos Uniformes. Los sistemas abiertos constituyen más del 90 % de las máquinas que utilizamos, por lo que debemos estudiar Turbo Compresor de un motor a Petroleo Diesel Turbina de Vapor del Lab. Energìa PUCP- Ejemplo de sistema abierto. Primera Ley Sistemas Abiertos 10 - Pág. 1
2 Màquinas que trabajan con Sistemas Abiertos SISTEMAS ABIERTOS: - Bombas, calderas, turbinas, compresores, condensadores, válvulas. SIMBOLOS 10.1 PRIMERA LEY DE LA TERMODINAMICA Sistema Abiertos o Volumen de Control VC LA ENERGIA NO SE CREA NI SE DESTRUYE, SOLO SE TRANSFORMA. (PROCESOS REVERSIBLES E IRREVERSIBLES) Máquinas que involucran trabajo Turbinas Vapor, gas,hidraúlicas La energía suministrada al sistema es igual al cambio de energía en el sistema más la energía evacuada del sistema. Sistema de Refrigeraciòn Industrial Compresores Gases,ventiladores Turbina a Vapor, 10 kw de Potencia Bombas Líquidos Esta ecuaciòn sisgnifica que TODO lo que entra es igual a lo que sale, o la sumatoria de las energìas que entran son iguales a la sumatorias de las energìas que salen. En este Capìtulo veremos el caso cuando el E sistema es cero, que es en la mayorìa de las màquinas que tienen sistemas abiertos, se llama Volumen de Contro Estacionario o Permanente Turbina a gas - Motor de Helicòptero Si tenemos un sistema ESTACIONARIO en la que se suministra 345 kj de energía, cuánto de energía saldrá? Supercalentador de Vapor Turbina a gas de 40 kw Primera Ley Sistemas Abiertos 10 - Pág. 2 Primera Ley Sistemas Abiertos 10 - Pág. 3
3 10.2 Ecuación de Continuidad VOLUMEN DE CONTROL ESTACIONARIO (PERMANENTE): FEES Condiciones: 1. Volumen de control no se mueve. (no cambia) 2. Flujo que entra = Flujo que sale. 3. El cambio de energía en un VC es igual a cero. El estado en un VC cualquiera no varía con el tiempo o las condiciones de salida y entrada son constantes. Esta es una Turbina de avión, dónde estaría la Tobera? Para qué sirve en este caso? Si entra un flujo de masa de 5, cuánto de flujo de masa saldrá? Primera Ley Sistemas Abiertos 10 - Pág. 4 Primera Ley Sistemas Abiertos 10 - Pág. 5
4 10.4 Primera Ley Sistemas Abiertos Reversibles Además : h = u + Pv dh = du + Pdv + vdp dh vdp = du + Pdv = dq Por qué estas ecuaciones no involucran la Energía Interna U? Con estas ecuaciones debemos resolver todos los problemas de Sistemas Abiertos; en realidad solo son dos ecuaciones, pues cualquiera tercera sera redundante Primera Ley Sistemas Abiertos 10 - Pág. 6 Primera Ley Sistemas Abiertos 10 - Pág. 7
5 Entalpìa ( h) a) Sustancias Puras: C P no es constante, entonces la entalpía (h) se calcula de tablas. b) GAS IDEAL: Los valores del cp de cada sustancia varian con la temperatura, solamente son constantes si los En el osciloscopio se puede ver la curva P v n, y luego calcular el area y por lo tanto el Trabajo de Cambio de volumen Wv En un ciclo, siempre la sumatoria de los trabajos (sea el que sea), sera igual a la sumatoria de los calores, e igual al área dentro de una CURVA P - V. Primera Ley Sistemas Abiertos 10 - Pág. 8 Primera Ley Sistemas Abiertos 10 - Pág. 9
6 Coeficiente de Joule Thompson - Vàlvulas COEFICIENTE DE JOULE THOMSON: Curva de Inversión Consideremos la situación de la figura mostrada. Por un conducto de área constante, fluye un gas real. Entre los puntos 1 y 2 se coloca una placa con un orificio, el cual causa una cierta caída de presión en la corriente. El proceso se denomina proceso de estrangulamiento, y si los cambios de energía cinética y potencial fueran despreciables, la ecuación de balance energético para flujo estacionario adiabático se reduciría a: h 2 = h 1 El proceso de estrangulación se presenta en las expansiones adiabáticas de los fluidos en las válvulas, cuando las energías cinéticas son despreciables tanto a la entrada como a la salida. Si en el diagrama T-P, se traza la información experimental de los gases reales se obtiene un conjunto de curvas. El lugar geométrico de los máximos de las curvas de entalpía constante se denomina curva de inversión y el punto del máximo en cada curva se llama punto de inversión. La pendiente de una curva isoentálpica se denomina coeficiente de Joule Thomson: u j La entalpía de un Gas Ideal es función de la temperatura solamente, de tal modo que una línea de entalpía constante, en un gas ideal, es también de temperatura constante. Qué pasa cuando en un Balon de Gas empieza a escaparse el gas? Se enfría o se calienta? Qué gas es el que usamos en nustras casas? Primera Ley Sistemas Abiertos 10 - Pág. 10 Primera Ley Sistemas Abiertos 10 - Pág. 11
7 Sistemas Abiertos UNIFORMES - FEUS Primera Ley Sistemas Abiertos 10 - Pág. 12 Primera Ley Sistemas Abiertos 10 - Pág. 13
8 Resumen de Primera Ley de Termodinàmica PROBLEMAS-PRIMERA LEY PARA SISTEMAS Y CICLOS 1. El aire contenido en un recipiente se comprime mediante un pistón cuasiestáticamente. Se cumple durante la compresión la relación Pv 1.25 = cte. La masa de aire es de 0.1kg y se encuentra inicialmente a 100kPa, 20 C y un volumen que es 8 veces el volumen final. Determinar el calor y el trabajo transferido. Considere el aire como gas ideal. Primera Ley Sistemas Abiertos 10 - Pág. 14 Primera Ley Sistemas Abiertos 10 - Pág. 15
