PROBLEMAS SOBRE RUIDO
|
|
|
- María del Rosario Rey Castillo
- hace 8 años
- Vistas:
Transcripción
1 UNIVERSIDAD NACIONAL DE ROSARIO FACULTAD DE CIENCIAS EXACTAS, INGENIERÍA Y AGRIMENSURA DEPARTAMENTO DE ELECTRÓNICA ELECTRÓNICA III PROBLEMAS SOBRE RUIDO Autor: Ing. Federico Miyara Digitalización: Juan Sebastián Petrocelli Año 000 PÁGINA 1/8
2 Problema 1 Con el objeto de medir el ruido e n del FET se mide el valor eficaz de ruido a la salida con dos filtros pasabanda de corte abrupto obteniéndose: Filtro: [100 ; 1K] Vno = 61µV Filtro: [100 ; 10K] Vno = 163,5µV µ = 100 rds = 30KΩ Bosquejar la gráfica de, indicando valores característicos. Problema Se dispone de dos amplificadores de tensión iguales con Rent = 100KW, Rsal = 1KW, Av = 50 y las siguientes características de ruido referido a la entrada: i n 1 pa 1K K Encontrar las características de ruido del amplificador que se obtiene conectando los dos anteriores en cascada (la ganancia de tensión especificada no tiene en cuenta la impedancia de la fuente de señal). Problema 3 Se dispone de una fuente de señal que debe amplificarse con una ganancia de %. Si su resistencia interna varía entre 1KΩ y KΩ, diseñar el siguiente amplificador para tener mínimo ruido, y calcular dicho ruido en la banda de [10 ; 1K]. 100 PÁGINA /8
3 Problema 04 El siguiente circuito se utiliza para medir el ruido 1/f del potenciómetro: 100 Determinar el valor y la constante de dicho ruido adicional si el valor eficaz medido en la banda de 10 a 10K es V no = 0,4mV. Problema 05 Calcular el ruido a la salida de este amplificador logarítmico en la banda [10 ; 10K]. Considerar Io = 10µA. 1K El potenciómetro tiene un ruido adicional 1/f que comienza a superar al ruido térmico para f < 100. El objeto de este potenciómetro es ajustar la corriente inversa del diodo. Suponer que Vi tiene 5V de pico a pico montado en una continua de,5v. Problema 06 Un amplificador tiene un factor de ruido igual a 5. Calcular la relación (S/N) a la salida si se conecta a la entrada una fuente de señal cuya temperatura de ruido es de 35ºK y cuya impedancia es el doble de aquella para la que se especificó F. (Suponer que la desadaptación de impedancias no altera las polarizaciones de los elementos). Suponer que en la entrada es (S/N) i = 40dB. Problema 07 Para reducir el silbido de alta frecuencia de los sistemas de grabación de cinta magnética se han ideado varios métodos (Dolby, ANRS). El siguiente diagrama de bloques muestra uno: PÁGINA 3/8
4 a) Completar el diagrama a la salida del grabador/reproductor, de modo que la señal reproducida sea igual a Ve (el bloque x-y actúa sobre tensiones eficaces, es decir que x mv eficaces se transforman en y mv eficaces. Los filtros son ideales. b) El silbido de alta frecuencia es del siguiente tipo: v n ( V ) 1 µ 1K f Calcular su valor eficaz en la banda [1K ; 0K]. c) Calcular la mínima tensión eficaz reproducida incluyendo el ruido y sin incluirlo, en la banda anterior. d) Calcular la relación (S/N) mín. en db de la señal reproducida. e) Repetir el cálculo anterior eliminando por completo el sistema de reducción de ruido y comparar. f) El bloque x-y multiplica por 17 la mínima señal y deja casi inalterada la máxima. Por qué no se multiplica toda la señal por 17, eliminando así las complicaciones del bloque no lineal? g) Por qué se tratan diferentemente las señales de baja y alta frecuencia complicando el sistema con un separador de banda? Problema 08 En el siguiente circuito: a) Encontrar la expresión de la densidad de potencia de ruido a la salida del circuito. b) Obtener el valor de R para minimizar dicho ruido. c) Calcular la tensión eficaz de ruido en la banda de [10 ; 10K]. 50 nv 5 nv R1 = 10KΩ, R3 = 1KΩ, C = 1nF K Problema 09 Dar la gráfica del ruido de banda ancha referido a la entrada en función de la resistencia del generador de señal para un LM741 con las siguientes características: 40 nv 6 pa i n 5 nv,5 pa PÁGINA 4/8
5 Problema 10 El circuito indicado es la etapa de entrada de un sensor pasivo infrarrojo. La fuente Vcc contiene superpuesto un ruido blanco de 10mV de valor eficaz en la banda de [0, 10K]. Calcular el ancho de banda de un filtro pasabajos ideal a la salida si se desea que el valor eficaz de ruido a la salida del mismo sea menor que 10mV a partir de 0, nv 10 10K Problema 11 El siguiente circuito se emplea para medir el ruido adicional de un micrófono de carbón: 30 nv 15 nv Dicho ruido puede describirse según: K V nm K. I = f Si el amperímetro indica,5ma y la tensión eficaz de ruido en la banda [300 ; 3K] a la salida es de 1mV, dar la expresión del ruido del micrófono. Problema 1 Debido a que iguales niveles de ruido afectan al oído en distinta medida según la frecuencia, se ha ideado un filtro de ponderación de ruido que puede aproximarse por una pendiente de 0 db/déc hasta 8k y luego una pendiente de 10dB/déc, pasando en el primer tramo por 0dB a k (filtro CCIR/ARM). 40 nv 5 nv K PÁGINA 5/8
