Prácticas Tema 4: Modelo con variables cualitativas
|
|
|
- Arturo Macías Valenzuela
- hace 8 años
- Vistas:
Transcripción
1 Prácticas Tema 4: Modelo con variables cualitativas Ana J. López y Rigoberto Pérez Departamento de Economía Aplicada. Universidad de Oviedo PRACTICA 4.1- Se dispone de información sobre 16 familias sobre las que se han analizado la renta (en miles de euros), el gasto de alimentación (en miles de euros) y el ámbito de residencia Y, Gasto en alimentación X, Renta Ambito de residencia Urbano Rural Rural Urbano Urbano Rural Rural Urbano Urbano Urbano 11 9,5 25 Rural 12 1,5 5 Rural Urbano Urbano Urbano Urbano a) A partir de esta información estimar un modelo econométrico para explicar el gasto familiar en alimentación b) Analizar cuál es el efecto del ámbito de residencia sobre el gasto en alimentación c) Se ha propuesto un modelo logit para explicar el ámbito de la residencia familiar en función de los ingresos, estimándose los parámetros: ˆβ 1 = 1, 54 ˆβ 2 = 0, 088. Estudiar la proporción de aciertos de este modelo. 1
2 SOLUCIÓN: a) A partir de esta información estimar un modelo econométrico para explicar el gasto familiar en alimentación Para estimar un modelo mínimo cuadrático del gasto en alimentación se define una variable dicotómica con valor unitario para las familias con residencia en ámbito urbano y nula en los restantes casos. Con la información disponible se construyen las matrices y vectores siguientes: X X = con determinante X X = , , , 0522 X X) 1 = 0, , , , , , X y = obteniéndose así los estimadores mínimo-cuadráticos 2, ˆβ = (X X) 1 X y = 0, , según las cuales el efecto marginal del ingreso familiar sobre el gasto familiar en alimentación es de 0,2006, estimándose que las familias residentes en ámbito urbano gastan euros más que las ubicadas en zona rural. Sobre este modelo es posible llevar a cabo un análisis de la varianza (ANOVA) calculando la Variación total, explicada y no explicada V T = y y nȳ 2 = 141, 25 V E = ˆβ X y nȳ 2 = 107, 0411 V NE = û û = 34, 2089 obteniéndose el coeficiente de determinación R 2 = 1 û û = 0, 7578 y y nȳ 2 Además, a partir de la variación no explicada se obtiene la varianza residual S 2 = û û = 2, 6315 n k Para analizar la significación de este modelo se construye la matriz de varianzas covarianzas que, a partir de los resultados anteriores, se obtiene como Ana J. López y Rigoberto Pérez 2
3 0, , , 0522 S 2ˆβ = S 2 X X 1 = 2, , , , , , , , , , 1374 = 0, , , , , , 7981 Teniendo en cuenta que la diagonal principal de esta matriz contiene las varianzas de los estimadores, sus raíces cuadradas proporcionan las correspondientes tipicas, y asi pues, el modelo estimado vendría dado por la expresión: Ŷ = 2, (1,1746) + 0, 2006 (0,0485) X + 2, 78255D (0,89336) Estos resultados permiten también contrastar directamente la significación de las dos variables explicativas Asi, en el caso del ingreso la hipótesis nula sería H 0 : β 2 = 0 frente a la alternativa H 1 : β 2 0 y el contraste se llevaria a través de la expresión ˆβ 2 β 2 t n k cuyo valor muestras es en este caso ˆβ 2 = 4, 1364 S ˆβ2 S ˆβ2 Como consecuencia se obtiene el nivel critico p = P ( t 13 > 4, 1364) = 0, que permite rechazar la nulidad del coeficiente y por tanto ratifica la validez de la variable ingresos familiares para explicar el gasto en alimentación. De modo análogo, para la variable dicotómica ligada al ámbito urbano se tendría el contraste de significación H 0 : β 3 = 0 frente a la alternativa H 1 : β 3 0 y el valor muestral del estadístico t de student seria en este caso ˆβ 3 S ˆβ3 = 3, 1147, cuyo nivel critico es p = P ( t 13 > 3, 1147) = 0, 0082 Asi pues, se rechaza la nulidad del parámetro β 3 y se confirma que el ámbito de residencia también es significativo para explicar el gasto familiar aunque no tanto como los ingresos. Como resultado concluiremos que el gasto estimado en alimentación vendria dado por las siguientes expresiones: { Hogares en ámbito rural (D=0) Ŷ = 2, , 20064X Hogares en ámbito urbano (D=1) Ŷ = 5, , 20064X cuya representacion gráfica es la siguiente Ana J. López y Rigoberto Pérez 3