9 2. El dispositivo mostrado consta de un cilindro adiabático dividido en dos compartimientos (A y B) mediante una membrana rígida perfecta conductora de calor (en todo momento la temperatura de los compartimientos varía en la misma magnitud, es decir «T A =»T B ). En A se tiene 0,2kg de Nitrógeno encerrado mediante un pistón adiabático, y en B se tiene 0.25kg de agua, inicialmente a 2.5kPa en un volumen de m 3. Durante el proceso el lado A es calentado por una resistencia eléctrica proporcionando 100kJ, y al B se transfiere calor (700kJ) hasta que el agua esté como Vapor Saturado. Si P 0 =100kPa y el cambio de volumen de A es 0.7m 3, hallar: a) Calor intercambiado entre A y B b) Trabajo de cambio de volumen realizado por el Nitrógeno c) Trabajo técnico involucrado en el proceso. Analicemos los resultados de este problema Primera Ley Sistemas Abiertos 10 - Pág. 16 Primera Ley Sistemas Abiertos 10 - Pág. 17
10 3 4. Vapor a presión de 1.5MPa y 300 C, fluye en una tubería. Un recipiente inicialmente vacío se conecta a la tubería por medio de una válvula hasta que la presión es de 1.5MPa, luego se cierra la válvula. Despreciar los cambios de energía cinética y potencial, el proceso es adiabático. Determinar la temperatura final del vapor. Primera Ley Sistemas Abiertos 10 - Pág. 18 Primera Ley Sistemas Abiertos 10 - Pág. 19
11 5. El dispositivo mostrado contiene inicialmente 1kg de N 2 a 100kPa y 27 C. El resorte, en la posición inicial mostrada, no ejerce presión sobre el pistón. A través de la tubería fluye N 2 comprimido a las condiciones constantes de 2MPa y 127 C. Se abre la válvula y el Nitrógeno comprimido ingresa lentamente al cilindro hasta que la presión sea de 600kPa, instante en que se cierra la válvula. Si se considera cilindro y pistón adiabáticos, procesos cuasiestáticos, y6 que la fuerza del resorte es proporcional al desplazamiento, se pide determinar la temperatura final del N 2 contenido en el cilindro. 6. Constante del resorte : K r =200kN/m Área del pistón : A =0.5m 2 Peso del Pistón : F p =25kN Presión Atmosférica : P 0 = 100kPa La presión en 2 es igual que en 7, igual que en 5 y 6? La presión en 3 es igual que 4 y 5? La temperatura en a y b, es igual que 3? Primera Ley Sistemas Abiertos 10 - Pág. 20 Primera Ley Sistemas Abiertos 10 - Pág. 21
12 De la figura del intercambiador podemos decir que el punto 7 es liquido saturado? 7. En el esquema mostrado los procesos en el compresor, en la turbina adiabática y en el condensador isobárico, se puede considerar FEES. La turbina suministra potencia para accionar el compresor y el generador eléctrico. El aire realiza un proceso politrópico (n = 1.3), a través del compresor. Para las condiciones dadas en el esquema, se pide determinar: a) La potencia suministrada al generador eléctrico (kw) b) Los calores transferidos en el compresor y en el condensador (kw)...y que la entrada en b es vapor saturado? Qué usaré para resolver este problema, Tablas o Fórmulas? Primera Ley Sistemas Abiertos 10 - Pág. 22 Primera Ley Sistemas Abiertos 10 - Pág. 23
13 9. Fluye aire, reversible y estacionariamente, a través de una tobera adiabática, ingresa a 2bar y 27 C con una velocidad de 30m/s y sale con una velocidad de 200m/s. Se pide determinar: i. La presión del aire a la salida de la tobera, en kpa ii. La relación entre los diámetros de entrada y salida de la tobera. 8. Vapor de agua ingresa a la tobera adiabática de una turbina con una velocidad despreciable a 3MPa y 350 C, y sale de la tobera a 1.5MPa y a la velocidad de 550m/s. El flujo de vapor a través de la tobera es de 0.5kg/s. Se pide determinar: a. La calidad (si es VH) o la temperatura (si es VSC) b. El diámetro, a la salida de la tobera Primera Ley Sistemas Abiertos 10 - Pág. 24 Primera Ley Sistemas Abiertos 10 - Pág. 25
14 10. Un compresor comprime politrópica y reversiblemente, en un proceso FEES, 400m 3 /h de aire desde 1 bar y 17 C hasta 6 bar, los diámetros internos de los tubos, de entrada y de salida, son iguales a 30mm. Si el exponente politrópico del proceso es de 1.32, se pide determinar la potencia técnica requerida y el calor transferido en el compresor, en kw. 11. Vapor de amoniaco fluye a través de una tubería a una presión de 1MPa y a una temperatura de 70 C. Conectada a la tubería se tiene un tanque rígido y adiabático de 3m 3, inicialmente vacío. Se abre la válvula que conecta al tanque con la tubería, y fluye amoniaco hasta que dentro del tanque se tenga una presión de 1MPa; se pide determinar la masa de amoniaco que ingresa al tanque durante el proceso, en kg. Primera Ley Sistemas Abiertos 10 - Pág. 26 Primera Ley Sistemas Abiertos 10 - Pág. 27
