Tema 5. Cinemática Inversa

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Tema 5. Cinemática Inversa"

Transcripción

1 UNIVERSIDAD POLITÉCNICA DE MADRID E.U.I.T. Industrial TEMA: Cinemática Inversa FECHA: Enero de 01 Titulación: Grado en Ingeniería Electrónica y Automática Área: Ingeniería de Sistemas y Automática Departamento de Electrónica Automática e Informática Industrial Escuela Universitaria deingeniería Técnica Industrial Robótica Tema 5. Cinemática Inversa 1

2 Objetivos FECHA: Enero de Dada una localización en el espacio para el extremo operativo, encontrar una formulación matemática cerrada para cada una de las coordenadas generalizadas del robot a partir de la misma. Establecer la base que permite el control de trayectorias de la herramienta del robot, al formular el problema de localización referido a un sistema de referencia externo.

3 Contenido FECHA: Enero de Introducción al problema 5. Métodos Geométricos 5. Resolución por medio de las Matrices de Transformación Homogénea. 5.4Desacoplo o cinemático. átco 5.5 Consideraciones finales. 5.6 Ejemplos y problemas Bibliografía recomendada: Fundamentos de Robótica. (ª Edición) BarrientosA, Peñin L. F., BalaguerC., Aracil R.Ed. McGraw Hill ISBN:

4 5.1 Introducción al problema Justificación FECHA: Enero de 01

5 5.1 Introducción al problema Cinemática i Inversa FECHA: Enero de 01 Objetivo: encontrar losvaloresque deben adoptar las coordenadas articulares del robot para que su extremo se posicione y oriente según una determinada d localización li ió espacial il La resolución no es sistemática Depende de laconfig configuración racióndel robot (soluciones múltiples) No siempre existe solución en forma cerrada. o Condiciones suficientes para que exista: Tres ejes de articulación adyacentes interseccionan en un punto (robot PUMA y robot Stanford) Tres ejes de articulación adyacentes son paralelos entre sí (robot Elbow)

6 5.1 Introducción al problema Alternativas FECHA: Enero de 01 Procedimiento genérico a partir de los parámetros D H Método iterativo Problemas de velocidad y convergencia Búsqueda de solución cerrada: q k = f k (x,y,z,,,); k = 1,,n Posibilidad de resolución en tiempo real Posibilidad de selección de la solución más adecuada Posibilidad de simplificaciones No siempre es posible

7 5.1 Introducción al problema Métodos FECHA: Enero de 01 Métodos geométricos Se suele utilizar para las primeras variables articulares Uso de relaciones geométricas y trigonométricas (resolución de triángulos) Resolución a partir de las matrices de transformación homogénea Despejar las n variables ibl q i en función de las componentes de los vectores n, o, a y p. Desacoplamiento cinemático En robots de 6 GDL Separación de orientación y posicionamiento Otros: álgebrade tornillo, cuaterniones duales,métodos iterativos... 7 Robotica Industrial- Ci áti d l b t

8 5. Métodos geométricos r p z Método Geométrico Ejemplo(I) r FECHA: Enero de 01 q 1 p arctg p y x r pz l l llcosq Coseno del complementario px p y cosq px py pz l l l l sen q 1 cos q q arctg con cos q 1cos cos q q p p p l l ll x y z d l Teorema del coseno Dado un triángulo ABC, siendo α, β, γ, los ángulos, y a, b, c, los lados respectivamente opuestos a estos ángulos entonces:

9 FECHA: Enero de 01 Mé d G é i 5. Métodos geométricos Método Geométrico Ejemplo(II) q z z arct p g p arctg y x cos l l sen l arct r q q arctg p p g arctg cos l l q y x z c l l sen q l os q arctg p p p arctg q y

10 5. Basado en Matrices Homogéneas Concepto FECHA: Enero de 01 Resolución a partir de las matrices de transformación homogénea Se resuelve la cinemática directa y se obtienen las matrices A. Para evitar la aparición de ecuaciones trascendentes, se va premultiplicando por las matrices inversas. Se intenta obtener de esta forma una ecuación que aísle en uno de los lados una de las variables articulares La elección de los elementos ha de realizarse con sumo cuidado Por su complejidad a menudo este método se deshecha.

11 5. Basado en Matrices Homogéneas Ejemplo FECHA: Enero de 01 Artic. d a 1 q 1 l º q º 0 q C1 0 S1 0 C 0 S S1 0 C1 0 S 1 0 C A1 A A l q CC 1 S1 CS 1 0 CC 1 S1 CS 1 qcs 1 SC 1 C1 SS 1 0 SC A T 0 A 1 C1 SS 1 qss 1 S 0 C l1 S 0 C qc l

12 5. Basado en Matrices Homogéneas Ejemplo FECHA: Enero de 01 l é d d d á l d l d h d d El término izquierdo dependerá solo de q1 mientras que el derecho depende de q y q. Busco un elemento fácil, que relacione q1 con constantes:

13 5. Basado en Matrices Homogéneas Ejemplo FECHA: Enero de 01 Dado que q1 está obtenido, para q, buscare relaciones entre q1 y q con un elemento constante en el ladoderecho: derecho:

14 5.4 Desacoplo Cinemático Concepto FECHA: Enero de 01 Resolución mediante el desacoplo cinemático Habitualmente los tres último ejes del robot se cortan en un punto. La finalidad de estos es lograr la orientación de la herramienta, aunque como consecuencia de su movimiento tengan un efecto ligero sobre la posición Con la primera condición se puede simplificar enormemente el problema cinemático para 6 gdl, dado que la obtención de este punto de intersección es una operación sencilla. Este punto dependerá sólo de los primeros gdl, por lo que su obtención es asequible.