6 Calcular la relación (S/N) sal. ponderada por el filtro anterior del siguiente amplificador sí la Vent = 800µV eficaces. Considerar la banda [0 ; 0K]. NOTA: para calcular el ruido ponderado conectar e la salida el filtro CCIR/ARM. Problema 13 En el siguiente circuito: donde r ds = 30KΩ y µ = 100, se ha medido la tensión eficaz de ruido a la salida en dos bandas, habiéndose obtenido los siguientes resultados: [10 ; 1K] [100 ; 10K] Vo = 0,1µV Vo = 0,43µV Si se sabe que el ruido del FET tiene asíntotas que se cruzan en 1K, determinar el valor de Rs. Problema 14 Calcular la tensión eficaz de ruido a la salida del siguiente circuito sensor de temperatura, en la banda de [10 ; 10K]: 100 nv K donde R1 = 100KΩ, R = 1KΩ, R3 = 1KΩ y C = 0,1µF. NOTA: La Vref. se usa como ajuste de cero; contrarresta la Vγ a la temperatura de referencia. Problema 15 Un amplificador diferencial con ganancia de tensión 1000 y con resistencia de entrada 100 kω tiene una relación señal a ruido de 60 db. Indicar cuál será la relación señal a ruido si se lo realimenta con una realimentación serie paralelo constituida por un divisor de tensión cuyas resistencias son R1 y R y cuya ganancia final es 50. Encontrar valores de resistencia quo empeoren dicha relación en más de 1 db. PÁGINA 6/8
7 Problema 16 En el siguientanoamperímetro, determinar el ruido a la salida de la banda [10 ; 1K]. 30 nv pa 0,01 i n 16 nv pa 0, K K siendo R = 10MΩ, R1 = 1KΩ y R = 100KΩ. Problema 17 Se desea emplear el circuito siguiente como decodificador de la banda sonora de una película de cine. a) Obtener la expresión de la relación (S/N) a la salida si la potencia luminosa P = 700 µw eficaces en [0 ; 0K]. b) Diseñar el circuito para tener a la salida 1V eficaz cuando P = 00 µw con máxima (S/N). 100 Tomar el siguiente como modelo en señal del fotodiodo. Is = δ. P Donde P es la potencia luminosa y δ la responsividad. Rd = 10GΩ Rp = 50Ω Cd = 5pF 0 id = q Id 1 + f donde Id = 100pA es la corriente inversa oscura δ = 0,5 µa/µw q = 1, Coul NOTA: Hacer las aproximaciones que se consideren convenientes. PÁGINA 7/8
8 Problema 18 El circuito dado a continuación se usa para amplificar señales de la banda de audio. Si se lo excita sólo con señales de audio cuya potencia promedio (en la banda [0 ; 0K]) es de: S 1 = V Cuál será la máxima frecuencia de corte en la etapa para poder asegurar una relación (S/N) a la salida de 90dB? Calcular además el valor de C. R1 = 1KW R = 100KW R3 = 10KW C1 = 3,3Pf i n 100 nv pa 10 pa 0, K Sugerencia: Es de importancia realizar todas las simplificaciones criteriosas que fueran aplicables. LA resolución del problema no debería emplear cálculos complejos. Problema 19 Hallar la densidad de potencia de ruido a la salida y su valor eficaz en [100 ; 10K]. 100 nv K El valor de R es tal que Iz vale 0,5mA y el zener tiene un ruido de V /, independiente de la frecuencia. Problema 0 Obtener el ruido a la salida del siguiente circuito en la banda de [10 ; 0K]. Sabiendo que: e e n n (100) = 1000 (nv) (10KH) = 100 (nv) PÁGINA 8/8
9 PÁGINA 9/8
Dispositivos y Circuitos Electrónicos II Ingeniería Electrónica. Práctica propuesta. Problemas de Aplicación de Amplificadores Operacionales
Universidad Nacional de Rosario Facultad de Ciencias Exactas, Ingeniería y Agrimensura Escuela de Ingeniería Electrónica A-15 - Dispositivos y Circuitos Electrónicos II A-15 Dispositivos y Circuitos Electrónicos
Problemas Tema 6. Figura 6.3
Problemas Tema 6 6.1. Se conecta una fuente de voltaje V s =1mV y resistencia interna R s =1MΩ a los terminales de entrada de un amplificador con una ganancia de voltaje en circuito abierto A v0 =10 4,
APLICACIONES NO LINEALES TEMA 3 COMPARADOR
APLICACIONES NO LINEALES TEMA 3 COMPARADOR Es una aplicación sin realimentación. Tienen como misión comparar una tensión variable con otra, normalmente constante, denominada tensión de referencia, entregando
PROBLEMAS SOBRE FUENTES REGULADAS
UNIVERSIDAD NACIONAL DE ROSARIO FACULTAD DE CIENCIAS EXACTAS, INGENIERÍA Y AGRIMENSURA DEPARTAMENTO DE ELECTRÓNICA ELECTRÓNICA III PROBLEMAS SOBRE FUENTES REGULADAS Autores: Francisco S. López, Federico
η = V / Hz b) Calcular la T eq de ruido del cuadripolo Datos: ancho de banda =100 khz, temperatura de trabajo = 300 ºK, k = 1.