15 12. En la figura se muestra una turbina a vapor de agua de paredes adiabáticas que descarga vapor directamente al condensador isobárico y adiabático, a 10kPa. En los puntos (2) y (3) se extraen vapor de la turbina para procesos industriales en proporciones del 10% y 20% de la masa de vapor que ingresa a la turbina, respectivamente. Considerando que todos los procesos son FEES y que la turbina genera una potencia de 10MW, se pide determinar la potencia la potencia necesaria para accionar a la bomba, en kw, y el caudal de agua de enfriamiento requerido, en m 3 /s. P 1 = 2MPa T 1 = 300 C P 2 = 0.5MPa T 2 = 200 C P 3 = 0.2MPa T 3 = 150 C P 6 = 2MPa x 4 = 90% P 7 = 0.1MPa T 7 = 20 C T 8 = 30 C Además: V 5 = V Un compresor a pistón comprime politrópicamente y reversiblemente 0.02kg/s de aire medidos en la tubería de entrada a 1 bar y 24 C. La potencia técnica necesaria para accionar le compresor es de 2kW, y el calor evacuado al ambiente es el 10% de esta potencia técnica. Considere el aire como gas ideal y desprecie los terminos de E k y E p. a) Dibujar el proceso en el diagrama P-v b) Calcular el trabajo de cambio de volumen. c) Determinar la T( C) y P (bar) a la salida del compresor. Primera Ley Sistemas Abiertos 10 - Pág. 28 Primera Ley Sistemas Abiertos 10 - Pág. 29
16 14. Se tiene un recipiente cilíndrico, adiabático en toda su superficie, excepto en el fondo. Un pistón adiabático sin peso, se apoya inicialmente en unos topes, dividiendo en dos partes el recipiente. En la parte superior inicialmente se tiene aire a 2bar ocupando 0.6m 3. En la parte inferior se tiene 0.5kg de agua a 1bar y una calidad de vapor de 17%. Se calienta inicialmente el agua, hasta que su presión es de 3bar. El proceso es reversible. Considerando el aire como gas ideal y que los calores específicos permanecen constantes. Determinar: a. La temperatura o calidad de vapor. b. El calor transferido al agua en kj. 15. Se tiene 1.5kg de aire (considere como gas ideal) en un cilindro, con un pistón sin rozamiento, y realizando un ciclo compuesto por los siguientes procesos: 1-2: compresión adiabática 2-3: expansión isotérmica 3-1: proceso isobárico Si P 1 =0.1Mpa y T 1 =25 C y después de la compresión se tiene ¾ de volumen inicial, se pide: a. Tabular P, v y T para todos los estados. b. Calcular la sumatoria de calores. c. Calcular el rendimiento o COP del ciclo. Primera Ley Sistemas Abiertos 10 - Pág. 30 Primera Ley Sistemas Abiertos 10 - Pág. 31
17 16. En la central térmica instalada, el vapor de agua produce trabajo al expandirse en turbinas de dos etapas (alta y baja presión) con sobrecalentamiento intermedio. La bomba y la turbina son adiabáticas, los cambios de E k y E p son despreciables. Se tiene los siguientes datos: En (1) Líquido saturado; P 3 = 20bar y T 3 = 300 C, P 4 = 5bar y es VS; T 5 =T 3 ; P 6 = 0.2bar; x 6 = 93%. Tanto el caldero como el sobrecalentador intermedio y el condensador son isobáricos. El flujo de masa es 0.2kg/s, considerar al líquido como incompresible (v 1 = v 2 ). Se pide: a) El diagrama P-v del ciclo. b) Las entalpías específicas (kj/kg) c) La potencia en cada turbina y en la bomba. (kw) d) Los calores suministrados y evacuados. (kw) e) El rendimiento térmico de la central en %. Primera Ley Sistemas Abiertos 10 - Pág. 32
PROBLEMARIO No. 2. Veinte problemas con respuesta sobre los Temas 3 y 4 [Trabajo y Calor. Primera Ley de la Termodinámica]
Universidad Simón olívar Departamento de Termodinámica y Fenómenos de Transferencia -Junio-007 TF - Termodinámica I Prof. Carlos Castillo PROLEMARIO No. Veinte problemas con respuesta sobre los Temas y
Sustancias puras, procesos de cambios de fase, diagramas de fase. Estado 3 Estado 4 Estado 5. P =1 atm T= 100 o C. Estado 3 Estado 4.
TERMODINÁMICA Departamento de Física Carreras: Ing. Industrial y Mecánica Trabajo Práctico N 2: PROPIEDADES DE LAS SUSTANCIAS PURAS La preocupación por el hombre y su destino debe ser el interés primordial
3. TERMODINÁMICA. PROBLEMAS I: PRIMER PRINCIPIO
TERMOINÁMI PROLEMS I: PRIMER PRINIPIO Problema 1 Un gas ideal experimenta un proceso cíclico ---- como indica la figura El gas inicialmente tiene un volumen de 1L y una presión de 2 atm y se expansiona
El balance de energía. Aplicaciones de la primera ley de la termodinámica. Ejercicios.
TERMODINÁMICA (0068) PROFR. RIGEL GÁMEZ LEAL El balance de energía. Aplicaciones de la primera ley de la termodinámica. Ejercicios. 1. Suponga una máquina térmica que opera con el ciclo reversible de Carnot
Tema 3. Máquinas Térmicas II
Asignatura: Tema 3. Máquinas Térmicas II 1. Motores Rotativos 2. Motores de Potencia (Turbina) de Gas: Ciclo Brayton 3. Motores de Potencia (Turbina) de Vapor: Ciclo Rankine Grado de Ingeniería de la Organización
Ejemplos del temas VII
1. Metano líquido es comúnmente usado en varias aplicaciones criogénicas. La temperatura crítica del metano es de 191 K, y por lo tanto debe mantenerse por debajo de esta temperatura para que este en fase
Ciclos de Potencia Curso 2007. Ejercicios
Ejercicios Cuando no se indica otra cosa, los dispositivos y ciclos se asumen ideales. En todos los casos, bosqueje los ciclos y realice los diagramas apropiados. Se indican las respuestas para que controle
Electricidad y calor. Dr. Roberto Pedro Duarte Zamorano. Departamento de Física 2011
Electricidad y calor Dr. Roberto Pedro Duarte Zamorano Departamento de Física 2011 A. Termodinámica Temario 1. Temperatura y Ley Cero. (3horas) 2. Calor y transferencia de calor. (5horas) 3. Gases ideales
1. Procesos de transformación de la energía y su análisis 2 1.2. Representación de sistemas termodinámicos... 3
Contenido Aclaración III 1. Procesos de transformación de la energía y su análisis 2 1.1. Representación de sistemas termodinámicos................. 2 1.2. Representación de sistemas termodinámicos.................