15 5.4 Desacoplo Cinemático Ejemplo FECHA: Enero de 01 Punto de desacoplo p m p r l a 4 6 Prof. Cecilia García

16 5.4 Desacoplo Cinemático Ejemplo FECHA: Enero de 01 Mediante alguno de los métodos anteriores se obtienen los valores de q1,q q y q. Qué hacemos con el resto? Nos centramos exclusivamente en la orientación por simplicidad, y aplicamos un método análogo al basado en las matrices homogéneas:

17 5.5 Consideraciones Finales Aspectos computacionales FECHA: Enero de 01 Para seguimiento de trayectorias es necesario resolver el problema cinemático a gran velocidad (0 veces/seg o más). Son S preferibles las soluciones cerradas explícitas (si (iexisten) a las iterativas. Para acelerar cálculos generalmente se emplean tablas previamente calculadas (look up tables) El coste de calcular n soluciones, no es necesariamente n veces el de calcular una única solución. Computacionalmente es más robusta la arcotangente por lo que es preferible buscar siempre este tipo de relación. 17

18 5.5 Consideraciones Finales Consideraciones i adicionales i FECHA: Enero de 01 Deben atenderse las múltiples soluciones: Elección que minimice los movimientos desde la posición actual Concepto de solución más cercana Mover los eslabones de menor peso Considerarobstáculos obstáculos (evitar colisiones). Teóricamente es resoluble todo sistema R y P con 6 grados de libertad. Métodos numéricos iterativos: lentitud. Se prefieren expresiones analíticas (soluciones cerradas): Métodos algebraicos Métodos geométricos. 18

19 5.5 Consideraciones Finales Robots Rd Redundantesd FECHA: Enero de 01 Se desea: Posicionar el elemento terminal en un punto del plano o Si Nº DoF del manipulador Nº DoF que requiere la tarea Dos soluciones o Si Nº DoF del manipulador > Nº de DoF que requiere la tarea Infinitas soluciones 19

Cinemática Inversa del Robot. UCR ECCI CI-2657 Robótica Prof. M.Sc. Kryscia Daviana Ramírez Benavides

Cinemática Inversa del Robot. UCR ECCI CI-2657 Robótica Prof. M.Sc. Kryscia Daviana Ramírez Benavides Cinemática Inversa del Robot UCR ECCI CI-2657 Robótica Prof. M.Sc. Kryscia Daviana Ramírez Benavides Introducción Resuelve la configuración que debe adoptar el robot para una posición y orientación del

Más detalles

CINEMÁTICA DEL ROBOT

CINEMÁTICA DEL ROBOT CINEMÁTICA DEL ROBOT Cinemática Directa Cinemática Inversa Matriz Jacobiana 1 Problema cinemático del robot Cinemática del robot: Estudio de su movimiento con respecto a un sistema de referencia: Descripción

Más detalles

Robótica Industrial. Robótica Industrial

Robótica Industrial. Robótica Industrial TEMA 4: CINEMÁTICA DEL ROBOT Ingeniería de Sistemas y Automática Control de Robots y Sistemas Sensoriales Robótica Industrial Robótica Industrial ISA.- Ingeniería de Sistemas y Automática Cinemática del

Más detalles

ANALISIS CINEMATICO DIRECTO E INVERSO

ANALISIS CINEMATICO DIRECTO E INVERSO ANALISIS CINEMATICO DIRECTO E INVERSO Cinematica directa x=f(q) [x,y,z] Articulaciones Posicion de la Herramienta Cinematica Inversa q=f -1 (x) El analisis cinematico inverso nos permite calcular la posicion

Más detalles

Cinemática del Robot. UCR ECCI CI-2657 Robótica Prof. M.Sc. Kryscia Daviana Ramírez Benavides

Cinemática del Robot. UCR ECCI CI-2657 Robótica Prof. M.Sc. Kryscia Daviana Ramírez Benavides UCR ECCI CI-2657 Robótica Prof. M.Sc. Kryscia Daviana Ramírez Benavides Introducción La cinemática del robot estudia el movimiento del mismo con respecto a un sistema de referencia. Se interesa por la

Más detalles

TSTC. Dpt. Teoría de la Señal, Telemática y Comunicaciones Tema 2 CINEMÁTICA DE MANIPULADORES

TSTC. Dpt. Teoría de la Señal, Telemática y Comunicaciones Tema 2 CINEMÁTICA DE MANIPULADORES Dpt. Teoría de la Señal, Telemática y Comunicaciones Tema 2 CINEMÁTICA DE MANIPULADORES Secciones 1. Introducción. 2. Coordenadas y Transformaciones Homogéneas. 3. Problema Cinemático Directo. Método de

Más detalles

Dr. Roberto Carlos García Gómez

Dr. Roberto Carlos García Gómez Dr. Roberto Carlos García Gómez La cinemática del robot estudia el movimiento del mismo con respecto a un sistema de referencia. La cinemática se interesa por la descripción analítica del movimiento espacial

Más detalles

Cinemática del Robot

Cinemática del Robot Cinemática del Robot La cinemática del robot estudia el movimiento del mismo con respecto a un sistema de referencia. En primer término, la cinemática se interesa por la descripción analítica del movimiento

Más detalles

Cinemática del Robot. CI-2657 Robótica M.Sc. Kryscia Ramírez Benavides

Cinemática del Robot. CI-2657 Robótica M.Sc. Kryscia Ramírez Benavides M.Sc. Kryscia Ramírez Benavides Sistema Robótico Cinemática Dinámica Planeamiento de Tareas Software Hardware Diseño Mecánico Actuadores Sistema de Control Sensores 2 Introducción Con el fin de controlar

Más detalles

ROBÓTICA I. Cinemática Directa

ROBÓTICA I. Cinemática Directa Cinemática Directa M. C. Jorge Luis Barahona Avalos 11 de abril de 2011 Universidad Tecnológica de la Mixteca Instituto de Electrónica y Mecatrónica 1 / 34 Índice General 1 Cinemática Directa 2 Cadena

Más detalles

Cinemática Inversa del Robot. CI-2657 Robótica M.Sc. Kryscia Ramírez Benavides

Cinemática Inversa del Robot. CI-2657 Robótica M.Sc. Kryscia Ramírez Benavides Cinemática Inversa del Robot M.Sc. Kryscia Ramírez Benavides Introducción Resuelve la configuración que debe adoptar el robot para una posición y orientación del extremo conocidas. 2 Introducción (cont.)

