Capítulo 6: Modelo de robot:
|
|
|
- Andrés Maldonado Velázquez
- hace 8 años
- Vistas:
Transcripción
1 Capítulo 6: Modelo de robot: 1. Descripción del modelo monociclo Un modelo cinemático aportará las bases necesarias para describir el movimiento de un móvil en función de la velocidad y aceleración del mismo sin centrarse en las fuerzas que intervienen en el movimiento. En concreto, al desarrollar las ecuaciones del modelo monociclo se plantarán las bases y ecuaciones a las que reduciremos, por simplicidad, otros modelos y en particular el modelo biciclo con guiado diferencial. Para comprender las ecuaciones del monociclo se representa la siguiente figura donde podemos inferir que: v x =V cos fi v y =V sen fi 66
2 Ilustración 31: Monociclo de las que integrando el comportamiento obtenemos fácilmente las ecuaciones de posición. 2. Descripción del modelo biciclo con guiado diferencial En el modelo de guiado diferencial tenemos dos ruedas y cada una de ellas tiene la libertad de moverse a una velocidad independiente. Debido a las condiciones de ligadura existentes en el modelo podemos reducir el modelo de biciclo a un modelo de monociclo sin más que encontrar el CIR del movimiento. En la siguiente figura podemos observar el biciclo y el monociclo equivalente asociado: 67
3 Ilustración 32: Guiado diferencial Cuyas ecuaciones asociadas como monociclo equivalente serán: 3. Modelado de Minibot como monociclo equivalente a partir del monociclo con guiado diferencial: 3.1. Descripción: Existe multitud de documentación referente al modelado de robot, en concreto para la realización del modelado se ha hecho uso de Designing Autonomous Mobile Robots del autor John Holland y de Manipuladores y robot moviles del autor Aníbal Ollero Baturone Modelo cinemático directo: Se entiende por modelo cinemático directo aquel que tiene como parámetros de entrada 68
4 los datos cinemáticos de velocidades del robot y nos aportan como salida la posición futura que ocuparán. En este proyecto se utilizarán bibliotecas con la cinemática directas de robots creadas en simulink. Estos bloques de simulink solo tendrán que ser personalizados con los parámetros del robot MiniBot para ser utilizados. Los resultados obtenidos con estos diagramas de bloques son suficientemente precisos para poder ser utilizados en primera instancia en el desarrollo del escenario propuesto ya que arrojan errores respecto a los obtenidos con las ecuaciones del movimiento inferiores al 0.04%. Las ecuaciones del robot con guiado diferencial modeladas en simulink se agruparán en el siguiente bloque donde las entradas al mismo son los valores de velocidad angular de las ruedas y los de salida serán la posición y orientación espacial del robot.: 3.3. Modelo cinemático inverso: Se entiende por modelo cinemático inverso aquel que tiene como parámetros de entrada los datos cinemáticos de posiciones del robot y nos aportan como salida la velocidad que deben adquirir los motores para alcanzarla. Existen también bibliotecas con modelos inversos para guiado diferencial para simulink que arrogan errores de 0,13% respecto a las ecuaciones diferenciales del movimiento. 69