INGENIERIA DE EJECUCIÓN EN MECANICA PROGRAMA PROSECUCION DE ESTUDIOS VESPERTINO GUIA DE LABORATORIO
INGENIERIA DE EJECUCIÓN EN MECANICA PROGRAMA PROSECUCION DE ESTUDIOS VESPERTINO GUIA DE LABORATORIO ASIGNATURA 9562 EQUIPOS E INSTALACIONES TÉRMICAS E HIDRAULICAS TOPICO II NIVEL 05 EXPERIENCIA E-952 TURBINA
FUNDAMENTOS SISTEMAS TRITÉRMICOS EYECCION
SISTEMAS TRITÉRMICOS EYECCION LAS MÁQUINAS DE EYECCIÓN FUNDAMENTOS Como en el sistema de compresión, la máquina de eyección es un sistema basado en la vaporización de un líquido a baja presión. Las funciones
EQUIPOS PARA LA GENERACIÓN DE VAPOR Y POTENCIA
Diagrama simplificado de los equipos componentes de una central termo-eléctrica a vapor Caldera (Acuotubular): Quemadores y cámara de combustión (hogar): según el tipo de combustible o fuente de energía
1. Procesos de transformación de la energía y su análisis 2 1.2. Representación de sistemas termodinámicos... 3
Contenido Aclaración III 1. Procesos de transformación de la energía y su análisis 1.1. Representación de sistemas termodinámicos................. 1.. Representación de sistemas termodinámicos.................
Termodinámica y Máquinas Térmicas
Termodinámica y Máquinas Térmicas Tema 04. Funciones de Estado Inmaculada Fernández Diego Severiano F. Pérez Remesal Carlos J. Renedo Estébanez DPTO. DE INGENIERÍA ELÉCTRICA Y ENERGÉTICA Este tema se publica
TERMODINÁMICA AVANZADA
ERMODINÁMICA AANZADA Unidad I: ropiedades y Leyes de la ermodinámica! Ciclos de potencia! Ciclo de refrigeración 8/7/0 Ctenido! Ciclos termodinámicos!! Ciclo Rankine! ariantes del Ciclo Rankine! Ciclos
MATERIAL DE APOYO DE USO ESCLUSIVO DEL CENTRO DE ESTUDIOS MATEMÁTICOS. C.E.M.
1-. Una cubeta con hielo recibe constantemente calor de un B. mechero como se aprecia en la figura. C. D. De la gráfica de temperatura como función del tiempo, para la muestra, se concluye que entre A.
TEMA 2: PRINCIPIOS DE TERMODINÁMICA. MÁQUINA TÉRMICA Y MÁQUINA FRIGORÍFICA
TEMA 2: PRINCIPIOS DE TERMODINÁMICA. MÁQUINA TÉRMICA Y MÁQUINA FRIGORÍFICA La termodinámica es la parte de la física que se ocupa de las relaciones existentes entre el calor y el trabajo. El calor es una
CAPITULO V TERMODINAMICA - 115 -
CAPIULO V ERMODINAMICA - 5 - 5. EL GAS IDEAL Es el conjunto de un gran número de partículas diminutas o puntuales, de simetría esférica, del mismo tamaño y de igual volumen, todas del mismo material. Por
Práctico de Física Térmica 1 ra Parte
Enunciados Lista 0 Práctico de Física Térmica 1 ra Parte 2.8 * Un kilogramo de nitrógeno diatómico (N 2 con peso molecular de 28) se encuentra dentro de un depósito de 500 litros. Encuentre el volumen
PROBLEMAS. Segundo Principio. Problema 1
PROBLEMAS Segundo Principio Problema 1 La figura muestra un sistema que capta radiación solar y la utiliza para producir electricidad mediante un ciclo de potencia. El colector solar recibe 0,315 kw de
PROBLEMAS DE MÁQUINAS. SELECTIVIDAD
PROBLEMAS DE MÁQUINAS. SELECTIVIDAD 77.- El eje de salida de una máquina está girando a 2500 r.p.m. y se obtiene un par de 180 N m. Si el consumo horario de la máquina es de 0,5 10 6 KJ. Se pide: a) Determinar
INGENIERO. JOSMERY SÁNCHEZ
UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA COMPLEJO ACADÉMICO "EL SABINO" PROGRAMA DE INGENIERÍA MECÁNICA AREA DE TECNOLOGÍA UNIDAD CURRICULAR: TERMODINÁMICA APLICADA REALIZADO POR: INGENIERO.
Práctico de Física Térmica 2 da Parte
Enunciados Lista 4 Práctico de Física Térmica 2 da Parte Nota: Los ejercicios 6.16, 6.22 y 6.34 tienen agregados y/o sufrieron modificaciones respecto al Van Wylen. 6.12* Se propone calentar una casa en
III Tema Segunda ley de la termodinámica
UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA COMPLEJO ACADÉMICO "EL SABINO" PROGRAMA DE INGENIERÍA PESQUERA AREA DE TECNOLOGÍA UNIDAD CURRICULAR: TERMODINÁMICA APLICADA III Tema Segunda ley de
F. Aclarando conceptos sobre termodinámica
IES Antonio Glez Glez Principios de máquinas Página 1 F. Aclarando conceptos sobre termodinámica Termodinámica La termodinámica es la parte de la física que analiza los fenómenos en los que interviene
Sistemas termodinámicos. Temperatura
Sistemas termodinámicos. Temperatura 1. Se desea construir una escala termométrica que opere en grados Celsius, mediante una varilla que presenta una longitud de 5.00 cm a la temperatura de fusión del
Electricidad y calor
Electricidad y calor Webpage: http://paginas.fisica.uson.mx/qb 2007 Departamento de Física Universidad de Sonora Temario A. Termodinámica 1. Temperatura y Ley Cero. (3horas) 1. Equilibrio Térmico y ley