Más detalles

ROBÓTICA I. Cinemática Directa

ROBÓTICA I. Cinemática Directa Cinemática Directa M. C. Jorge Luis Barahona Avalos 2 de mayo de 2012 Universidad Tecnológica de la Mixteca Instituto de Electrónica y Mecatrónica 1 / 42 Índice General 1 Cinemática Directa 2 Cadena Cinemática

Más detalles

Contenido. Prefacio... Acerca de los autores...

Contenido. Prefacio... Acerca de los autores... Contenido Prefacio... Acerca de los autores... xi xvi Capítulo 1. Introducción... 1 1.1. Antecedentes históricos... 2 1.2. Origen y desarrollo de la robótica... 8 1.3. Definición del Robot... 16 1.3.1.

Más detalles

INTRODUCCIÓN A LA MECÁNICA DEL ROBOT. Curso de Extensión. Tema 2. Laboratorio de Robótica Aplicada (LABRA) 1

INTRODUCCIÓN A LA MECÁNICA DEL ROBOT. Curso de Extensión. Tema 2. Laboratorio de Robótica Aplicada (LABRA) 1 Curso de Extensión INTRODUCCIÓN A LA ROBÓTICA MÓVILM (LABRA) 1 Curso de Introducción n a la Robótica MóvilM Tema 2 MECÁNICA DEL ROBOT (LABRA) 2 La Capa Física: F Diseño o Mecánico Configuración de las

Más detalles

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA PROGRAMA DE ESTUDIO

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA PROGRAMA DE ESTUDIO UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA PROGRAMA DE ESTUDIO ROBÓTICA 2135 9º 10 Asignatura Clave Semestre Créditos Ingeniería Mecánica e Industrial Ingeniería Mecatrónica Ingeniería

Más detalles

TSTC. Dpt. Teoría de la Señal, Telemática y Comunicaciones Tema 1 INTRODUCCIÓN A LA ROBÓTICA

TSTC. Dpt. Teoría de la Señal, Telemática y Comunicaciones Tema 1 INTRODUCCIÓN A LA ROBÓTICA Dpt. Teoría de la Señal, Telemática y Comunicaciones Tema 1 INTRODUCCIÓN A LA ROBÓTICA Secciones 1. Introducción y definiciones. 2. Visión General de la manipulación mecánica. 1. Posicionamiento y Cinemática

Más detalles

ASIGNATURA: CONTROL Y PROGRAMACIÓN DE ROBOTS CÓDIGO: 2261

ASIGNATURA: CONTROL Y PROGRAMACIÓN DE ROBOTS CÓDIGO: 2261 ASIGNATURA: CONTROL Y PROGRAMACIÓN DE ROBOTS CÓDIGO: 221 DEPARTAMENTO: DEPARTAMENTO DE INGENIERÍA DE SISTEMAS Y AUTOMÁTICA ÁREAS DE CONOCIMIENTO: DEPARTAMENTO DE INGENIERÍA DE SISTEMAS Y AUTOMÁTICA DESCRIPTORES

Más detalles

Fundamentos de Robótica

Fundamentos de Robótica Fundamentos de Robótica Introducción a la cinemática de manipuladores [email protected] http://scfi.uaemex.mx/hamontes 1 Recomendación No use estas diapositivas como referencia única de estudio durante

Más detalles

Modelado Cinemático de la mano de Barrett

Modelado Cinemático de la mano de Barrett Modelado Cinemático de la mano de Barrett Informe Técnico Proyecto: DPI2008-02647 Autores: Juan Antonio Corrales Ramón Fernando Torres Medina Grupo de Automática, Robótica y Visión Artificial Departamento

Más detalles

Cinemática Directa del Robot. CI-2657 Robótica M.Sc. Kryscia Ramírez Benavides

Cinemática Directa del Robot. CI-2657 Robótica M.Sc. Kryscia Ramírez Benavides M.Sc. Kryscia Ramírez Benavides Introducción Consiste en determinar cual es la posición y orientación del extremo final del robot, con respecto a un sistema de coordenadas que se toma como referencia,

Más detalles

Problema Cinemático Directo

Problema Cinemático Directo Problema Cinemático Directo Parámetros Denavit-Hartenberg Denavit-Hartenberg notación Craig Denavit-Hartenberg notación Craig Denavit-Hartenberg notación Craig Denavit-Hartenberg notación Craig Denavit-Hartenberg

Más detalles

INSTITUTO TECNOLÓGICO DE TIJUANA SUBDIRECCIÓN ACADÉMICA DEPARTAMENTO DE SISTEMAS Y COMPUTACIÓN SEMESTRE AGOSTO-DICIEMBRE 2014

INSTITUTO TECNOLÓGICO DE TIJUANA SUBDIRECCIÓN ACADÉMICA DEPARTAMENTO DE SISTEMAS Y COMPUTACIÓN SEMESTRE AGOSTO-DICIEMBRE 2014 INSTITUTO TECNOLÓGICO DE TIJUANA SUBDIRECCIÓN ACADÉMICA DEPARTAMENTO DE SISTEMAS Y COMPUTACIÓN SEMESTRE AGOSTO-DICIEMBRE 2014 Carrera: Ingeniería en sistemas computacionales. Materia: Métodos Numéricos.