4 b) Analizar cuál es el efecto del ámbito de residencia sobre el gasto en alimentación En el modelo anteriormente estimado se ha estimado el efecto del ámbito de residencia sobre el consumo fijo, pero sería posible ampliar el planteamiento mediante una variable de interacción, para permitir así estudiar el efecto del ámbito sobre el efecto marginal del ingreso. Así pues, generamos una variable de interacción que viene dada por el producto de la dummy ligada al ámbito urbano y los ingresos familiares, estimándose así un nuevo modelo mínimo cuadrático en el que las tres variables resultan significativas: Ŷ = 0, (1,49613) + 0, (0,06888) X + 7, 08699D 0, (2,1233) (0,0878) para el cual se obtendría una nueva descomposición ANOVA, donde lógicamente la variación total es la misma pero ha aumentado la variación explicada V T = 141, 25 V E = 116, 762 V NE = 24, 4881 Como consecuencia se obtiene un coeficiente de determinación más elevado que el anterior R 2 = 1 û û = 0, y y nȳ 2 Dado que este modelo tiene un parámetro más la comparación debería realizarse a través del coeficiente de determinación corregido o ajustado, que en Ana J. López y Rigoberto Pérez 4
5 este caso adopta resultado R 2 = 1 ( 1 R 2) n 1 = 0, 7832, superior al del n k modelo anterior (que con la misma expresión conduce al coeficiente 0,7205). Este nuevo modelo proporciona las siguientes expresiones para los hogares en ámbito rural y urbano: { Hogares en ámbito rural (D=0) Hogares en ámbito urbano (D=1) Ŷ = 0, , 3186X Ŷ = 7, , 1269X cuya representación gráfica es la siguiente c) Se ha propuesto un modelo logit para explicar el ámbito de la residencia familiar en función de los ingresos, estimándose los parámetros: ˆβ1 = 1, 54; ˆβ 2 = 0, 088.Estudiar la proporción de aciertos de este modelo. Con los parámetros estimados se llega a la expresión logit P i Log = 1, , 088X 1 P i pudiendo despejarse las probabilidades mediante la expresión P i = eli 1 + e, Li que proporciona los resultados de la tabla siguiente, donde la comparación entre el valor observado de D y la probabilidad estimada permite identificar los 11 casos correctamente clasificados (68,8 % del total), así como 4 falsos positivos y 1 falso negativo. Ana J. López y Rigoberto Pérez 5
6 X, Renta D Estimación P i ,7503 OK ,51099 Falso positivo ,78181 Falso positivo ,82351 OK ,55478 OK ,46702 OK ,63924 Falso positivo ,78181 OK ,7503 OK ,59774 OK ,65928 Falso positivo ,24968 OK ,34069 Falso negativo ,55478 OK ,65929 OK ,8787 OK PRACTICA 4.2- Sobre una muestra de 58 países se ha estimado un modelo para la proporción de población universitaria (Y, en %) en función de la tasa de paro (X 2, en %), la renta per cápita (X 3, en miles de euros) y una variable dicotómica con valor unitario para países de la Unión Europea (D UE ): Ŷ i = 1, , 74 X 2i + 11, 084 (2,93) (0,891) (3,294) D UE i 3, 245 X 2i Di UE + 0, 121X 3i Di UE (1,024) û û = 68, 13 ; R 2 = 0, 7331 (0,014) a) Se puede afirmar que la pertenencia a la UE afecta a la tasa de universitarios? Cómo? b) Calcular razonadamente el valor del estadístico F de Snedecor interpretando su resultado c) Cuál será la proporción de universitarios prevista para un país de la UE con tasa de paro del 5 % y renta per cápita de euros? SOLUCIÓN: a) Se puede afirmar que la pertenencia a la UE afecta a la tasa de universitarios? Cómo? Tal y como se observa en el modelo estimado, la pertenencia a la UE afecta a la tasa de universitarios por sí misma y al interaccionar con las variables Paro y Renta. Más concretamente, podemos expresar los modelos diferenciados para la proporción de universitarios según que los países pertenezcan o no a la UE: { Di UE = 0 Ŷi = 1, , 74X 2i = 1 Ŷi = 9, 641 0, 505X 2i + 0, 121X 3i D UE i b) Calcular razonadamente el valor del estadístico F de Snedecor interpretando su resultado Ana J. López y Rigoberto Pérez 6