2. UIDO Y DISTOSION (Jun.94) 1. a) Calcular la relación s/n a la salida del cuadripolo, si la entrada es v s = 10-3 sin (10 4 t). El ruido propio del cuadripolo a la entrada viene caracterizado por η =
Temario. Tema 5. El amplificador operacional real OBJETIVOS DEL TEMA. Introducción
Temario Tema Teo. Pro. 1. Amplificación 2h 1h 2. Realimentación 2.5h 1.5h 3. Amplificador operacional (AO) y sus etapas lineales 7h 4h 4. Comparadores y generadores de onda 7h 4h 5. El amplificador operacional
Electrónica 1. Práctico 2 Amplificadores operacionales 2
Electrónica 1 Práctico 2 Amplificadores operacionales 2 Los ejercicios marcados con son opcionales. Además cada ejercicio puede tener un número, que indica el número de ejercicio del libro del curso (Microelectronic
VGD = 0 < Vt = 2 Están en saturación Ecuaciones en el circuito MOSFET de la izquierda Iref = ID:
ESPEJO DE CORRIENTE CON MOSFET Hallar los valores de los voltajes y corrientes en el circuito. VGD = 0 < Vt = 2 Están en saturación Ecuaciones en el circuito MOSFET de la izquierda Iref = ID: Ecuación
Parcial_2_Curso.2012_2013
Parcial_2_Curso.2012_2013 1. La función de transferencia que corresponde al diagrama de Bode de la figura es: a) b) c) d) Ninguna de ellas. w (rad/s) w (rad/s) 2. Dado el circuito de la figura, indique
Universidad Nacional de Rosario Facultad de Ciencias Exactas, Ingeniería y Agrimensura Escuela de Ingeniería Electrónica Departamento de Electrónica
Universidad Nacional de Rosario Facultad de Ciencias Exactas, Ingeniería y Agrimensura Escuela de Ingeniería Electrónica Departamento de Electrónica ELECTRÓNICA III PROBLEMAS RESUELTOS SOBRE CONVERSORES
i = Is e v nv T ANÁLISIS MATEMÁTICO UTILIZANDO LA CARACTERÍSTICA REAL DEL DIODO (APROXIMACIONES SUCESIVAS)
ANÁLISIS MATEMÁTICO UTILIZANDO LA CARACTERÍSTICA REAL DEL DIODO (APROXIMACIONES SUCESIVAS) i Is e v nv T 1 Voltaje térmico VT kt/q k : Constante de Boltzman 1,38 x 10-23 joules/kelvin T temperatura en
1.- Tensión colector emisor V CE del punto Q de polarización. a) 10,0 V b) 8,0 V c) 6,0 V
C. Problemas de Transistores. C1.- En el circuito amplificador de la figura se desea que la tensión en la resistencia R L pueda tomar un valor máximo sin distorsión de 8 V. Asimismo, se desea que dicha
DIE UPM. Se dispone de una etapa amplificadora conectada a una resistencia de carga R L de valor 1KΩ en paralelo con un condensador C L.
UNIVERSIDAD POLITÉCNICA DE MADRID ESCUELA TÉCNICA SUPERIOR DE INGENIEROS INDUSTRIALES UPM DIE DEPARTAMENTO DE AUTOMÁTICA, INGENIERÍA ELECTRÓNICA E INFORMÁTICA INDUSTRIAL DIVISIÓN DE INGENIERÍA ELECTRÓNICA
AMPLIFICADOR DRAIN COMÚN
AMPLIFICADOR DRAIN COMÚN * Circuito equivalente con el modelo π incluyendo ro * Ganancia de voltaje Se define Rp = RC//RL//r Es menor que 1 La salida está en fase con la entrada Resistencia de entrada
EC1282 LABORATORIO DE CIRCUITOS PRELABORATORIO Nº 7 PRÁCTICA Nº 9 APLICACIONES DEL AMPLIFICADOR OPERACIONAL. Seguidor de voltaje
EC1282 LABORATORIO DE CIRCUITOS PRELABORATORIO Nº 7 PRÁCTICA Nº 9 APLICACIONES DEL AMPLIFICADOR OPERACIONAL Amplificador no inversor Amplificador diferencial básico Seguidor de voltaje CONCEPTOS TEÓRICOS
PROBLEMAS SOBRE FILTROS ACTIVOS
ELECTRÓNICA III PRÁCTICA FILTROS ACTIVOS UNIVERSIDAD NACIONAL DE ROSARIO FACULTAD DE CIENCIAS EXACTAS, INGENIERÍA Y AGRIMENSURA DEPARTAMENTO DE ELECTRÓNICA ELECTRÓNICA III PROBLEMAS SOBRE FILTROS ACTIVOS
UNIDAD 2: EL AMPLIFICADOR OPERACIONAL - TEORÍA
CURSO: ELECTRÓNICA ANALÓGICA UNIDAD 2: EL AMPLIFICADOR OPERACIONAL PROFESOR: JORGE ANTONIO POLANÍA La electrónica analógica se ha visto enriquecida con la incorporación de un nuevo componente básico: el
Electrónica II TRABAJO PRÁCTICO N 3. Configuraciones Amplificadoras del Transistor BJT CUESTIONARIO