Más detalles

Visión artificial y Robótica Modelos de movimiento y mapas. Depto. de Ciencia de la Computación e Inteligencia Artificial

Visión artificial y Robótica Modelos de movimiento y mapas. Depto. de Ciencia de la Computación e Inteligencia Artificial Visión artificial y Robótica Modelos de movimiento y mapas Depto. de Ciencia de la Computación e Inteligencia Artificial Contenidos Sistemas de coordenadas Localización de objetos en el espacio Modelos

Más detalles

Control y programación de robots

Control y programación de robots Control y programación de robots 11. Solución cinemática inversa y directa de robots seriales 11.1 El alumno, tras recibir y estudiar esta clase, debe ser capaz de: Comprender el modelado de la cinemática

Más detalles

Cinemática Directa del Robot. UCR ECCI CI-2657 Robótica Prof. M.Sc. Kryscia Daviana Ramírez Benavides

Cinemática Directa del Robot. UCR ECCI CI-2657 Robótica Prof. M.Sc. Kryscia Daviana Ramírez Benavides Cinemática Directa del Robot UCR ECCI CI-2657 Robótica Prof. M.Sc. Kryscia Daviana Ramírez Benavides Introducción Consiste en determinar cual es la posición y orientación del extremo final del robot, con

Más detalles

Dinámica del Robot. UCR ECCI CI-2657 Robótica Prof. M.Sc. Kryscia Daviana Ramírez Benavides

Dinámica del Robot. UCR ECCI CI-2657 Robótica Prof. M.Sc. Kryscia Daviana Ramírez Benavides UCR ECCI CI-2657 Robótica Prof. M.Sc. Kryscia Daviana Ramírez Benavides Introducción La dinámica se ocupa de la relación entre las fuerzas que actúan sobre un cuerpo y el movimiento en el que se origina.

Más detalles

PROGRAMA DE LA ASIGNATURA: Control y programación de robots. Código: Curso 2006/2007

PROGRAMA DE LA ASIGNATURA: Control y programación de robots. Código: Curso 2006/2007 PROGRAMA DE LA ASIGNATURA: Control y programación de robots Código: 3042104010 Curso 2006/2007 CENTRO: ESCUELA TÉCNICA SUPERIOR DE INGENIEROS INDUSTRIALES TITULACIÓN: INGENIERÍA AUTOMÁTICA Y ELECTRÓNICA

Más detalles

LOCOMOCION DE SISTEMAS ROBOTICOS

LOCOMOCION DE SISTEMAS ROBOTICOS CAPITULO II LOCOMOCION DE SISTEMAS ROBOTICOS P I N Z A B R A Z O A N T E B R A ZO B A S E 2.1. GRADOS DE LIBERTAD El componente principal en el robot está constituido por las articulaciones y sus eslabones.

Más detalles

FORMULARIO DE TRIGONOMETRIA PLANA Definicion de las seis razones trigonometricas 02.- Relaciones fundamentales entre las razones trigonometricas

FORMULARIO DE TRIGONOMETRIA PLANA Definicion de las seis razones trigonometricas 02.- Relaciones fundamentales entre las razones trigonometricas FORMULARIO DE TRIGONOMETRIA PLANA 01.- Definicion de las seis razones trigonometricas 02.- Relaciones fundamentales entre las razones trigonometricas 03.- Razones trigonometricas de la suma de dos angulos

Más detalles

Introducción a la Robótica Mecanismos básicos: cinemática

Introducción a la Robótica Mecanismos básicos: cinemática Introducción a la Robótica Mecanismos básicos: cinemática Dr José Martínez Carranza [email protected] Coordinación de Ciencias Computacionales, INAOE Cinemática (1) La cinemática es una rama de la Física

Más detalles

TEMAS 6 Y 7 RECTAS Y PLANOS EN EL ESPACIO

TEMAS 6 Y 7 RECTAS Y PLANOS EN EL ESPACIO Temas 6 y 7 Rectas y planos en el espacio Matemáticas II - 2º Bachillerato 1 TEMAS 6 Y 7 RECTAS Y PLANOS EN EL ESPACIO RECTAS Y PLANOS EJERCICIO 1 : Halla el volumen del tetraedro determinado por los ejes

Más detalles

INGENIERÍA PROFESIONAL EN INOCUIDAD ALIMENTARIA EN COMPETENCIAS PROFESIONALES ASIGNATURA DE ROBÓTICA

INGENIERÍA PROFESIONAL EN INOCUIDAD ALIMENTARIA EN COMPETENCIAS PROFESIONALES ASIGNATURA DE ROBÓTICA INGENIERÍA PROFESIONAL EN INOCUIDAD ALIMENTARIA EN COMPETENCIAS PROFESIONALES ASIGNATURA DE ROBÓTICA UNIDADES DE APRENDIZAJE 1. Competencias Automatizar procesos de producción mediante la implementación

Más detalles

2015, Año del Generalísimo José María Morelos y Pavón

2015, Año del Generalísimo José María Morelos y Pavón Nombre de la Asignatura: ROBOTICA Línea de Investigación o Trabajo: PROCESAMIENTO DE SEÑALES ELECTRICAS Y ELECTRONICAS Tiempo de dedicación del estudiante a las actividades de: DOC-TIS-TPS-CRÉDITOS 48

Más detalles

Parámetros Redundantes para Rotación y Traslación en Cinemática

Parámetros Redundantes para Rotación y Traslación en Cinemática Parámetros Redundantes para Rotación y Traslación en Cinemática O. Altuzarra, A. Hernández, E. Amezua, V. Petuya Universidad del País Vasco - Euskal Herriko Unibertsitatea Departamento de Ingeniería Mecánica,

Más detalles

Capacitación Tecnológica Científica para Bolivia. Introducción al modelado de robots

Capacitación Tecnológica Científica para Bolivia. Introducción al modelado de robots Catecbol Capacitación Tecnológica Científica para Bolivia www.catecbol.com facebook.com/catecbol @catecbol [email protected] Introducción al modelado de robots Ronald Terrazas Mallea Bélgica La unión