7 El estadístico F permite analizar la validez global del modelo, contrastando la hipótesis nula H 0 : β 2 = β 3 = β 4 = β 5 = 0 mediante las expresiones: o alternativamente R 2 k 1 1 R 2 n k ˆβ X y nȳ 2 k 1 û û n k F k 1 n k F k 1 n k Con la información muestral disponible en nuestro caso se obtiene el resultado F = 42, 68 que lleva asociado un nivel critico p = P ( F 4 53 > 42, 68 ) 0 y por tanto permite rechazar la hipótesis nula, confirmando que el modelo propuesto tiene sentido. c) Cuál será la proporción de universitarios prevista para un país de la UE con tasa de paro del 5 % y renta per cápita de euros? Dado que el país pertenece a la UE, la variable dummy tomaría valor 1, y con los valores asumidos para las explicativas tasa de paro y renta per cápita se obtendría la predicción: Ŷi = 9, 641 0, 505(5) + 0, 121(26) = 10, 262. Ana J. López y Rigoberto Pérez 7
ESTADÍSTICA. Tema 4 Regresión lineal simple
ESTADÍSTICA Grado en CC. de la Alimentación Tema 4 Regresión lineal simple Estadística (Alimentación). Profesora: Amparo Baíllo Tema 4: Regresión lineal simple 1 Estructura de este tema Planteamiento del
TEMA 3: Contrastes de Hipótesis en el MRL
TEMA 3: Contrastes de Hipótesis en el MRL Econometría I M. Angeles Carnero Departamento de Fundamentos del Análisis Económico Curso 2011-12 Econometría I (UA) Tema 3: Contrastes de Hipótesis Curso 2011-12
1 Introducción. 2 Modelo. Hipótesis del modelo MODELO DE REGRESIÓN LOGÍSTICA
MODELO DE REGRESIÓN LOGÍSTICA Introducción A grandes rasgos, el objetivo de la regresión logística se puede describir de la siguiente forma: Supongamos que los individuos de una población pueden clasificarse
Tercera práctica de REGRESIÓN.
Tercera práctica de REGRESIÓN. DATOS: fichero practica regresión 3.sf3 1. Objetivo: El objetivo de esta práctica es aplicar el modelo de regresión con más de una variable explicativa. Es decir regresión
INFERENCIA ESTADÍSTICA. Metodología de Investigación. Tesifón Parrón
Metodología de Investigación Tesifón Parrón Contraste de hipótesis Inferencia Estadística Medidas de asociación Error de Tipo I y Error de Tipo II α β CONTRASTE DE HIPÓTESIS Tipos de Test Chi Cuadrado
Teorema Central del Límite (1)
Teorema Central del Límite (1) Definición. Cualquier cantidad calculada a partir de las observaciones de una muestra se llama estadístico. La distribución de los valores que puede tomar un estadístico
Diplomatura en Ciencias Empresariales X Y 10 10000 100 1000 1000 100 10000 10
DEPARTAMENTO DE ESTADÍSTICA E INVESTIGACIÓN OPERATIVA Diplomatura en Ciencias Empresariales ESTADÍSTICA II Relación Tema 10: Regresión y correlación simple. 1. Ajustar una función potencial a los siguientes
ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua
ESTADÍSTICA Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal Cuantitativa discreta continua DISTRIBUCIÓN DE FRECUENCIAS Frecuencia absoluta: fi Frecuencia relativa:
INTERPRETACIÓN DE LA REGRESIÓN. Interpretación de la regresión
INTERPRETACIÓN DE LA REGRESIÓN Este gráfico muestra el salario por hora de 570 individuos. 1 Interpretación de la regresión. regresión Salario-Estudios Source SS df MS Number of obs = 570 ---------+------------------------------
REGRESIÓN LINEAL SIMPLE, COEFICIENTE DE DETERMINACIÓN Y CORRELACIONES (EJERCICIOS RESUELTOS)
1 REGRESIÓN LINEAL SIMPLE, COEFICIENTE DE DETERMINACIÓN Y CORRELACIONES (EJERCICIOS RESUELTOS) 1. EN LA REGIÓN DE DRAKUL DE LA REPÚBLICA DE NECROLANDIA, LAS AUTORIDADES ECONÓMICAS HAN REALIZADO UNA REVISIÓN
Tema 5. Contraste de hipótesis (I)
Tema 5. Contraste de hipótesis (I) CA UNED de Huelva, "Profesor Dr. José Carlos Vílchez Martín" Introducción Bienvenida Objetivos pedagógicos: Conocer el concepto de hipótesis estadística Conocer y estimar