TRABAJO PRÁCTICO N 3. Configuraciones Amplificadoras del Transistor BJT CUESTIONARIO 1. Por qué se usa el acoplamiento capacitivo para conectar la fuente de señal al amplificador? 2. Cuál de las tres configuraciones
Fuentes de alimentación. Lineales
Fuentes de alimentación Lineales Regulador integrado 7805 Diagrama en bloques Mediciones Diagrama en bloques Fuente de alimentación lineal Fuente no regulada ni estabilizada Fuente regulada y estabilizada
OSCILADORES SENOIDALES. Problemas
Universidad Nacional de osario Facultad de Ciencias Exactas, Ingeniería y Agrimensura Escuela de Ingeniería Electrónica Departamento de Electrónica ELECTÓNICA III OSCILADOES SENOIDALES Problemas Javier
Figura 1 Figura 2. b) Obtener, ahora, un valor más preciso de V D para la temperatura T a. V AA
DODOS. Se desea diseñar el circuito de polarización de un diodo emisor de luz (LED) de arseniuro de galio (GaAs) conforme a la figura. La característica - del LED se representa en la figura, en la que
Tema 2 El Amplificador Operacional
CICUITOS ANALÓGICOS (SEGUNDO CUSO) Tema El Amplificador Operacional Sebastián López y José Fco. López Instituto de Microelectrónica Aplicada (IUMA) Universidad de Las Palmas de Gran Canaria 3507 - Las
(600 Ω) (100 v i ) T eq = 1117 o K
2. UIDO Y DISTOSION (Jun.94) 1. a) Calcular la relación s/n a la salida del cuadripolo, si la entrada es = 10-3 sin (10 4 t). El ruido propio del cuadripolo a la entrada viene caracterizado por η = 10-18
PRÁCTICA 1. AMPLIFICADORES MONOETAPA CON BJT
PRÁCTICA 1. AMPLIFICADORES MONOETAPA CON BJT 1. Objetivo El objetivo de la práctica es comprobar experimentalmente la amplificación de dos monoetapas con un transistor BJT (emisor común y colector común)
Determinar cuál es la potencia disipada por el transistor, y su temperatura de juntura.
Circuitos Electrónicos II (66.10) Guía de Problemas Nº 3: Amplificadores de potencia de audio 1.- Grafique un circuito eléctrico que realice la analogía del fenómeno que involucra la potencia disipada
DIODOS REALES RELACIÓN CORRIENTE-VOLTAJE DE LA JUNTURA PN. I = Is e v /nv t. Escalas expandidas o comprimidas para ver mas detalles
DIODOS REALES RELACIÓN CORRIENTE-VOLTAJE DE LA JUNTURA PN I = Is e v /nv t 1 Escalas expandidas o comprimidas para ver mas detalles DEPENDENCIA DE LA TEMPERATURA MODELO EXPONENCIAL MODELO LINEAL POR SEGMENTOS
Resultado: V (Volt) I (A)
Ejercicios relativos al diodo de unión pn 1. Una unión pn abrupta de germanio tiene las siguientes concentraciones de impurezas: N A = 5 10 14 cm -3. N D = 10 16 cm -3 ε r = 16.3 ε 0 = 8.854 10-12 F m
Cartilla de problemas de ELECTRONICA I 1º cuatrimestre 2017 Tema 1
1 Cartilla de problemas de ELECTONICA I 1º cuatrimestre 2017 Tema 1 1 En el circuito de la figura, calcule: a) La ganancia de tensión /. b) La máxima tensión de entrada que no produzca distorsión a la
Electrónica 2. Práctico 7 Estructura de los Amplificadores Operacionales
Electrónica 2 Práctico 7 Estructura de los Amplificadores Operacionales Los ejercicios marcados con son opcionales. Además cada ejercicio puede tener un número, que indica el número de ejercicio del libro
Tarea 1 1-Calcular la potencia en cada uno de los elementos. E = 36 V. 7-Calcular la tensión V ab. Respuesta: - 2 V
Tarea 1 1-Calcular la potencia en cada uno de los elementos. 2- Calcular la potencia en todos los resistores. Datos: Vab = Vac = 4 V 4 W, 8 W, 6 W, 12 W, 0 W 3-Calcular E. E = 36 V Dato: I 0 = 5 A Respuesta:
EL42A - Circuitos Electrónicos
ELA - Circuitos Electrónicos Clase No. 24: Amplificadores Operacionales (1) Patricio Parada [email protected] Departamento de Ingeniería Eléctrica Universidad de Chile 3 de Noviembre de 2009 ELA -
Fuentes de alimentación. Lineales