5 4. Algoritmo de control: 4.1. Control bucle abierto: El control en bucle abierto se basará en imponer tensiones a los motores utilizando los PWM que la placa del MiniBot tiene instalada y esperando que el sistema siga el comportamiento esperado. Puesto que no tenemos sensores integrados en el robot que nos permitan obtener información sobre la exactitud o desviación de la posición real respecto de la esperada, en primera instancia se utilizará este método de control apoyado en las ecuaciones del movimiento Control con estimador de estados: Puesto que no se dispone de la posición en la que se encuentra el sistema, pero en cambio si que disponemos del valor de aceleración del robot MiniBot utilizando el chip acelerómetro del WaspMote podremos realizar un estimador de la posición para realimentarla y así hacer un control de bucle cerrado. Una imagen de los bloques del estimador de estados utilizado es la siguiente: 70
6 Ilustración 33: Estimador de estados Donde la planta del sistema se modela de la siguiente forma: Ilustración 34: Diagrama de bloques del control del sistema En definitiva, nosotros impondremos el camino por el que queremos que el robot se desplace, con ayuda del control de posición generaremos una ruta de posiciones suficientemente cercanas por las que el robot irá avanzando. Dados estos puntos intermedios entre las posiciones impuestas se utilizará la cinemática inversa para obtener el valor de las velocidades de los motores que se traducirán en un cambio de posición del robot. Para cerrar el bucle, leeremos la aceleración del acelerómetros e integraremos para calcular velocidad y posición del robot que será comparada por el control proporcional para aumentar o disminuir el error y permitir un control más preciso del robot. 71
SISTEMAS ROBOTIZADOS Asignatura optativa
Área de Ingeniería de Sistemas y Automática Departamento de Lenguajes y Computación Universidad de Almería SISTEMAS ROBOTIZADOS Asignatura optativa PRACTICA 4 CONTROL DE ROBOTS MÓVILES UTILIZANDO EL MÉTODO
INTRODUCCIÓN A LA MECÁNICA DEL ROBOT. Curso de Extensión. Tema 2. Laboratorio de Robótica Aplicada (LABRA) 1
Curso de Extensión INTRODUCCIÓN A LA ROBÓTICA MÓVILM (LABRA) 1 Curso de Introducción n a la Robótica MóvilM Tema 2 MECÁNICA DEL ROBOT (LABRA) 2 La Capa Física: F Diseño o Mecánico Configuración de las
Introducción a la Robótica Mecanismos básicos: cinemática
Introducción a la Robótica Mecanismos básicos: cinemática Dr José Martínez Carranza [email protected] Coordinación de Ciencias Computacionales, INAOE Cinemática (1) La cinemática es una rama de la Física
ROBOTICA por OLLERO BATURONE Editorial Marcombo. Foreword Prólogo Prefacio del autor
ROBOTICA por OLLERO BATURONE Editorial Marcombo Foreword Prólogo Prefacio del autor CAPÍTULO 1. Introducción 1.1. Robótica 1.2. Esquema general del sistema robot 1.3. Robots manipuladores 1.3.1. Sistema
Percepción visual aplicada a la robótica
Percepción visual aplicada a la robótica Mario I. Chacón Murguía Rafael Sandoval Rodríguez Javier Vega Pineda Selecciona el libro para empezar Capítulo 2 Teoría de robótica Continuar Cinemática de robots
PLAN DE ESTUDIOS 2008-II SÍLABO
UNIVERSIDAD RICARDO PALMA FACULTAD DE INGENIERÍA I. INFORMACIÓN GENERAL: DEPARTAMENTO ACADÉMICO DE INGENIERÍA PLAN DE ESTUDIOS 2008-II SÍLABO 1.1 Asignatura : ROBÓTICA 1.2. Ciclo : VIII 1.3 Carrera Profesional
INGENIERÍA PROFESIONAL EN INOCUIDAD ALIMENTARIA EN COMPETENCIAS PROFESIONALES ASIGNATURA DE ROBÓTICA