2 Introducción a la inferencia estadística Introducción Teoría de conteo Variaciones con repetición...
Contenidos 1 Introducción al paquete estadístico S-PLUS 19 1.1 Introducción a S-PLUS............................ 21 1.1.1 Cómo entrar, salir y consultar la ayuda en S-PLUS........ 21 1.2 Conjuntos de datos..............................
INFERENCIA ESTADISTICA
1 INFERENCIA ESTADISTICA Es una rama de la Estadística que se ocupa de los procedimientos que nos permiten analizar y extraer conclusiones de una población a partir de los datos de una muestra aleatoria,
1 Introducción. 2 Modelo. Hipótesis del modelo. MODELO DE REGRESIÓN MÚLTIPLE Julián de la Horra Departamento de Matemáticas U.A.M.
MODELO DE REGRESIÓN MÚLTIPLE Julián de la Horra Departamento de Matemáticas U.A.M. 1 Introducción Abordaremos en este capítulo el modelo de regresión lineal múltiple, una vez que la mayor parte de las
Pregunta 1. Pregunta 2. Pregunta 3. Pregunta 4. Pregunta 5. Pregunta 6. Pregunta 7. Comenzado el lunes, 25 de marzo de 2013, 17:24
Comenzado el lunes, 25 de marzo de 2013, 17:24 Estado Finalizado Finalizado en sábado, 30 de marzo de 2013, 17:10 Tiempo empleado 4 días 23 horas Puntos 50,00/50,00 Calificación 10,00 de un máximo de 10,00
Multicolinealidad. Universidad de Granada. RSG Incumplimiento de las hipótesis básicas en el modelo lineal uniecuacional múltiple 1 / 17
Román Salmerón Gómez Universidad de Granada RSG Incumplimiento de las hipótesis básicas en el modelo lineal uniecuacional múltiple 1 / 17 exacta: aproximada: exacta: aproximada: RSG Incumplimiento de las
CONTRASTES DE HIPÓTESIS NO PARAMÉTRICOS
CONTRASTES DE HIPÓTESIS NO PARAMÉTRICOS 1 POR QUÉ SE LLAMAN CONTRASTES NO PARAMÉTRICOS? A diferencia de lo que ocurría en la inferencia paramétrica, ahora, el desconocimiento de la población que vamos
Hoja de Ejercicios 4 Análisis de regresión con información cualitativa
Hoja de Ejercicios 4 Análisis de regresión con información cualitativa Nota: En aquellos ejercicios en los que se incluyen estimaciones y referencia al archivo de datos utilizado, el estudiante debería
3. ASOCIACIÓN ENTRE DOS VARIABLES CUALITATIVAS
1. INTRODUCCIÓN Este tema se centra en el estudio conjunto de dos variables. Dos variables cualitativas - Tabla de datos - Tabla de contingencia - Diagrama de barras - Tabla de diferencias entre frecuencias
Estadística y sus aplicaciones en Ciencias Sociales 7. El modelo de regresión simple. Facultad de Ciencias Sociales - UdelaR
Estadística y sus aplicaciones en Ciencias Sociales 7. El modelo de regresión simple Facultad de Ciencias Sociales - UdelaR Índice 7.1 Introducción 7.2 Análisis de regresión 7.3 El Modelo de Regresión
Agro 6998 Conferencia 2. Introducción a los modelos estadísticos mixtos
Agro 6998 Conferencia Introducción a los modelos estadísticos mixtos Los modelos estadísticos permiten modelar la respuesta de un estudio experimental u observacional en función de factores (tratamientos,
Regresión con variables independientes cualitativas
Regresión con variables independientes cualitativas.- Introducción...2 2.- Regresión con variable cualitativa dicotómica...2 3.- Regresión con variable cualitativa de varias categorías...6 2.- Introducción.