Fuentes de alimentación Lineales Regulador integrado 7805 Diagrama en bloques Esquema eléctrico Mediciones Diagrama en bloques Fuente de alimentación lineal Fuente no regulada ni estabilizada Fuente regulada
EXAMEN INDIVIDUAL NIVEL 2
EXAMEN INDIVIDUAL NIVEL 2 OLIMPIADAS ONIET-2016- SEGUNDO NIVEL 1ª RONDA (Puntaje Total 200 Pts.) 1. Determine el rango de valores de Vi que mantendrá la corriente del diodo zener entre Izmáx igual a 60
Electrónica 1. Práctico 1 Amplificadores Operacionales 1
Electrónica 1 Práctico 1 Amplificadores Operacionales 1 Los ejercicios marcados con son opcionales. Además cada ejercicio puede tener un número, que indica el número de ejercicio del libro del curso (Microelectronic
Electrónica 1. Práctico 5 Transistores 1
Electrónica 1 Práctico 5 Transistores 1 Los ejercicios marcados con son opcionales. Además cada ejercicio puede tener un número, que indica el número de ejercicio del libro del curso (Microelectronic Circuits,
AUDIOCAPACIMETRO (BC548/BC558)
Fichas coleccionables que se publican mensualmente, con circuitos prácticos de fácil FICHA Nº 237 - SABER Nº 133 AUDIOCAPACIMETRO (BC548/BC558) La frecuencia del sonido emitido por el parlante depende
EXP204 REGULADOR DE VOLTAJE SERIE
EXP204 REGULADOR DE VOLTAJE SERIE I.- OBJETIVOS. Diseñar un regulador de voltaje serie ajustable Comprobar el funcionamiento del regulador. Medir la resistencia de salida del regulador Medir el por ciento
Electrónica 2. Práctico 3 Alta Frecuencia
Electrónica 2 Práctico 3 Alta Frecuencia Los ejercicios marcados con son opcionales. Además cada ejercicio puede tener un número, que indica el número de ejercicio del libro del curso (Microelectronic
PREPARACIÓN DE LA PRÁCTICA 2: DIODOS Y ZENERS RECTIFICADORES Y REGULADORES. Hoja de datos del diodo rectificador 1N400X. Valores Máximos Absolutos
PREPARACIÓN DE LA PRÁCTICA 2: DIODOS Y ZENERS RECTIFICADORES Y REGULADORES Hoja de datos del diodo rectificador 1N400X Valores Máximos Absolutos Características Térmicas Características Eléctricas Hoja
Electrónica 1. Práctico 2 Amplificadores operacionales 2
Electrónica 1 Práctico 2 Amplificadores operacionales 2 Los ejercicios marcados con son opcionales. Además cada ejercicio puede tener un número, que indica el número de ejercicio del libro del curso (Microelectronic
GUIA DE APRENDIZAJE Y AUTOEVALUACION UNIDAD N 2 FUNDAMENTOS DE LOS DIODOS Y SUS APLICACIONES
UNIVERSIDAD NACIONAL DE SAN JUAN. FACULTAD DE INGENIERIA. DEPARTAMENTO DE ELECTRONICA Y AUTOMATICA. GABINETE DE TECNOLOGIA MÉDICA. Área: Electrónica Analógica. Asignatura: "Electrónica Analógica". Carrera:
PRÁCTICA 4. Polarización de transistores en emisor/colector común
PRÁCTICA 4. Polarización de transistores en emisor/colector común 1. Objetivo El objetivo de la práctica es comprobar experimentalmente la polarización de un transistor y la influencia de distintos parámetros
Electrónica Analógica 1
Trabajo Práctico 4: El transistor bipolar como amplificador. Modelo equivalente de pequeña señal. Parámetros híbridos. Configuraciones multietapa. Análisis en pequeña señal: método de trabajo La figura
PRÁCTICA Nº 1 RESISTENCIAS. LEY DE OHMS. Medida con el polímetro.
PRÁCTICA Nº 1 RESISTENCIAS. LEY DE OHMS. Medida con el polímetro. NOMBRE y APELLIDOS: 1.- CÓDIGO DE COLORES DE RESISTENCIAS. Completa la siguiente tabla: Nº COLOR % 0 NEGRO 1 MARRÓN 1% 2 ROJO 2% 3 NARANJA
Pr.A Boletín de problemas de la Unidad Temática A.I: Características principales y utilización
Pr.A Boletín de problemas de la Unidad Temática A.I: Características principales y utilización Pr.A.1. El diodo 1. Obtener de forma gráfica la corriente que circula por el diodo del siguiente circuito
DIODO DE UNIÓN P N TECNOLOGÍA ELECTRÓNICA (2009/2010) BRÉGAINS, JULIO IGLESIA, DANIEL LAMAS, JOSÉ TE (09/10). TEMA 2: DIODO DE UNIÓN PN.