Más detalles

Visión artificial y Robótica Geometría. Depto. de Ciencia de la Computación e Inteligencia Artificial

Visión artificial y Robótica Geometría. Depto. de Ciencia de la Computación e Inteligencia Artificial Visión artificial y Robótica Geometría Depto. de Ciencia de la Computación e Inteligencia Artificial Contenidos Geometría 2D y 3D Transformación de coordenadas Calibración de la cámara Álgebra necesaria

Más detalles

UNIVERSIDAD DE ORIENTE NUCLEO DE ANZOATEGUI PROGRAMA DE ASIGNATURA NOMBRE DE LA ASIGNATURA MATEMATICA I

UNIVERSIDAD DE ORIENTE NUCLEO DE ANZOATEGUI PROGRAMA DE ASIGNATURA NOMBRE DE LA ASIGNATURA MATEMATICA I ESCUELA Ciencias Administrativas CODIGO PREREQUISITO(S) 008-1613 Ninguno HORAS SEMANALES TOTAL HORAS SEMESTRE 05 90 HORAS TEORICAS HORAS PRACTICAS 02 03 UNIVERSIDAD DE ORIENTE NUCLEO DE ANZOATEGUI PROGRAMA

Más detalles

PLAN DE ESTUDIOS 2008-II SÍLABO

PLAN DE ESTUDIOS 2008-II SÍLABO UNIVERSIDAD RICARDO PALMA FACULTAD DE INGENIERÍA I. INFORMACIÓN GENERAL: DEPARTAMENTO ACADÉMICO DE INGENIERÍA PLAN DE ESTUDIOS 2008-II SÍLABO 1.1 Asignatura : ROBÓTICA 1.2. Ciclo : VIII 1.3 Carrera Profesional

Más detalles

ACTIVIDAD DE EVALUACIÓN % PESO PARA LA UNIDAD 40 PESO TOTAL DEL MÓDULO 100

ACTIVIDAD DE EVALUACIÓN % PESO PARA LA UNIDAD 40 PESO TOTAL DEL MÓDULO 100 Guía Pedagógica y Evaluación 8. Tabla Ponración UNIDAD 1. Resolución problemas utilizando logaritmos y Moado angular, lineal, superficie y espacial. 3. Aplicación la trigonometría RA 1.1. Maneja sigualdas,

Más detalles

- Resolver problemas que involucren probabilidad clásica, unión e intersección de dos eventos

- Resolver problemas que involucren probabilidad clásica, unión e intersección de dos eventos ANGLO AMERICAN INTERNATIONAL SCHOOL ÁREA DE CIENCIAS, MATEMÁTICAS Y SALUD La formulación de un problema, es más importante que su solución Los Refugios del Arrayan 1653. Fonos 23215497-23215480 [email protected]

Más detalles

RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES

RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES UNIDD 4 RESOLUCIÓN DE SISTEMS MEDINTE DETERMINNTES Página 00 Resolución de sistemas mediante determinantes x y Resuelve, aplicando x = e y =, los siguientes sistemas de ecuaciones: x 5y = 7 5x + 4y = 6x

Más detalles

Programa de Acceso Inclusivo, Equidad y Permanencia. PAIEP, Universidad de Santiago

Programa de Acceso Inclusivo, Equidad y Permanencia. PAIEP, Universidad de Santiago Guía de vectores. Vectores En matemática, un vector es una herramienta geométrica utilizada para representar una magnitud física definida en un sistema de referencia que se caracteriza por tener módulo

Más detalles

Facultad de Ingeniería Facultad de Tecnología Informática. Matemática Números reales Elementos de geometría analítica. Profesora: Silvia Mamone

Facultad de Ingeniería Facultad de Tecnología Informática. Matemática Números reales Elementos de geometría analítica. Profesora: Silvia Mamone Facultad de Ingeniería Facultad de Tecnología Informática Matemática Números reales Elementos de geometría analítica 0 03936 Profesora: Silvia Mamone UB Facultad de Ingeniería Facultad de Tecnología Informática

Más detalles

Geometría del plano y el espacio

Geometría del plano y el espacio Geometría del plano y el espacio AMD Grado en Ingeniería Informática AMD Grado en Ingeniería Informática (UM) Geometría del plano y el espacio 1 / 21 Objetivos Al final de este tema tendréis que Conocer

Más detalles

UNIDAD EDUCATIVA COLEGIO SAN GABRIEL PLAN DE MEJORA Y REFUERZO ACADÉMICO

UNIDAD EDUCATIVA COLEGIO SAN GABRIEL PLAN DE MEJORA Y REFUERZO ACADÉMICO DATOS INFORMATIVOS UNIDAD EDUCATIVA COLEGIO SAN GABRIEL PLAN DE MEJORA Y REFUERZO ACADÉMICO Nombre del Estudiante: Curso: 1ro BGU Docente: Lic. Francisco Soria Fecha: 22 de febrero de 2016 DESTREZA A REFORZAR

Más detalles

Control Cinemático. Funciones de control cinemático Tipos de trayectorias Interpolación de trayectorias. Robotica Industrial- Control cinemático 2

Control Cinemático. Funciones de control cinemático Tipos de trayectorias Interpolación de trayectorias. Robotica Industrial- Control cinemático 2 Control Cinemático Funciones de control cinemático Tipos de trayectorias Interpolación de trayectorias Robotica Industrial- Control cinemático 2 Objetivos del control cinemático Establecer cuales son las

Más detalles

EJEMPLO DE PREGU,TAS

EJEMPLO DE PREGU,TAS EJEMPLO DE PREGU,TAS MATEMÁTICAS PRIMERO, SEGU,DO Y TERCERO DE BACHILLERATO 1. Lógica proposicional Esta competencia se refiere al conocimiento que usted posee sobre el lenguaje de las proposiciones y