Electricidad y calor. Webpage: Departamento de Física Universidad de Sonora
Electricidad y calor Webpage: http://paginas.fisica.uson.mx/qb 2007 Departamento de Física Universidad de Sonora Temario A. Termodinámica 1. Temperatura y Ley Cero. (3horas) 1. Equilibrio Térmico y ley
PRÁCTICA 10. TORRE DE REFRIGERACIÓN POR AGUA
PRÁCTICA 10. TORRE DE REFRIGERACIÓN POR AGUA OBJETIVO GENERAL: Familiarizar al alumno con los sistemas de torres de refrigeración para evacuar el calor excedente del agua. OBJETIVOS ESPECÍFICOS: Investigar
Carrera: MCT 0540. Participantes. Representantes de las academias de Ingeniería Mecánica de Institutos Tecnológicos. Academia de Ingeniería
1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Termodinámica Ingeniería Mecánica MCT 0540 2 3 7 2.- HISTORIA DEL PROGRAMA Lugar
Dinámica de Fluidos. Mecánica y Fluidos VERANO
Dinámica de Fluidos Mecánica y Fluidos VERANO 1 Temas Tipos de Movimiento Ecuación de Continuidad Ecuación de Bernouilli Circulación de Fluidos Viscosos 2 TIPOS DE MOVIMIENTO Régimen Laminar: El flujo
Termotecnia y Mecánica de Fluidos (DMN) Mecánica de Fluidos y Termodinámica (ITN) TD. T6.- Ciclos de Refrigeración
Termotecnia y Mecánica de Fluidos (DMN) Mecánica de Fluidos y Termodinámica (ITN) TD. T6.- Ciclos de Refrigeración Las trasparencias son el material de apoyo del profesor para impartir la clase. No son
Ejercicios y problemas de neumática e hidráulica
Ejercicios y problemas de neumática e hidráulica 1. Un depósito contiene aire comprimido a 4 atm. Cuál es su presión en pascales? (Sol.: 400.000 pascales). 2. Si tenemos una jeringuilla que contiene 0,02
Propiedades de sustancias
Propiedades de sustancias Objetivos Entender conceptos clave... como fase y sustancia pura, principio de estado para sistemas simples compresibles, superfice p-v-t, temperatura de saturación y presión
DEPARTAMENTO DE INGENIERÍA QUÍMICA. Laboratorio de Ingeniería Química BALANCE DE ENERGÍA EN ESTADO NO ESTACIONARIO
DEPARAMENO DE INGENIERÍA QUÍMICA Laboratorio de Ingeniería Química BALANCE DE ENERGÍA EN ESADO NO ESACIONARIO 1. INRODUCCIÓN El sistema al que se va a plantear el balance de energía calorífica consiste
Sustancia que tiene una composición química fija. Una sustancia pura no tiene que ser de un solo elemento, puede ser mezcla homogénea.
Sustancia que tiene una composición química fija. Una sustancia pura no tiene que ser de un solo elemento, puede ser mezcla homogénea. Mezcla de aceite y agua Mezcla de hielo y agua Las sustancias existen
SISTEMA TERMODINÁMICO.
TERMODINAMICA La Termodinámica es la rama de la Física que trata del estudio de las propiedades materiales de los sistemas macroscópicos y de la interconversión de las distintas formas de energía, en particular
Problemas de Termotecnia
Problemas de Termotecnia 2 o curso de Grado de Ingeniería en Explotación de Minas y Recursos Energéticos Profesor Gabriel López Rodríguez (Área de Máquinas y Motores Térmicos) Curso 2011/2012 Tema 2: Primer
Sustancia Pura. Cap. 6 INTRODUCCIÓN. Sustancia Pura 6 - Pág. 1. Termodinámica para ingenieros PUCP
Cap. 6 Sustancia Pura INTRODUCCIÓN Estamos entrando al mundo virtual de la información, es una etapa de transición para nuestra Termodinámica clásica, pues dentro de poco dejaremos nuestras antiguas Tablas
1. GENERALIDADES DE LOS SISTEMAS NEUMÁTICOS E HIDRÁULICOS. Las diferencias entre ambas vienen dadas por la naturaleza de los fluidos utilizados:
CONTENIDOS: -Técnicas de producción, conducción y depuración de fluidos. - Caudal. Pérdida de carga. - Elementos de accionamiento, regulación y control. Simbología. - Circuitos característicos de aplicación:
TRANSFERENCIA DE CALOR
Conducción Convección Radiación TRANSFERENCIA DE CALOR Ing. Rubén Marcano Temperatura es una propiedad que depende del nivel de interacción molecular. Específicamente la temperatura es un reflejo del nivel
T 1 T 2. x L. Con frecuencia es importante el valor de la resistencia térmica multiplicado por el área de flujo de calor, en este caso sera
1. ey de Fourier ué flujo de calor es necesario hacer pasar a través de una barra circular de madera de 5 cm de diámetro y 10 cm de longitud, cuya temperatura en los extremos es de 50 C y 10 C en sus extremos?
UTN Facultad Regional La Plata Integración III
Balance de energía El concepto de balance de energía macroscópico, es similar al concepto del balance de materia macroscópico. Acumulación Transferencia Transferencia Generación Consumo de energía de energía
ENERGÍA INTERNA PARA GASES NO IDEALES.