DIODO DE UNIÓN P N TECNOLOGÍELECTRÓNIC(2009/2010) BRÉGAINS, JULIO IGLESIA, DANIEL LAMAS, JOSÉ DEPARTAMENTO DE ELECTRÓNICA Y SISTEMAS SÍMBOLO Y ESTRUCTURAS DEL DIODO PN 2 DE 30 CIRCUITO ABIERTO UNIÓN P
Electrónica 1. Práctico 1 Amplificadores Operacionales 1
Electrónica 1 Práctico 1 Amplificadores Operacionales 1 Los ejercicios marcados con son opcionales. Además cada ejercicio puede tener un número, que indica el número de ejercicio del libro del curso (Microelectronic
Práctica 6: Amplificadores de potencia
Práctica 6: Amplificadores de potencia 1. Introducción. En esta práctica se estudian los circuitos de salida básicos, realizados con transistores bipolares, empleados en amplificadores de potencia. Los
CARACTERÍSTICAS DEL AMPLIFICADOR OPERACIONAL IDEAL. Ganancia infinita A = Impedancia de entrada infinita Ri = Impedancia de salida cero Ro = 0
CARACTERÍSTICAS DEL AMPLIFICADOR OPERACIONAL IDEAL Ganancia infinita A = Impedancia de entrada infinita Ri = Impedancia de salida cero Ro = 0 Vo = A (Vi + - Vi - ) AMPLIFICADOR INVERSOR BÁSICO CON EL AMPLIFICADOR
Tema 7. Amplificacio n. Índice. 1. Introducción
Tema 7 Amplificacio n Índice 1. Introducción... 1 2. Conceptos fundamentales de amplificación... 2 2.1. Decibelios y unidades naturales... 2 2.2. Modelado de la fuente de señal y la carga... 3 3. Circuito
PRÁCTICA 10. EMISOR COMÚN Y COLECTOR COMÚN
PRÁCTICA 10. EMISOR COMÚN Y COLECTOR COMÚN 1. Objetivo El objetivo de la práctica es comprobar experimentalmente la amplificación de dos monoetapas con un transistor BJT (emisor común y colector común)
6. Amplificadores Operacionales
9//0. Amplificadores Operacionales F. Hugo Ramírez Leyva Cubículo Instituto de Electrónica y Mecatrónica [email protected] Octubre 0 Amplificadores Operacionales El A.O. ideal tiene: Ganancia infinita
Electrónica Analógica Diodos Práctica 2
APELLIDOS:...NOMBRE:... APELLIDOS:...NOMBRE:... 1.- ANALISIS DE UN CIRCUITO CON DIODOS I. 1. a.- Analiza el funcionamiento del siguiente circuito y dibuja de forma acotada las formas de onda de las tensiones
TEORIA DE CIRCUITOS. CURSO PRÁCTICA 4. RESPUESTA FRECUENCIAL EN REGIMEN PERMANENTE SENOIDAL
1 INGENIERIA TENIA INDUSTRIAL. ELETRONIA INDUSTRIAL TEORIA DE IRUITOS. URSO 2003-2004 PRÁTIA 4. RESPUESTA FREUENIAL EN REGIMEN PERMANENTE SENOIDAL PRIMERA PARTE: SIMULAIÓN EN PSPIE INTRODUIÓN El objetivo
6.071 Prácticas de laboratorio 3 Transistores
6.071 Prácticas de laboratorio 3 Transistores 1 Ejercicios previos, semana 1 8 de abril de 2002 Leer atentamente todas las notas de la práctica antes de asistir a la sesión. Esta práctica es acumulativa
Ejercicios analógicos
1. Una empresa de comunicaciones nos ha encargado el diseño de un sistema que elimine el ruido de una transmisión analógica. Los requisitos son tales que toda la componente de frecuencia superior a 10
Electrónica Analógica Amplificadores Operacionales Práctica 4
APELLIDOS:......NOMBRE:... APELLIDOS:...NOMBRE:.... EJERCICIO 1 El circuito de la figura 1 representa el circuito equivalente de un AO. En este ejercicio pretendemos ver como se comporta la ganancia del
BLOQUE I MEDIDAS ELECTROTÉCNICAS
1.- Un galvanómetro cuyo cuadro móvil tiene una resistencia de 40Ω, su escala está dividida en 20 partes iguales y la aguja se desvía al fondo de la escala cuando circula por él una corriente de 1 ma.
2. Calcule la frecuencia de oscilación del oscilador en doble T de la figura 2.
1/6 ELECTRÓNICA ANALÓGICA II Guía de problemas Nº 9 Osciladores Problemas básicos 1. El oscilador en Puente de Wien de la figura 1 a) tiene dos potenciómetros que le permiten variar la frecuencia de oscilación.
Parcial_1_Curso.2012_2013. Nota:
Parcial_1_Curso.2012_2013. 1. El valor medio de una señal ondulada (suma de una señal senoidal con amplitud A y una señal de componente continua de amplitud B) es: a. Siempre cero. b. A/ 2. c. A/2. d.
Tema 07: Acondicionamiento. M. en C. Edgardo Adrián Franco Martínez edgardoadrianfrancom
Tema 07: Acondicionamiento M. en C. Edgardo Adrián Franco Martínez http://www.eafranco.com [email protected] @edfrancom edgardoadrianfrancom 1 Contenido Acondicionamiento de una señal Caracterización del
Pr.B Boletín de problemas de la Unidad Temática B.III: Detección y generación de señales luminosas
Pr.B Boletín de problemas de la Unidad Temática B.III: Detección y generación de señales luminosas Pr.B.4. Detección de luz e imágenes 1. Un detector de Ge debe ser usado en un sistema de comunicaciones
Electrónica 2. Práctico 7 Estructura de los Amplificadores Operacionales
Electrónica 2 Práctico 7 Estructura de los Amplificadores Operacionales Los ejercicios marcados con son opcionales. Además cada ejercicio puede tener un número, que indica el número de ejercicio del libro
Práctica 2: Amplificador operacional I
Práctica 2: Amplificador operacional I 1. Introducción. En esta práctica se estudian varios circuitos típicos de aplicación de los amplificadores operacionales, caracterizados por utilizar realimentación
Electrónica Analógica Conocimientos previos Práctica 1
APELLIDOS:...NOMBRE:... APELLIDOS:...NOMBRE:... 1.- MANEJO DE LOS VOLTIMETROS Y AMPERIMETROS DEL SIMULADOR. CIRCUITO SERIE. Dado el circuito de la figura, realizar los cálculos necesarios para determinar
Transitorios, Circuitos de Corriente Alterna, Transformadores.