Más detalles

ROBOTICA II. UNIDAD 2

ROBOTICA II. UNIDAD 2 ROBOTICA II. UNIDAD 2 MODELO DINÁMICO. En robótica, la cinemática y la dinámica se combinan para lograr el posicionamiento de una serie de eslabones articulados o brazo de robot. Las consideraciones cinemáticas

Más detalles

TECNOLÓGICO DE ESTUDIOS SUPERIORES DE ECATEPEC

TECNOLÓGICO DE ESTUDIOS SUPERIORES DE ECATEPEC TECNOLÓGICO DE ESTUDIOS SUPERIORES DE ECATEPEC DIVISIÓN DE INGENIERÍA ELECTRÓNICA Y TELEMÁTICA PRÁCTICAS DE LABORATORIO ASIGNATURA: ROBÓTICA I REALIZÓ: GERARDO PAZOS RODRÍGUEZ PRESENTACIÓN El presente

Más detalles

SISTEMAS ROBOTIZADOS Asignatura optativa

SISTEMAS ROBOTIZADOS Asignatura optativa Área de Ingeniería de Sistemas y Automática Departamento de Lenguajes y Computación Universidad de Almería SISTEMAS ROBOTIZADOS Asignatura optativa PRACTICA 4 CONTROL DE ROBOTS MÓVILES UTILIZANDO EL MÉTODO

Más detalles

Álgebra II C PLANIFICACIONES Actualización: 2ºC/2017. Planificaciones Álgebra II C. Docente responsable: CAMMILLERI ADA LEONOR.

Álgebra II C PLANIFICACIONES Actualización: 2ºC/2017. Planificaciones Álgebra II C. Docente responsable: CAMMILLERI ADA LEONOR. Planificaciones 6122 - Álgebra II C Docente responsable: CAMMILLERI ADA LEONOR 1 de 9 OBJETIVOS Los objetivos centrales de la asignatura son que el alumno logre: - Conocimientos básicos sobre temas de

Más detalles

Módulo. Representación Simbólica y Angular del entorno REAN-03 CONALEP IBQA

Módulo. Representación Simbólica y Angular del entorno REAN-03 CONALEP IBQA Programa de estudios Unidad 2. Modelado angular, lineal, de superficie y espacial. Propósito de la unidad. Calculará dimensiones, angulares, lineales, superficiales y espaciales de figuras geométricas

Más detalles

FUNDAMENTOS DE ROBÓTICA

FUNDAMENTOS DE ROBÓTICA ASIGNATURA DE GRADO: FUNDAMENTOS DE ROBÓTICA Curso 2015/2016 (Código:71013087) 1.PRESENTACIÓN DE LA ASIGNATURA Se trata de una asignatura cuatrimestral optativa, ubicada en el segundo cuatrimestre del

Más detalles

Selección de un Robot Industrial. Prof. J. Milland

Selección de un Robot Industrial. Prof. J. Milland Prof. J. Milland Si debemos robotizar un determinado proceso, debemos seleccionar el robot mas adecuado teniendo en consideración los servicios y el costo. Las características que debemos estar estudiando

Más detalles

MATHEMATICA. Geometría - Recta. Ricardo Villafaña Figueroa. Material realizado con Mathematica. Ricardo Villafaña Figueroa

MATHEMATICA. Geometría - Recta. Ricardo Villafaña Figueroa. Material realizado con Mathematica. Ricardo Villafaña Figueroa MATHEMATICA Geometría - Recta Material realizado con Mathematica 2 Contenido Sistema de Coordenadas... 3 Distancia entre dos puntos... 3 Punto Medio... 5 La Recta... 8 Definición de recta... 8 Pendiente

Más detalles

AL - Álgebra Lineal

AL - Álgebra Lineal Unidad responsable: Unidad que imparte: Curso: Titulación: Créditos ECTS: 2016 230 - ETSETB - Escuela Técnica Superior de Ingeniería de Telecomunicación de Barcelona 749 - MAT - Departamento de Matemáticas

Más detalles

REPRESENTACIÓN DE FUERZAS. Hay dos tipos de magnitudes: ESCALARES y VECTORIALES

REPRESENTACIÓN DE FUERZAS. Hay dos tipos de magnitudes: ESCALARES y VECTORIALES VECTORES REPRESENTACIÓN DE UERZAS Hay dos tipos de magnitudes: ESCALARES y VECTORIALES Las magnitudes ESCALARES quedan determinadas mediante una cantidad y su unidad correspondiente: L (Longitud) 5 m m

Más detalles

Formato para prácticas de laboratorio

Formato para prácticas de laboratorio CARRERA TRONCO COMÚN PLAN DE ESTUDIO CLAVE ASIGNATURA 2003-1 4347 ESTÁTICA NOMBRE DE LA ASIGNATURA PRÁCTICA No. LABORATORIO DE CIENCIAS BÁSICAS DURACIÓN(HORAS) NOMBRE DE LA DESCOMPOSICIÓN DE EST-02 2:00

Más detalles

Expresión decimal. Aproximación y estimación. Notación científica. Polinomios. Divisibilidad de polinomios. Regla de Ruffini.