INGENIERÍA PROFESIONAL EN INOCUIDAD ALIMENTARIA EN COMPETENCIAS PROFESIONALES ASIGNATURA DE ROBÓTICA UNIDADES DE APRENDIZAJE 1. Competencias Automatizar procesos de producción mediante la implementación
Fundamentos de Robótica
Fundamentos de Robótica Cinemática Inversa Ricardo-Franco Mendoza-Garcia [email protected] Escuela Universitaria de Ingeniería Mecánica Universidad de Tarapacá Arica, Chile June 16, 2015 R. F. Mendoza-Garcia
Conceptos de Robótica
Conceptos de Robótica Seminario de Modelo y Métodos Cuantitativos Teddy Alfaro O. Clasificación de Robot De acuerdo al grado de manejo que tiene una persona tras el robot, éste se puede clasificar como
Visión artificial y Robótica Modelos de movimiento y mapas. Depto. de Ciencia de la Computación e Inteligencia Artificial
Visión artificial y Robótica Modelos de movimiento y mapas Depto. de Ciencia de la Computación e Inteligencia Artificial Contenidos Sistemas de coordenadas Localización de objetos en el espacio Modelos
Fundamentos de Robótica
Fundamentos de Robótica Introducción [email protected] http://scfi.uaemex.mx/hamontes 26 August 2016 1 Qué es un Robot? Muchos dispositivos con grados variables de autonomía se les llama robots (tornos,
SIRO-K6O07 - Sistemas Robotizados
Unidad responsable: Unidad que imparte: Curso: Titulación: Créditos ECTS: 2015 340 - EPSEVG - Escuela Politécnica Superior de Ingeniería de Vilanova i la Geltrú 707 - ESAII - Departamento de Ingeniería
Introducción a la Robótica Móvil
Introducción a la Robótica Móvil Segundo cuatrimestre de 2016 Departamento de Computación - FCEyN - UBA Teórica - clase 10 Sensado con LASER e IMU Sensado Qué sensores vimos hasta ahora? Sensor de contacto
Contenido. Prefacio... Acerca de los autores...
Contenido Prefacio... Acerca de los autores... xi xvi Capítulo 1. Introducción... 1 1.1. Antecedentes históricos... 2 1.2. Origen y desarrollo de la robótica... 8 1.3. Definición del Robot... 16 1.3.1.
Dinámica del Robot. UCR ECCI CI-2657 Robótica Prof. M.Sc. Kryscia Daviana Ramírez Benavides
UCR ECCI CI-2657 Robótica Prof. M.Sc. Kryscia Daviana Ramírez Benavides Introducción La dinámica se ocupa de la relación entre las fuerzas que actúan sobre un cuerpo y el movimiento en el que se origina.
Método de Mínimos Cuadrados Recursivo
Control Avanzado Práctica 4 Método de Mínimos Cuadrados Recursivo José Gerardo Gomez Mendez Abril 27, 25 Resumen El presente trabajo presenta un sistema de un circuito RLC, donde se utiliza el método de
Fundamentos de Robótica
Fundamentos de Robótica Introducción a la cinemática de manipuladores [email protected] http://scfi.uaemex.mx/hamontes 1 Recomendación No use estas diapositivas como referencia única de estudio durante
Control cinemático y dinámico de robots omnidireccionales
1 Diciembre 2013 Control cinemático y dinámico de robots omnidireccionales basado parcialmente en: Siegwart, Nourbakhsh y Scaramuzza, Introduction to Autonomous Mobile Robots Campion, et al., Structural
ROBOTICA II. UNIDAD 2
ROBOTICA II. UNIDAD 2 MODELO DINÁMICO. En robótica, la cinemática y la dinámica se combinan para lograr el posicionamiento de una serie de eslabones articulados o brazo de robot. Las consideraciones cinemáticas
CINEMÁTICA DEL ROBOT
CINEMÁTICA DEL ROBOT Cinemática Directa Cinemática Inversa Matriz Jacobiana 1 Problema cinemático del robot Cinemática del robot: Estudio de su movimiento con respecto a un sistema de referencia: Descripción