Física 3 Guia 5 - Corrientes variables Verano 2016 Transitorios, Circuitos de Corriente Alterna, Transformadores. 1. Un condensador de 3µF se carga a 270 V y luego se descarga a través de una resistencia
Ejercicios de ELECTRÓNICA ANALÓGICA
1. Calcula el valor de las siguientes resistencias y su tolerancia: Código de colores Valor en Ω Tolerancia Rojo, rojo, rojo, plata Verde, amarillo, verde, oro Violeta, naranja, gris, plata Marrón, azul,
Electrónica 1. Práctico 5 Transistores 1
Electrónica 1 Práctico 5 Transistores 1 Los ejercicios marcados con son opcionales. Además cada ejercicio puede tener un número, que indica el número de ejercicio del libro del curso (Microelectronic Circuits,
UNIVERSIDAD CARLOS III DE MADRID Departamento de Tecnología Electrónica Instrumentación Electrónica I
Ejercicios de repaso con soluciones Sensores ópticos Problema 1 En la figura 1 se muestra el esquema de un sensor de fibra óptica (FO) para medir desplazamientos, mientras que en la figura 2 se muestra
EJERCICIO 1 EJERCICIO 2
EJERCICIO 1 Se miden 0 Volt. en los terminales del diodo de la fig. siguiente, la tensión de la fuente indica +5 Volt. respecto de masa. Qué está mal en el circuito? EJERCICIO 2 En la fig. siguiente la
4. El diodo semiconductor
4. El diodo semiconductor Objetivos: Comprobar el efecto de un circuito rectificador de media onda con una onda senoidal de entrada. Observar cómo afecta la frecuencia en el funcionamiento de un diodo
Función de Transferencia
Función de Transferencia N de práctica: 2 Tema: Modelado y representación de sistemas físicos Nombre completo del alumno Firma N de brigada: Fecha de elaboración: Grupo: Elaborado por: Revisado por: Autorizado
MÓDULO Nº9 AMPLIFICADORES OPERACIONALES. Explicar que es un amplificador operacional. Entender el funcionamiento de los circuitos básicos con OP AMP.
MÓDULO Nº9 AMPLIFICADORES OPERACIONALES UNIDAD: CONVERTIDORES TEMAS: Introducción a los Amplificadores Operacionales. Definición, funcionamiento y simbología. Parámetros Principales. Circuitos Básicos.
1º Escuela Técnica Superior de Ingeniería de Telecomunicación TECNOLOGÍA Y COMPONENTES ELECTRÓNICOS Y FOTÓNICOS. PROBLEMAS de transistores bipolares
1º Escuela Técnica Superior de Ingeniería de Telecomunicación TECNOLOGÍA Y COMPONENTES ELECTRÓNICOS Y FOTÓNICOS 3 PROBLEMAS de transistores bipolares EJERCICIOS de diodos: TECNOLOGÍA Y COMPONENTES ELECTRÓNICOS
APLICACIONES A CIRCUITOS DE CORRIENTE ALTERNA MONOFÁSICOS
PRÁCTICA Nº 3 APLICACIONES A CIRCUITOS DE CORRIENTE ALTERNA MONOFÁSICOS Departamento de Ingeniería Eléctrica E.T.S.I.I. Página 1 de 12 DESCRIPCIÓN DE LA PRÁCTICA APLICACIONES A CIRCUITOS DE CORRIENTE ALTERNA
ELECTRONICA GENERAL. Tema 3. Circuitos con Diodos.