Expresión decimal. Aproximación y estimación. Notación científica. Polinomios. Divisibilidad de polinomios. Regla de Ruffini. Otras páginas Matemáticas 5º Matemáticas I. Bloque I: ARITMÉTICA Y ÁLGEBRA Los números reales Los números reales, concepto y características. Estructura algebraica, orden, representación en la recta real

Más detalles

TEMAS 6 Y 7 GEOMETRÍA EN EL ESPACIO

TEMAS 6 Y 7 GEOMETRÍA EN EL ESPACIO Ejercicios Selectividad Temas 6 y 7 Geometría en el espacio Mate II 2º Bach. 1 TEMAS 6 Y 7 GEOMETRÍA EN EL ESPACIO EJERCICIO 1 : Julio 11-12. Optativa (3 ptos) Para los puntos A(1,0,2) y B(-1,2,4) y la

Más detalles

M.C. Cynthia Guerrero

M.C. Cynthia Guerrero Algoritmo 2-6-1: Representación D-H 0. Numere las articulaciones de la 1 a la n comenzando con la base () y terminando con la herramienta, en el orden yaw, pitch y roll. 1. Asigne un sistema coordenado

Más detalles

PROGRAMA DE RECUPERACIÓN PEDAGÓGICA

PROGRAMA DE RECUPERACIÓN PEDAGÓGICA DE RECUPERACIÓN PEDAGÓGICA 1er año de secundaria Estadística. Inecuaciones. Operaciones con números racionales. Ángulos. - Frecuencia absoluta y frecuencia relativa - Moda, mediana y media - Gráficas circulares

Más detalles

GUÍA DE EJERCICIOS GEOMETRÍA ANALÍTICA (CURVAS CÓNICAS)

GUÍA DE EJERCICIOS GEOMETRÍA ANALÍTICA (CURVAS CÓNICAS) U N E X P O INTRODUCCIÓN: UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA ANTONIO JOSÉ DE SUCRE VICE-RECTORADO PUERTO ORDAZ DEPARTAMENTO DE ESTUDIOS GENERALES SECCIÓN DE MATEMÁTICA GUÍA DE EJERCICIOS GEOMETRÍA

Más detalles

VECTORES : Las Cantidades Vectoriales cantidades escalares

VECTORES : Las Cantidades Vectoriales cantidades escalares VECTORES En física hay dos tipos de cantidades: Las Cantidades Vectoriales son aquellas que tiene tanto magnitud como dirección y sentido sobre la dirección), mientras que las cantidades escalares son

Más detalles

CENTRO UNIVERSITARIO MONTEJO A. C. Temario de Matemáticas 3. Bloque I

CENTRO UNIVERSITARIO MONTEJO A. C. Temario de Matemáticas 3. Bloque I Bloque I Explica la diferencia entre eventos complementarios, mutuamente excluyentes e independientes. Resolución de problemas que impliquen el uso de ecuaciones cuadráticas sencillas, utilizando procedimientos

Más detalles

bloque i ejes aprendizajes esperados sentido numérico y PensaMiento algebraico forma, espacio y Medida Manejo de la información Patrones y ecuaciones

bloque i ejes aprendizajes esperados sentido numérico y PensaMiento algebraico forma, espacio y Medida Manejo de la información Patrones y ecuaciones TERCER GRADO bloque i Explica la diferencia entre eventos complementarios, mutuamente excluyentes e independientes. Resolución de problemas que impliquen el uso de ecuaciones cuadráticas sencillas, utilizando

Más detalles

Unidad 3: Razones trigonométricas.

Unidad 3: Razones trigonométricas. Unidad 3: Razones trigonométricas 1 Unidad 3: Razones trigonométricas. 1.- Medida de ángulos: grados y radianes. Las unidades de medida de ángulos más usuales son el grado sexagesimal y el radián. Se define

Más detalles

Producto Escalar. AMD Grado en Ingeniería Informática. AMD Grado en Ingeniería Informática (UM) Producto Escalar 1 / 31

Producto Escalar. AMD Grado en Ingeniería Informática. AMD Grado en Ingeniería Informática (UM) Producto Escalar 1 / 31 Producto Escalar AMD Grado en Ingeniería Informática AMD Grado en Ingeniería Informática (UM) Producto Escalar 1 / 31 Objetivos Al finalizar este tema tendrás que: Saber usar el producto escalar. Calcular

Más detalles

Longitud, áreas y volúmenes. Trigonometría. Circunferencia de radio R Círculo de radio R. 1 Triángulo de base B y altura H A = (BH ) 2

Longitud, áreas y volúmenes. Trigonometría. Circunferencia de radio R Círculo de radio R. 1 Triángulo de base B y altura H A = (BH ) 2 Longitud, áreas y volúmenes Circunferencia de radio R Círculo de radio R A πr L πr Triángulo de base B y altura H A (BH ) Cuadrado de lado L A L Rectángulo de base B y altura H Superficie esférica A 4πR

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MATERIA: MATEMÁTICAS II

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MATERIA: MATEMÁTICAS II UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES Y VALORACIÓN El alumno contestará a

Más detalles

Matemáticas II Bachillerato Ciencias y Tecnología 2º Curso. Espacio euclídeo Determinación de ángulos

Matemáticas II Bachillerato Ciencias y Tecnología 2º Curso. Espacio euclídeo Determinación de ángulos Espacio euclídeo 5.1. Determinación de ángulos.... - 2-5.1.1. Ángulo determinado por dos rectas secantes.... - 2-5.1.2. Ángulo determinado por planos secantes.... - 2-5.1.3. Ángulo determinado por una

Más detalles

Diseño e implementación de un Manipulador Robótico con Tres Grados de Libertad para fines educativos

Diseño e implementación de un Manipulador Robótico con Tres Grados de Libertad para fines educativos Diseño e implementación de un Manipulador Robótico con Tres Grados de Libertad para fines educativos I. Aguirre G., L. J. Andueza C., C. Arismendi Universidad de Los Andes, Facultad de Ingeniería Escuela

Más detalles

TEMA 8. GEOMETRÍA ANALÍTICA.

TEMA 8. GEOMETRÍA ANALÍTICA. TEMA 8. GEOMETRÍA ANALÍTICA. 8..- El plano. Definimos el plano euclideo como el conjunto de puntos ( x, y) R. Así, cada punto del plano posee dos coordenadas. Para representar puntos del plano utilizaremos

Más detalles

Programa de preparación para exámenes de ubicación

Programa de preparación para exámenes de ubicación GUÍA PARA EL EXAMEN DE UBICACIÓN DE MATEMÁTICAS TECNOLÓGICO DE MONTERREY INSTRUCCIONES Este examen debe ser presentado antes de las inscripciones, por los alumnos de primer ingreso que provengan de preparatorias

Más detalles

ESTATICA. Debajo se encuentran las formulas para calcular las componentes y el ángulo α que determina la dirección de la fuerza.