TSTC. Dpt. Teoría de la Señal, Telemática y Comunicaciones Tema 1 INTRODUCCIÓN A LA ROBÓTICA
Dpt. Teoría de la Señal, Telemática y Comunicaciones Tema 1 INTRODUCCIÓN A LA ROBÓTICA Secciones 1. Introducción y definiciones. 2. Visión General de la manipulación mecánica. 1. Posicionamiento y Cinemática
PROYECTO DOCENTE ASIGNATURA: "Robótica Móvil y de Servicios"
PROYECTO DOCENTE ASIGNATURA: "Robótica Móvil y de Servicios" Grupo: Grp. de Clases teórico-prácticas de Robótica Móvil y de Servicios(990173) Titulacion: Máster Universitario en Ingeniería Electrónica,
Robótica I ACB Participantes Comité para el Diseño de Especialidad de la DIET. Academia de Sistemas Digitales de la DIET
1. DATOS DE LA ASIGNATURA. Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría Horas práctica Créditos: Robótica I Ingeniería Electrónica ACB - 0802 4 0 8 2. HISTORIA DEL PROGRAMA. Lugar
Cinemática del Robot. CI-2657 Robótica M.Sc. Kryscia Ramírez Benavides
M.Sc. Kryscia Ramírez Benavides Sistema Robótico Cinemática Dinámica Planeamiento de Tareas Software Hardware Diseño Mecánico Actuadores Sistema de Control Sensores 2 Introducción Con el fin de controlar
Cinemática del Robot. UCR ECCI CI-2657 Robótica Prof. M.Sc. Kryscia Daviana Ramírez Benavides
UCR ECCI CI-2657 Robótica Prof. M.Sc. Kryscia Daviana Ramírez Benavides Introducción La cinemática del robot estudia el movimiento del mismo con respecto a un sistema de referencia. Se interesa por la
Cinemática y Dinámica
Cinemática y Dinámica Cinética de la partícula Objetivo: El alumno aplicará las leyes de Newton en la resolución de ejercicios de movimiento de la partícula en un plano, donde intervienen las causas que
FISICA 2º BACHILLERATO
A) Definiciones Se llama movimiento periódico a aquel en que la posición, la velocidad y la aceleración del móvil se repiten a intervalos regulares de tiempo. Se llama movimiento oscilatorio o vibratorio
Clasificación de robots. Clasificación de robots. Universidad Autónoma de Guerrero Unidad Académica de Ingeniería
Clasificación de robots Introducción a la robótica Sesión 2: Locomoción Eric Rodríguez Peralta En la actualidad los más comunes son: Robots manipuladores Limitación para moverse en su entorno Robots móviles
CINEMÁTICA INVERSA DE ROBOTS INDUSTRIALES
I EMETRE DE 00 CINEMÁTICA INVERA DE ROBOT INDUTRIALE GERMÁN ANDRÉ RAMO FUENTE * 1. Introducción El uso de robots en ambientes industriales, y más precisamente en procesos de manufactura, ha generado toda
TALLER DIAGRAMAS DE FLUJO EN LEGO MINDSTORMS
TALLER DIAGRAMAS DE FLUJO EN LEGO MINDSTORMS Cuando se quiere realizar un programa bien pensado para solucionar problemas de robótica es necesario generar algoritmos que permitan llegar a soluciones hipotéticas
Universidad Politécnica de Madrid Escuela de Ingenieros Industriales. RoboTenis
Universidad Politécnica de Madrid Escuela de Ingenieros Industriales RoboTenis Diseño, Simulación, Análisis Cinemático y Dinámico de un robot paralelo para Control Visual de altas prestaciones DISAM Luis
PRÁCTICA Nº 2 INTRODUCCIÓN A SIMULINK DE MATLAB
UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA COMPLEJO ACADÉMICO EL SABINO PROGRAMA DE INGENIERÍA QUÍMICA DPTO DE MECÁNICA Y TECNOLOGÍA DE LA PRODUCCIÓN DINÁMICA Y CONTROL DE PROCESOS PRÁCTICA