DEPARTAMENTO DE FISICA UNIERSIDAD DE SANTIAGO DE CHILE ENERGÍA INTERNA PARA GASES NO IDEALES. En el caso de los gases ideales o cualquier cuerpo en fase no gaseosa la energía interna es función de la temperatura
Ciclo Joule -Brayton
Cap. 13 Ciclo Joule -Brayton INTRODUCCIÓN Este capìtulo es similar al del ciclo Rankine, con la diferencia que el portador de energìas es el AIRE, por lo que lo consideraremos como gas ideal y emplearemos
Actualización 2012 del Curso Electricidad y Calor: Tema Segunda Ley de la Termodinámica y sus aplicaciones
Actualización 2012 del Curso Electricidad y Calor: Tema Segunda Ley de la Termodinámica y sus aplicaciones Responsable : Dr. Mario Enrique Alvarez Ramos Colaboradores: Dra. María Betsabe Manzanares Martínez
FISICA II HOJA 3 ESCUELA POLITÉCNICA DE INGENIERÍA DE MINAS Y ENERGIA 3. ELECTRODINÁMICA FORMULARIO
FISIC II HOJ 3 ESCUEL POLITÉCNIC DE INGENIERÍ DE MINS Y ENERGI 3. ELECTRODINÁMIC FORMULRIO FISIC II HOJ 3 ESCUEL POLITÉCNIC DE INGENIERÍ DE MINS Y ENERGI 3.1) Para la calefacción de una habitación se utiliza
FISICA: UNIDADES METRICAS
FISICA: UNIDADES METRICAS UNIDADES Para la aplicación práctica de los accesorios neumáticos, es necesario estudiar las leyes naturales relacionadas con el comportamiento del aire como gas comprimido y
HIDRAULICA DE POTENCIA. Unidad 1. Bases físicas de la hidráulica
HIDRAULICA DE POTENCIA Unidad 1. Bases físicas de la hidráulica Presión Este término se refiere a los efectos de una fuerza que actúa distribuida sobre una superficie. La fuerza causante de la presión
LÍNEAS DEL DIAGRAMA DE MOLLIER
DIAGRAMA DE MOLLIER El refrigerante cambia de estado a lo largo del ciclo frigorífico como hemos visto en el capítulo anterior. Representaremos sobre el diagrama de p-h las distintas transformaciones que
PRÁCTICO DE MÁQUINAS PARA FLUIDOS II
44) En la instalación de la figura la bomba gira a 1700rpm, entregando un caudal de agua a 20 o C de 0.5m 3 /s al tanque elevado. La cañería es de acero galvanizado, rígida y de 500mm de diámetro y cuenta
Dispositivos Cilindro-Pistón
Presión ejercida sobre superficies sólidas: sistema cilindro-pistón Un sistema importante desde el punto de vista termodinámico es el sistema cilindro-pistón, ya que se puede estudiar con él el comportamiento
Mecánica de Fluidos. Docente: Ing. Alba V. Díaz Corrales
Mecánica de Fluidos Docente: Ing. Alba V. Díaz Corrales Mecánica de Fluidos Contenido Fluidos incompresibles Ecuación de continuidad Ecuación de Bernoulli y aplicaciones Líneas de cargas piezométricas
DEPARTAMENTO DE INGENIERÍA ELÉCTRICA Y ENERGÉTICA UNIVERSIDAD DE CANTABRIA TURBINAS DE GAS
DEPARTAMENTO DE INGENIERÍA ELÉCTRICA Y ENERGÉTICA UNIVERSIDAD DE CANTABRIA TURBINAS DE GAS Pedro Fernández Díez I.- TURBINA DE GAS CICLOS TERMODINÁMICOS IDEALES I.1.- CARACTERISTICAS TÉCNICAS Y EMPLEO
AUTOMOCIÓN MOTORES TÉRMICOS Y SUS SISTEMAS AUXILIARES RELACIÓN DE COMPRESIÓN CILINDRADA
RELACIÓN DE COMPRESIÓN PARÁMETROS CARACTERÍSTICOS...01...02 RELACIÓN DE COMPRESIÓN...05 RELACIÓN CARRERA / DIÁMETRO...06 MOTORES CUADRADOS...06 MOTORES SUPERCUADRADOS O DE CARRERA CORTA...07 VENTAJAS DE
1 Conservación de la masa
1 Conservación de la masa La masa no puede ser creada ni destruida Figura 1. Figura 2. La masa se conserva incluso en reacciones químicas Flujo de masa a través de una superficie de control δṁ = ρv n da
CICLOS DE POTENCIAS DE GAS AIRE CERRADOS
UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA COMPLEJO ACADÉMICO "EL SABINO" PROGRAMA DE INGENIERÍA MECÁNICA AREA DE TECNOLOGÍA UNIDAD CURRICULAR: TERMODINÁMICA APLICADA CICLOS DE POTENCIAS DE
Ciclos de Aire Standard
Ciclos Termodinámicos p. 1/2 Ciclos de Aire Standard máquinas reciprocantes modelo de aire standard ciclo Otto ciclo Diesel ciclo Brayton Ciclos Termodinámicos p. 2/2 máquinas de combustión interna el
Facultad de Ciencias Fisicomatemáticas e Ingeniería VAPOR - EXERGÍA
Cátedra: Termodinámica - Ing. Civil e Ing. Ambiental Docente/s: Ing. José Contento / Ing. Jorge Rosasco Guía de trabajos prácticos Nº 6 VAPOR - EXERGÍA.- En un recipiente de paredes rígidas y adiabáticas,
Mecánica II GONZALO GUTÍERREZ FRANCISCA GUZMÁN GIANINA MENESES. Universidad de Chile, Facultad de Ciencias, Departamento de Física, Santiago, Chile
Mecánica II GONZALO GUTÍERREZ FRANCISCA GUZMÁN GIANINA MENESES Universidad de Chile, Facultad de Ciencias, Departamento de Física, Santiago, Chile Guía 4: Mecánica de fluidos Martes 25 de Septiembre, 2007
INGENIERÍA QUÍMICA Problemas propuestos Pág. 1 BALANCES DE ENERGÍA
Problemas propuestos Pág. 1 BALANCES DE ENERGÍA Problema nº 31) [04-03] Considérese una turbina de vapor que funciona con vapor de agua que incide sobre la misma con una velocidad de 60 m/s, a una presión
Centro Universitario de Ciencias Exactas e Ingenierías. División de Ingenierías Departamento de Ingeniería Mecánica Eléctrica.
Ingeniería Termodinámica Ejercicios del capítulo 4 del libro de texto Trabajo de Fronteras móviles 4.11 Una masa de 5 (kg) de vapor de agua saturado a 300 (kpa) se calienta a presión constante hasta que
UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE QUÍMICA DEPARTAMENTO DE FISICOQUÍMICA GUÍA DE ESTUDIO DE TERMODINÁMICA E.T.
UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE QUÍMICA DEPARTAMENTO DE FISICOQUÍMICA GUÍA DE ESTUDIO DE TERMODINÁMICA E.T. (CLAVE 1212) UNIDAD 1. INTRODUCCIÓN A LA TERMODINÁMICA 1.1 Definición, campo
Bombas y Ventiladores. Fundamentos teóricos y prácticos Cómo podemos aportar a la EE con estos equipos?
Bombas y Ventiladores Fundamentos teóricos y prácticos Cómo podemos aportar a la EE con estos equipos? Índice 1. Descripción. 2. Clasificación. 3. Curvas Características. 4. Pérdidas de Carga en Sistemas.
PRODUCCIÓN DE ENERGÍA ELÉCTRICA DE FUGA DE CALOR:
PRODUCCIÓN DE ENERGÍA ELÉCTRICA DE FUGA DE CALOR: ciclo doble / simple etapa ORC con un innovador motor rotativo termovolumetrico patentada de alta eficiencia 0.Resumen Se presentan algunos resultados
La energía interna. Nombre Curso Fecha
Ciencias de la Naturaleza 2.º ESO Unidad 10 Ficha 1 La energía interna La energía interna de una sustancia está directamente relacionada con la agitación o energía cinética de las partículas que la componen.