ESTATICA. Debajo se encuentran las formulas para calcular las componentes y el ángulo α que determina la dirección de la fuerza. ESTATICA Es la parte de la física que estudia las fuerzas en equilibrio. Si sobre un cuerpo no actúan fuerzas o actúan varias fuerzas cuya resultante es cero, decimos que el cuerpo está en equilibrio.

Más detalles

Universidad Politécnica de Madrid Escuela de Ingenieros Industriales. RoboTenis

Universidad Politécnica de Madrid Escuela de Ingenieros Industriales. RoboTenis Universidad Politécnica de Madrid Escuela de Ingenieros Industriales RoboTenis Diseño, Simulación, Análisis Cinemático y Dinámico de un robot paralelo para Control Visual de altas prestaciones DISAM Luis

Más detalles

CÁLCULO INTEGRAL HORAS TEÓRICAS UNIDADES CRÉDITO HORAS PRÁCTICAS CODIGO (COMPUTACION) (SISTEMAS) CALCULO DIFERENCIAL III

CÁLCULO INTEGRAL HORAS TEÓRICAS UNIDADES CRÉDITO HORAS PRÁCTICAS CODIGO (COMPUTACION) (SISTEMAS) CALCULO DIFERENCIAL III CÁLCULO INTEGRAL CODIGO HORAS TEÓRICAS HORAS PRÁCTICAS UNIDADES CRÉDITO SEMESTRE PRE REQUISITO 213154 (COMPUTACION) 223154 (SISTEMAS) 03 02 04 III CALCULO DIFERENCIAL ELABORADO POR REVISADO POR APROBADO

Más detalles

Razones trigonométricas en triangulo rectángulo EJEMPLO Nº 1 Solución: Se tienen los siguientes datos:

Razones trigonométricas en triangulo rectángulo EJEMPLO Nº 1 Solución: Se tienen los siguientes datos: Razones trigonométricas en triangulo rectángulo La trigonometría, enfocada en sus inicios solo al estudio de los triángulos, se utilizó durante siglos en topografía, navegación y astronomía. Esta rama

Más detalles

DEPARTAMENTO DE MATEMÁTICAS Página 1

DEPARTAMENTO DE MATEMÁTICAS Página 1 DEPARTAMENTO DE MATEMÁTICAS Página 1 APROBADO EN EL CONSEJO DE LA FACULTAD DE CIENCIAS EXACTAS Y NATURALES ACTA 13 DEL 21 ABRIL 2010 PROGRAMAS DEL DEPARTAMENTO DE MATEMÁTICAS El presente formato tiene

Más detalles

Ecuación Vectorial de la Recta

Ecuación Vectorial de la Recta Ecuación Vectorial de la Recta Definimos una recta r como el conjunto de los puntos del plano, alineados con un punto P y con una dirección dada. Si P(x 1, y 1 ) es un punto de la recta r, el vector tiene

Más detalles

Modelamiento de un Robot de Cinco Grados de Libertad en un Módulo de Manufactura Flexible.

Modelamiento de un Robot de Cinco Grados de Libertad en un Módulo de Manufactura Flexible. Modelamiento de un Robot de Cinco Grados de Libertad en un Módulo de Manufactura Flexible. Yulieth Díaz*, Naidú Hernández** y Jairo Montoya*** *Universidad de La Salle, [email protected] ** Universidad

Más detalles

27/01/2011 TRIGONOMETRÍA Página 1 de 7

27/01/2011 TRIGONOMETRÍA Página 1 de 7 β 27/01/2011 TRIGONOMETRÍA Página 1 de 7 Notación en un triángulo: En un triángulo cualquiera llamaremos a, b y c a sus lados y A, B y C a sus vértices de forma que A sea el vértice formado por los lados

Más detalles

PROPUESTA A. f(x) = x 3 + ax 2 + bx + c,

PROPUESTA A. f(x) = x 3 + ax 2 + bx + c, PROPUESTA A 1A. Dada la función f(x) = x 3 + ax 2 + bx + c, calcula los parámetros a, b, c R sabiendo que: La recta tangente a la gráfica de f(x) en el punto de abcisa x = 1 tiene pendiente 3. f(x) tiene

Más detalles

UNIVERSIDAD COMPLUTENSE DE MADRID

UNIVERSIDAD COMPLUTENSE DE MADRID Principales conceptos que se tendrán en cuenta en la elaboración de las pruebas de Acceso a la Universidad para los estudiantes provenientes del Bachillerato LOGSE de la materia "Matemáticas II" ÁLGEBRA

Más detalles

INSTRUCCIONES GENERALES Y VALORACIÓN

INSTRUCCIONES GENERALES Y VALORACIÓN UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Examen-Modelo para el curso 2014-2015 MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES

Más detalles

2.2 Rectas en el plano

2.2 Rectas en el plano 2.2 Al igual que ocurre con el punto, en geometría intrínseca, el concepto de recta no tiene definición, sino que constituye otro de sus conceptos iniciales, indefinibles. Desde luego se trata de un conjunto

Más detalles

PROBLEMAS DE HOMOTECIAS Y SEMEJANZAS EN EL PLANO

PROBLEMAS DE HOMOTECIAS Y SEMEJANZAS EN EL PLANO PROBLEMAS DE HOMOTECIAS Y SEMEJANZAS EN EL PLANO 1. Estudiar si la siguiente ecuación matricial corresponde a una homotecia del plano y, en su caso, calcular el centro y la razón: 1 1 1 ' = 3 y' 3 y. Estudiar

Más detalles