7. Práctica. 7.1.Estudio de Levas Introducción
7. Práctica 7.1.Estudio de Levas 7.1.1. Introducción El principal objetivo de la práctica es observar cual es el funcionamiento de las levas y cual es la función que realizan dentro de los mecanismos en
APD 1305 2-3 - 5 SATCA 1 : Carrera:
1. Datos Generales de la asignatura Nombre de la asignatura: Clave de la asignatura: SATCA 1 : Carrera: Robótica Industrial APD 1305 2-3 - 5 Ingeniería Mecánica 2. Presentación Caracterización de la asignatura
MODELADO Y CONTROL DINAMICO DE UN MANIPULADOR ROBOTICO CARTESIANO DE 3 GRADOS DE LIBERTAD
MODELADO Y CONTROL DINAMICO DE UN MANIPULADOR ROBOTICO CARTESIANO DE 3 GRADOS DE LIBERTAD DYNAMIC MODELING AND CONTROL OF A CARTESIAN ROBOTIC MANIPULATOR OF 3 DOF Raúl Martínez Juárez Richar Suni Llanos
2015, Año del Generalísimo José María Morelos y Pavón
Nombre de la Asignatura: ROBOTICA Línea de Investigación o Trabajo: PROCESAMIENTO DE SEÑALES ELECTRICAS Y ELECTRONICAS Tiempo de dedicación del estudiante a las actividades de: DOC-TIS-TPS-CRÉDITOS 48
Robótica aplicada con labview y lego
Robótica aplicada con labview y lego Pedro Ponce Cruz Víctor M. de la Cueva Hernández Hiram Ponce Espinosa Selecciona la imagen para entrar Capítulo 1 Introducción a la robótica Continuar Introducción
Ejercicios de Sistemas Mecánicos Traslación
EjerciciosMSS_ Ejercicios de Sistemas Mecánicos Traslación. Dibujar el diagrama de cuerpo libre y obtener el modelo matemático del sistema mostrado en la figura. Considerar únicamente el movimiento horizontal,
Control y programación de robots
Control y programación de robots 11. Solución cinemática inversa y directa de robots seriales 11.1 El alumno, tras recibir y estudiar esta clase, debe ser capaz de: Comprender el modelado de la cinemática
Práctica 4 Control de posición y velocidad de un motor de corriente continua
Práctica 4 Control de posición y velocidad de un motor de corriente continua Maqueta de control de posición y velocidad Practicas de Regulación Automática Maqueta de control de posición y velocidad Caja
Plataforma Mecánica y Sistema Motriz
Bogota D.C Febrero de 26 Plataforma Mecánica y Sistema Motriz [email protected] Descripción General Del Robot El insecto hexápodo, robot de propósito general, diseñado principalmente para exploración
Práctica 6. Control por computador de sistemas continuos utilizando Labview. OBJETIVO
Práctica 6 Control por computador de sistemas continuos utilizando Labview. OBJETIVO En esta práctica se estudia el comportamiento (análisis) de los sistemas continuos controlados mediante reguladores
Estrategias de solución para la prueba del Laberinto, Madrid-Bot Salustiano Nieva Juan Antonio Breña Moral
Estrategias de solución para la prueba del Laberinto, Madrid-Bot 2009 Salustiano Nieva Juan Antonio Breña Moral Índice 1. Introducción 2. Arquitectura del robot. Madridbot 2009. La prueba del Laberinto
PROGRAMA DE LA ASIGNATURA: Control y programación de robots. Código: Curso 2006/2007
PROGRAMA DE LA ASIGNATURA: Control y programación de robots Código: 3042104010 Curso 2006/2007 CENTRO: ESCUELA TÉCNICA SUPERIOR DE INGENIEROS INDUSTRIALES TITULACIÓN: INGENIERÍA AUTOMÁTICA Y ELECTRÓNICA
ENTORNO DE SIMULACIÓN Y CONTROL DE UN ROBOT VELOCISTA