Tema 9: Calor, Trabajo, y Primer Principio
1/34 Tema 9: Calor, Trabajo, y Primer Principio Fátima Masot Conde Ing. Industrial 2010/11 Tema 9: Calor, Trabajo, Primer Principio 2/34 Índice: 1. Introducción. 2. Capacidad calorífica. Calor específico.
TERMODINÁMICA AVANZADA
ERMODINÁMICA AANZADA Cantidades fundamentales Cantidades básicas y unidaded Unidad I: ropiedades y Leyes de la ermodinámica Cantidades fundamentales ropiedades de estado Función de estado y ecuación de
Física para Ciencias: Principio de Arquímedes, Ecuaciones de Continuidad y Bernoulli.
Física para Ciencias: Principio de Arquímedes, Ecuaciones de Continuidad y Bernoulli. Dictado por: Profesor Aldo Valcarce 1 er semestre 2014 Presión de un fluido Presión depende de la profundidad P = ρ
Capítulo 8. Termodinámica
Capítulo 8 Termodinámica 1 Temperatura La temperatura es la propiedad que poseen los cuerpos, tal que su valor para ellos es el mismo siempre que estén en equilibrio térmico. Principio cero de la termodinámica:
5.3 La energía en los circuitos eléctricos.
CAPÍTULO 5 Corriente eléctrica y circuitos de corriente continua Índice del capítulo 5 51 5.1 Corriente eléctrica. 5.2 esistencia y la ley de Ohm. 5.3 La energía en los circuitos eléctricos. 5.4 Asociaciones
= 3 112.5 = 388.61 = 2 945.7 667.75
56 2. Primera ley y otros conceptos básicos 2.10. 2.11. temperatura? Suponga que para el nitrógeno es constante, = y (Los valores de R aparecen en el apéndice A.) En una tubería horizontal recta fluye
Ecuaciones diferenciales de primer orden: Aplicaciones a la Ingeniería Química
Lección 7 Ecuaciones diferenciales de primer orden: Aplicaciones a la Ingeniería Química 1 Ecuaciones Diferenciales en Cinética Química Ecuación estequiométrica: o a A b B = p P q Q 0 = a A b B... p P
UNIDAD VII TEMPERATURA Y DILATACIÓN
UNIDAD VII TEMPERATURA Y DILATACIÓN TEMPERATURA Expresión del nivel térmico de un cuerpo Un cuerpo con mucha temperatura tiene mucha cantidad de calor; sin embargo hay cuerpos como el mar con gran cantidad
TEMA 11. REFRIGERACIÓN
Termodinámica Aplicada Ingeniería Química TEMA. REFRIGERACIÓN TEMA : REFRIGERACIÓN BLOQUE II. Análisis termodinámico de procesos industriales PROCESOS INDUSTRIALES ANÁLISIS PROCESOS CALOR TRABAJO Y POTENCIA
Termodinámica Temas Selectos de Física 2. Prof. Daniel Valerio Martínez Universidad La Salle Nezahualcóyotl
Termodinámica Temas Selectos de Física 2 Prof. Daniel Valerio Martínez Universidad La Salle Nezahualcóyotl Conceptos básicos Termodinámica Sistema Sistema abierto Sistema cerrado Sistema aislado Frontera
Sistemas de refrigeración: compresión y absorción
Sistemas de refrigeración: compresión y absorción La refrigeración es el proceso de producir frío, en realidad extraer calor. Para producir frío lo que se hace es transportar calor de un lugar a otro.
COMPROBACIÓN DE LA ECUACIÓN DE BERNOULLI
Laboratorio de Física de Procesos Biológicos COMPROBACIÓN DE LA ECUACIÓN DE BERNOULLI Fecha: 13/1/006 1. Obetivo de la práctica Comprobación experimental de la ecuación de Bernoulli de la dinámica de fluidos
RR REFRIGERACION INDUSTRIAL APLICADA, S.A. DE C.V.
RR REFRIGERACION INDUSTRIAL APLICADA, S.A. DE C.V. www.rrrefrigeracion.com.mx REFRIGERACION INDUSTRIAL OBJETIVOS I. CONOCER ALGUNOS DE LOS PRINCIPALES CONCEPTOS BASICOS II. CONOCER LOS REFRIGERANTES MAS
QUÉ ES LA TEMPERATURA?
1 QUÉ ES LA TEMPERATURA? Nosotros experimentamos la temperatura todos los días. Cuando estamos en verano, generalmente decimos Hace calor! y en invierno Hace mucho frío!. Los términos que frecuentemente
Soluciones. DESCRIPCION MACROSCOPICA DE UN GAS IDEAL (Serway, Cap 19, vol I)
Soluciones DESCRIPCION MACROSCOPICA DE UN GAS IDEAL (Serway, Cap 19, vol I) 1. Demuestre que 1 mol de cualquier gas a presión atmosférica de 101 kpa y temperatura de 0ºC ocupa un volumen de 22,4 L. n =
Sistemas de vacío de múltiples etapas a chorro de vapor operando en circuito cerrado alcalino (Alkaline Closed Loop - ACL)
Sistemas de vacío de múltiples etapas a chorro de vapor operando en circuito cerrado alcalino (Alkaline Closed Loop - ACL) Sistemas de vacío de múltiples etapas a chorro de vapor Los sistemas de vacío
El tubo De Vénturi. Introducción
El tubo De Vénturi Recopilado a partir de http://www.monografias.com/trabajos6/tube/tube.shtml por: Jose Carlos Suarez Barbuzano. Técnico Superior Química Ambiental. Técnico del Centro Canario del Agua
INGENIERÍA AERONÁUTICA TERMODINÁMICA SÍLABO
I. DATOS GENERALES: INGENIERÍA AERONÁUTICA TERMODINÁMICA SÍLABO 1.1 ASIGNATURA : Termodinámica 1.2 CÓDIGO : 3301-33212 1.3 PRE-REQUISITO : 3301-33108 y 3301-33111 1.4 HORAS SEMANALES : 05 1.4.1 TEORÍA
Laboratorio de Mecánica de Fluidos I
Laboratorio de Mecánica de Fluidos I Práctica # 3: Demostración del Teorema de Bernoulli Objetivo Demostrar el Teorema de Bernoulli y sus limitaciones. Determinar el coeficiente de descarga. En este experimento
17. THERMODYNAMICS OF POWER GENERATION
17. THERMODYNAMICS OF POWER GENERATION 17.0. Deducir expresiones analíticas ideales para los rendimientos energéticos de los siguientes motores: a) Ciclo de Carnot. b) Ciclo Otto. c) Ciclo Diesel. d) Ciclo
INSTALACION DE ENFRIAMIENTO PARA ACEITE
INSTALACION DE ENFRIAMIENTO PARA ACEITE INTECAMBIADOR DE CALOR AIRE/ACEITE AGUA/ACEITE EL PRIMER INTERCAMBIADOR DE CALOR DISEÑADO Y FABRICADO PARA EL ENFRIAMIENTO DEL ACEITE EN LA INDUSTRIA CERAMICA INSTALACION
Estudiar el fenómeno de trasferencia de calor en los procesos de fundido y evaporación del agua. Calcular el calor latente de vaporización del agua.