Tema 3. Circuitos con Diodos. 1.- En los rectificadores con filtrado de condensador, se obtiene mejor factor de ondulación cuando a) la capacidad del filtro y la resistencia de carga son altas b) la capacidad
Ejercicio 2.1. Calcular el valor de tensión del generador VX
Ejercicio 2.1. Calcular el valor de tensión del generador y los valores de tensión sobre cada una de las resistencias. Solución: 13.88[ ] 720.63 640 2.18 1.98 10.34 9 [ ] [ ] 8 9 1 m 2 4 7 m 3 5 6 Ejercicio
DISMINUCIÓN DE RUIDO ELECTROMAGNÉTICO ECTROMAGNÉTICO EN EL PATRÓN DE TENSIÓN ELÉCTRICA CONTINUA EN BASE
DISMINUCIÓN DE RUIDO ELECTROMAGNÉTICO ECTROMAGNÉTICO EN EL PATRÓN DE TENSIÓN ELÉCTRICA CONTINUA EN BASE AL EFECTO JOSEPHSON DEL CENAM David Avilés David Avilés Dionisio Hernández Enrique Navarrete Introducción
Trabajo práctico: Realimentación
Problema 1 En los siguientes casos identifique variables muestreadas y comparadas. Diga cuál conjunto de parámetros es el más adecuado para el estudio de la realimentación y calcule los correspondientes
1.- Estudiar los diferentes modos de operaci on del BJT de la figura en función de v I (V BE ~ 0.7 V). IB VC VB IE
Ejercicios relativos al transistor bipolar Problemas de transistores BJT en estática 1.- Estudiar los diferentes modos de operaci on del BJT de la figura en función de v I (V BE ~ 0.7 V). IC IB VC VB
SIFeIS. CONCAyNT PLANTA EXTERIOR E IPR. CONCAyNT ELECTRÓNICA
ELECTRÓNICA PLANTA EXTERIOR E IPR GUÍA DE ESTUDIOS DE ELECTRÓNICA PARA IPR Un agradecimiento especial al Co. FRANCISCO HERNANDEZ JUAREZ por la oportunidad y el apoyo para realizar este trabajo, así como
PRÁCTICA 6. AMPLIFICADOR OPERACIONAL: INVERSOR, INTEGRADOR y SUMADOR
PRÁCTICA 6. AMPLIFICADOR OPERACIONAL: INVERSOR, INTEGRADOR y SUMADOR 1. Objetivo El objetivo de esta práctica es el estudio del funcionamiento del amplificador operacional, en particular de tres de sus
RECOMENDACIÓN UIT-R BS *,** Medición del nivel de tensión del ruido de audiofrecuencia en radiodifusión sonora
Rec. UIT-R BS.468-4 1 RECOMENDACIÓN UIT-R BS.468-4 *,** Medición del nivel de tensión del ruido de audiofrecuencia en radiodifusión sonora La Asamblea de Radiocomunicaciones de la UIT, (1970-1974-1978-1982-1986)
MULTÍMETROS DIGITALES
MULTÍMETROS DIGITALES Nuestra gama de multímetros digitales Kaise ofrece una solución para todo tipo de aplicaciones. Nuestros multímetros proporcionan mediciones rápidas, precisas y con total fiabilidad
Filtros Activos Analógicos (Colaboración alumnos Bachur, Infante, Lescano, Saavedra y Vega)
TEORÍA DE CIRCUITOS II 4 Año Ingeniería Electrónica U.T.N. - F.R.T. Filtros Activos Analógicos (Colaboración alumnos Bachur, Infante, Lescano, Saavedra y Vega) Definición:Los filtros son circuitos capaces
CONSEJOS PRÁCTICOS PARA LA RESOLUCIÓN DE PROBLEMAS
Universidad Nacional de Rosario Facultad de Ciencias Exactas, Ingeniería y Agrimensura Escuela de Ingeniería Electrónica Departamento de Electrónica ELECTRÓNICA III CONSEJOS PRÁCTICOS PARA LA RESOLUCIÓN
Laboratorio Nº4. Procesamiento de señales con Amplificadores Operacionales
Laboratorio Nº4 Procesamiento de señales con Amplificadores Operacionales Objetios Estudiar y entender la operación interna de amplificadores operacionales reales con el fin de identificar los principales
Tecnología Electrónica
Universidad de Alcalá Departamento de Electrónica Tecnología Electrónica Ejercicios Tema 2: Realimentación y estabilidad Referencias: Problemas propuestos por profesores del Departamento de Electrónica
TEMA 3 Respuesta en frecuencia de amplificadores
Tema 3 TEMA 3 espuesta en frecuencia de amplificadores 3..- Introducción El análisis de amplificadores hecho hasta ahora ha estado limitado en un rango de frecuencias, que normalmente permite ignorar los
Filtros Activos de Segundo Orden
Facultad Escuela Lugar de Ejecución : Ingeniería. : Electrónica : Fundamentos Generales (Edificio 3, 2da planta) Filtros Activos de Segundo Orden Objetivos Específicos Medir las tensiones de entrada y
Contenido. Capítulo 2 Semiconductores 26
ROMANOS_MALVINO.qxd 20/12/2006 14:40 PÆgina vi Prefacio xi Capítulo 1 Introducción 2 1.1 Las tres clases de fórmulas 1.5 Teorema de Thevenin 1.2 Aproximaciones 1.6 Teorema de Norton 1.3 Fuentes de tensión
Determinar la relación entre ganancias expresada en db (100 ptos).
ELECTRONICA Y TELECOMUNICACIONES Competencia rupal Niel Segunda Instancia PROBLEMA N 1 El personal técnico de una empresa que se dedica a caracterizar antenas se ha propuesto determinar la relación entre
Podemos plantear un sencillo esquema de alarma como el de la figura: V REF 3600( ) T
Lección 4. MEDIDA DE LA EMPEAUA. Diseñe un sistema de alarma de temperatura utilizando una NC. Deberá activarse cuando la temperatura ascienda por encima de ºC con una exactitud de ºC. Datos: B36K, kω@5ºc,
FISICA III. Departamento de Física y Química Escuela de Formación Básica LEY DE OHM EN ELEMENTOS RESISTIVOS LINEALES Y NO LINEALES
FISICA III Departamento de Física y Química Escuela de Formación Básica LEY DE OHM EN ELEMENTOS RESISTIVOS LINEALES Y NO LINEALES PRÁCTICO DE LABORATORIO Nº FÍSICA III Comisión laboratorio: Docente: Fecha
- VI - Filtros Activos. Soluciones
- VI - Filtros Activos. Soluciones Elaborado por: Ing. Fco. Navarro H. 1 Ejemplo: Diseño de Filtro Activo. - Especificaciones Respuesta de Frecuencia - Diseñe un filtro activo Paso Bajo con las siguientes