ENTORNO DE SIMULACIÓN Y CONTROL DE UN ROBOT VELOCISTA PROYECTO FIN DE CARRERA Departamento de Electrónica. Universidad de Alcalá. Ingeniería Técnica de Telecomunicación. Especialidad en Sistemas Electrónicos
Guía de Problemas. CINEMÁTICA de la MARCHA. Introducción
Guía de Problemas CINEMÁICA de la MARCHA Introducción La Cinemática es una rama de la Mecánica que estudia el movimiento sin tomar en cuenta las fuerzas que lo originan. Para la descripción cinemática
6- TIPOS DE CONTROL UTILIZADOS
6- TIPOS DE CONTROL UTILIZADOS 6.1 Control manual Dado un proceso de cualquier tipo y una actuación sobre el mismo que provoque un efecto, se define como control manual o en lazo abierto a la forma de
Cinemática del Robot
Cinemática del Robot La cinemática del robot estudia el movimiento del mismo con respecto a un sistema de referencia. En primer término, la cinemática se interesa por la descripción analítica del movimiento
Esta relación se obtiene mediante el denominado modelo dinámico, que relaciona matemáticamente:
Introducción La dinámica se ocupa de la relación entre las fuerzas que actúan sobre un cuerpo y el movimiento que en el se origina. Por lo tanto, el modelo dinámico de un robot tiene por objetivo conocer
[ROBÓTICA ARTICULAR]
Trabajo de curso de la asignatura Automatización y Robótica Industriales [ROBÓTICA ARTICULAR] Introducción 2º curso de Ingeniería en Automática y Electrónica Curso 2007/08 El objetivo de este trabajo de
Plataforma de contenidos interactivos. Página Web del libro. Mecatrónica Introducción Origen de la mecatrónica 5
Contenido Plataforma de contenidos interactivos XXI Página Web del libro XXII Prólogo XXVII Capítulo 1 Mecatrónica 1 1.1 Introducción 3 1.2 Origen de la mecatrónica 5 1.2.1 Qué es mecatrónica? 9 Mecatrónica
Capítulo 5. Estudio del efecto de la variación de la resistencia del estator
Capítulo 5 Estudio del efecto de la variación de la resistencia del estator sobre el DTC 5. Introducción El control directo del par (DTC) utiliza la resistencia del estator de la máquina de inducción para
Cinemática directa de un Robot Móvil didáctico mediante la integración de Sensores
1 de 6 07/09/2011 7:14.Lego Creation. http://datosclavelego.blogspot.com/ Accedido Lunes, 05 de Septiembre de 2011 01:20:29 p.m. Lunes, 05 de Septiembre de 2011 01:20:29 p.m. Modificado Lunes, 05 de Septiembre
Análisis de Plataforma Sewart utilizando SimMechanics Aplicada al Desarrollo de Simuladores de Vuelo.
Análisis de Plataforma Sewart utilizando SimMechanics Aplicada al Desarrollo de Simuladores de Vuelo. Griselda I. Cistac [1] -Aníbal Zanini [2] - Horacio Abbate [3] Facultad de Ingeniería-UNLPam [1] -
TÉCNICO SUPERIOR UNIVERSITARIO EN MECATRÓNICA
TÉCNICO SUPERIOR UNIVERSITARIO EN MECATRÓNICA HOJA DE ASIGNATURA CON DESGLOSE DE UNIDADES TEMÁTICAS 1. Nombre de la asignatura Fundamentos de Estática y Dinámica 2. Competencias Desarrollar y conservar
1. El eje de un motor gira a 500rpm. a que velocidad angular equivale en rad/s?
1. El eje de un motor gira a 500rpm. a que velocidad angular equivale en rad/s? 2. Determina la relación de transmisión entre dos árboles y la velocidad del segundo si están unidos mediante una transmisión
Introducción a los Sistemas de Control
Introducción a los Sistemas de Control Organización de la presentación - Introducción a la teoría de control y su utilidad - Ejemplo simple: modelado de un motor de continua que mueve una cinta transportadora.
UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA PROGRAMA DE ESTUDIO
UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA PROGRAMA DE ESTUDIO ROBÓTICA 2135 9º 10 Asignatura Clave Semestre Créditos Ingeniería Mecánica e Industrial Ingeniería Mecatrónica Ingeniería
CURSO PROVINCIAL: CONTROL Y ROBÓTICA EN TECNOLOGÍA ROBÓTICA EDUCATIVA. Manuel Hidalgo Díaz Antonio Martínez Núñez
CURSO PROVINCIAL: CONTROL Y ROBÓTICA EN TECNOLOGÍA ROBÓTICA EDUCATIVA Manuel Hidalgo Díaz Antonio Martínez Núñez Noviembre 2009 ÍNDICE ROBÓTICA... 3 ROBÓTICA EDUCATIVA... 4 EducaBot... 6 CONTROL Y ROBÓTICA
CURSO PROVINCIAL: INTRODUCCIÓN A LA ROBÓTICA CON ARDUINO. ROBÓTICA EDUCATIVA EducaBot. Manuel Hidalgo Díaz
CURSO PROVINCIAL: INTRODUCCIÓN A LA ROBÓTICA CON ARDUINO ROBÓTICA EDUCATIVA EducaBot Manuel Hidalgo Díaz Enero 2011 ÍNDICE ROBÓTICA...3 ROBÓTICA EDUCATIVA...4 EducaBot...6 BIBLIOGRAFÍA...8 INTRODUCCIÓN
CAPÍTULO 2. INTEGRALES: INTRODUCCIÓN Y PROPIEDADES 2.1. Introducción 2.2. Teorema 2.3. Propiedades 2.4. Ejemplos 2.5. Integración de una función
CAPÍTULO. INTEGRALES: INTRODUCCIÓN Y PROPIEDADES.. Introducción.. Teorema.. Propiedades.4. Ejemplos.. Integración de una función compuesta Capítulo Integrales: Introducción y propiedades ( f() g() ) (
Dr. Roberto Carlos García Gómez
Dr. Roberto Carlos García Gómez La cinemática del robot estudia el movimiento del mismo con respecto a un sistema de referencia. La cinemática se interesa por la descripción analítica del movimiento espacial
MOVIMIENTO CIRCULAR Medida de la aceleración normal o centrípeta con un acelerómetro
Cómo motivar a los estudiantes mediante actividades científicas atractivas MOVIMIENTO CIRCULAR Medida de la aceleración normal o centrípeta con un acelerómetro Introducción: Amparo Figueres I.E.S BOCAIRENT
CONCLUSIONES. Los motores DC de imán permanente con escobillas son máquinas
51 CONCLUSIONES Los motores DC de imán permanente con escobillas son máquinas electromecánicas de características y composición relativa sencillez con un campo de aplicación muy amplio en la actualidad.
Tema 5. Cinemática Inversa
UNIVERSIDAD POLITÉCNICA DE MADRID E.U.I.T. Industrial TEMA: Cinemática Inversa FECHA: Enero de 01 Titulación: Grado en Ingeniería Electrónica y Automática Área: Ingeniería de Sistemas y Automática Departamento
UNIVERSIDAD DON BOSCO VICERRECTORÍA DE ESTUDIOS DE POSTGRADO
UNIVERSIDAD DON BOSCO VICERRECTORÍA DE ESTUDIOS DE POSTGRADO MAESTRÍA EN MANUFACTURA INTEGRADA POR COMPUTADORA ROBÓTICA INTEGRADA A LA MANUFACTURA Catedrático: Mg Manuel Napoleón Cardona Gutiérrez GUÍA
Capítulo 6. Resultados Cinemáticos por Simulación
Capítulo 6. Resultados Cinemáticos por Simulación Una vez que se tienen las ecuaciones de la descripción de la cinemática y la cinemática inversa del capítulo anterior, se tiene que corroborar que los
Generación de trayectorias
Generación de trayectorias Félix Monasterio-Huelin 14 de octubre de 216 Índice Índice 1 Índice de Figuras 1 Índice de Tablas 1 1. Introducción 2 2. Generación de trayectorias cúbicas conocidos los puntos
Prácticas de bajo coste de ISA en la UCM
Prácticas de bajo coste de ISA en la UCM José A. López Orozco José Mª Girón Sierra Bonifacio Andrés-Toro Eva Besada Portas Jesús M. de la Cruz Ingeniería de Sistemas y Automática Arquitectura de Computadores
1. Considere el mecanismo de cuatro barras que es mostrado a continuación.
1. Considere el mecanismo de cuatro barras que es mostrado a continuación. Haga lo siguiente: a) Dibuje el diagrama cinemático y determine el número de grados de libertad de este mecanismo. b) Empleando
Control de velocidad de motores dc por asignación de polos para un robot móvil
Control de velocidad de motores dc por asignación de polos para un robot móvil Mauricio Arias, Carlos Valencia, Luis E. García, Juan C. Echeverri Politécnico Colombiano Jaime Isaza Cadavid Medellín, Colombia
Examen de TEORIA DE MAQUINAS Diciembre 03 Nombre...