CAMBIOS DE FASE. OBJETIVO: Estudiar el fenómeno de trasferencia de calor en los procesos de fundido y evaporación del agua. Calcular el calor latente de vaporización del agua. INTRODUCCION. Los procesos
TÉCNICO SUPERIOR UNIVERSITARIO EN ENERGÍAS RENOVABLES ENERGÍA SOLAR EN COMPETENCIAS PROFESIONALES ASIGNATURADE TERMODINÁMICA
TÉCNICO SUPERIOR UNIVERSITARIO EN ENERGÍAS RENOVABLES ENERGÍA SOLAR EN COMPETENCIAS PROFESIONALES ASIGNATURADE TERMODINÁMICA 1. Competencias Plantear y solucionar problemas con base en los principios y
Mecánica de Fluidos y Máquinas Hidráulicas
Mecánica de Fluidos y Máquinas Hidráulicas Tema 04. Dinámica de Fluidos Severiano F. Pérez Remesal Carlos Renedo Estébanez DPTO. DE INGENIERÍA ELÉCTRICA Y ENERGÉTICA Este tema se publica bajo Licencia:
ESTUDIO REALIZADO POR DIRA S.L. (Desenvolupament, Investigació i Recerca Aplicada S.L.)
: nuevo refrigerante sustitutivo del R-22 con bajo PCA (GWP). Comparación de rendimiento con seis refrigerantes ya existentes ESTUDIO REALIZADO POR DIRA S.L. (Desenvolupament, Investigació i Recerca Aplicada
Termodinámica. Carrera: QUC 0535
1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos: Termodinámica Ingeniería Química QUC 0535 4 2 10 2. HISTORIA DEL PROGRAMA Lugar
Electricidad y calor. Dr. Roberto Pedro Duarte Zamorano. Departamento de Física
Electricidad y calor Dr. Roberto Pedro Duarte Zamorano Departamento de Física 2011 A. Termodinámica Temario 1. Temperatura y Ley Cero. (3horas) 2. Calor y transferencia de calor. (5horas) 3. Gases ideales
MAQUINAS HIDRAULICAS Y TERMICAS Motores de Combustión Interna Alternativos Introducción. Elementos Constructivos. Clasificación
INTRODUCCIÓN A LOS MOTORES DE COMBUSTIÓN INTERNA ALTERNATIVOS INTRODUCCIÓN A LOS MOTORES TÉRMICOS MOTOR DE COMBUSTIÓN INTERNA ALTERNATIVO CARACTERÍSTICAS PRINCIPALES ELEMENTOS CONSTRUCTIVOS DE LOS M.C.I.A.
Longitud. Unidades de medida. Superficie. Unidades de medida. Volumen. Unidades de medida. Nociones sobre calor y temperatura. Escalas de temperatura.
Unidad 1: Conceptos Básicos Longitud. Unidades de medida. Superficie. Unidades de medida. Volumen. Unidades de medida Peso específico. Unidades de medida. Presión. Unidades de medida. Elementos de medición
CAPÍTULO 3 EL MÉTODO DE ANÁLISIS EXERGÉTICO
50 CAPÍTULO 3 EL MÉTODO DE ANÁLISIS EXERGÉTICO En este capítulo se desarrolla la metodología de análisis, cuya aplicación a una central termoeléctrica particular y el análisis de los resultados se llevan
Índice general. Pág. N. 1. Magnitudes de la Física y Vectores. Cinemática. Cinemática Movimiento en dos dimensiones
Pág. N. 1 Índice general Magnitudes de la Física y Vectores 1.1. Introducción 1.2. Magnitudes físicas 1.3. Ecuaciones Dimensionales 1.4. Sistema de Unidades de Medida 1.5. Vectores 1.6. Operaciones gráficas
Capítulo 2. Sensores. Sistema de control de calentamiento de aire en lazo cerrado. Función de transferencia de un sensor lineal de acción directa
Sistema de control de calentamiento de aire en lazo cerrado Temperatura de consigna egulador Capítulo. Sensores Sensor de temperatura T Válvula de dos vías Actuador Suministro de agua caliente Batería
0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 Entropía s [KJ/Kg.ºK]
UNIVERSIDAD NACIONAL DE TUCUMÁN Facultad de Ciencias Exactas y Tecnología CENTRALES ELÉCTRICAS TRABAJO PRÁCTICO Nº 3 CENTRALES TÉRMICAS DE VAPOR CICLO DE RANKINE ALUMNO: AÑO 2015 INTRODUCCIÓN El Ciclo
TEMPERATURA DILATACIÓN. 9. En la escala Celsius una temperatura varía en 45 C. Cuánto variará en la escala Kelvin y
TEMPERATURA 1. A cuántos grados kelvin equivalen 50 grados centígrados? a) 303 b) 353 c) 453 d) 253 2. Si un cuerpo presenta una temperatura de 20 C Cuál será la lectura de esta en la escala Fahrenheit?