Examen de TEORIA DE MAQUINAS Diciembre 03 Nombre... La figura muestra un manipulador paralelo horizontal plano, que consta de una plataforma en forma de triángulo equilátero de lado l, cuya masa m se halla
DESARROLLO DE UN ALGORITMO PARA EL CALCULO DE LA DISTANCIA Y POSE DE DOS OBJETIVOS UTILIZANDO UN SISTEMA DE VISIÓN ARTIFICIAL
DESARROLLO DE UN ALGORITMO PARA EL CALCULO DE LA DISTANCIA Y POSE DE DOS OBJETIVOS UTILIZANDO UN SISTEMA DE VISIÓN ARTIFICIAL Leonardo Gaona Huertas - 20102283013 Oscar Eduardo Rojas Patiño - 20102283013
UNIVERSIDAD DEL BIO-BIO FACULTAD DE INGENIERÍA DEPARTAMENTO DE INGENIERÍA MECÁNICA
UNIVERSIDAD DEL BIO-BIO FACULTAD DE INGENIERÍA DEPARTAMENTO DE INGENIERÍA MECÁNICA ANEXO 1 Programación de método Computed Order Tracking mediante software Labview 1. Panel Frontal. En el panel frontal
Instituto Nacional Dpto. De Física Prof.: Aldo Scapini G.
Nombre: Curso: Movimiento Circunferencial Uniforme. (MCU) Caracteristicas 1) La trayectoria es una circunferencia 2) La partícula recorre distancia iguales en tiempos iguales Consecuencias 1) El vector
Ejercicio 3 Un sistema de control de velocidad de un motor de corriente continua se modela mediante la ecuación
Trabajo práctico Nº 4 Fundamentos de control realimentado - Segundo cuatrimestre 2017 Ejercicio 1 Aplicando el criterio de estabilidad de Routh: i) Determine la cantidad de raíces en el semiplano derecho
Sistema de Co-Simulación de un Robot Industrial para Control
22 Sistema de Co-Simulación de un Robot Industrial para Control GUDIÑO-LAU, Jorge*, CHÁVEZ-MONTEJANO, Fidel, MÉNDEZ, Alan y HERNÁNDEZ, Adrian. Recibido Octubre 28, 2016; Aceptado Diciembre 16, 2016 Resumen
TEMA 5: ROBOTS MÓVILES
Robótica TEMA 5: ROBOTS MÓVILES Martin Mellado ([email protected]) Departamento de Ingeniería de Sistemas y Automática (DISA) Facultad de Informática de Valencia (FIV) Universidad Politécnica de Valencia
OSCILACIONES ACOPLADAS
OSCILACIONES ACOPLADAS I. Objetivos: Analizar el movimiento conjunto de dos osciladores armónicos similares (péndulos de varilla), con frecuencia natural f 0, acoplados por medio de un péndulo bifilar.
Introducción a la programación del robot moway
Introducción a la programación del robot moway Índice Introducción... 2 Diagramas de flujo... 2 Bloques de Movimiento... 5 Condicionales... 6 Bucles... 7 Operadores AND / OR... 8 Orden en los diagramas...
PROBLEMAS PARA RESOLVER CON ECUACIONES DE SEGUNDO GRADO.
PROBLEMAS PARA RESOLVER CON ECUACIONES DE SEGUNDO GRADO. 1. Cuál es el número cuyo quíntuplo aumentado en 6 es igual a su cuadrado?. Qué número multiplicado por 3 es 40 unidades menor que su cuadrado?