Estructura de este tema. Tema 3 Contrastes de hipótesis. Ejemplo
Estructura de este tema Tema 3 Contrastes de hipótesis José R. Berrendero Departamento de Matemáticas Universidad Autónoma de Madrid Qué es un contraste de hipótesis? Elementos de un contraste: hipótesis,
INSTITUTO NACIONAL DE ESTADÍSTICAS (INE) 29 de Abril de 2016
ANEXO ESTADÍSTICO 1 : COEFICIENTES DE VARIACIÓN Y ERROR ASOCIADO AL ESTIMADOR ENCUESTA NACIONAL DE EMPLEO (ENE) INSTITUTO NACIONAL DE ESTADÍSTICAS (INE) 9 de Abril de 016 1 Este anexo estadístico es una
3.1 Proyección de la Demanda. Fundación Bariloche. Noviembre de Documento PDF.
3.1 Proyección de la Demanda. Fundación Bariloche. Noviembre de 2008. Documento PDF. 5. PROYECCIONES DE LA DEMANDA DE ENERGIA Estudio Prospectiva de la Demanda de Energía de República Dominicana Informe
478 Índice alfabético
Índice alfabético Símbolos A, suceso contrario de A, 187 A B, diferencia de los sucesos A y B, 188 A/B, suceso A condicionado por el suceso B, 194 A B, intersección de los sucesos A y B, 188 A B, unión
Contraste de hipótesis Tema Pasos del contraste de hipótesis. 1.1 Hipótesis estadísticas: nula y alternativa. 1.3 Estadístico de contraste
1 Contraste de hipótesis Tema 3 1. Pasos del contraste de hipótesis 1.1 Hipótesis estadísticas: nula y alternativa 1.2 Supuestos 1.3 Estadístico de contraste 1.4 Regla de decisión: zona de aceptación y
Tipo de punta (factor) (bloques)
Ejemplo Diseño Bloques al Azar Ejercicio -6 (Pág. 99 Montgomery) Probeta Tipo de punta (factor) (bloques) 9. 9. 9.6 0.0 9. 9. 9.8 9.9 9. 9. 9.5 9.7 9.7 9.6 0.0 0. ) Representación gráfica de los datos
Introducción a la regresión ordinal
Introducción a la regresión ordinal Jose Barrera [email protected] 20 de mayo 2009 Jose Barrera (UAB) Introducción a la regresión ordinal 20 de mayo 2009 1 / 11 Introducción a la regresión ordinal 1
ÍNDICE INTRODUCCIÓN... 21
INTRODUCCIÓN... 21 CAPÍTULO 1. ORGANIZACIÓN DE LOS DATOS Y REPRESENTACIONES GRÁFICAS... 23 1. ORGANIZACIÓN DE LOS DATOS... 23 1.1. La distribución de frecuencias... 24 1.2. Agrupación en intervalos...
ANEXO 1. CONCEPTOS BÁSICOS. Este anexo contiene información que complementa el entendimiento de la tesis presentada.
ANEXO 1. CONCEPTOS BÁSICOS Este anexo contiene información que complementa el entendimiento de la tesis presentada. Aquí se exponen técnicas de cálculo que son utilizados en los procedimientos de los modelos
Tema 2. Descripción Conjunta de Varias Variables
Tema 2. Descripción Conjunta de Varias Variables Cuestiones de Verdadero/Falso 1. La covarianza mide la relación lineal entre dos variables, pero depende de las unidades de medida utilizadas. 2. El análisis
Objetivos del tema. Qué es una hipótesis? Test de Hipótesis Introducción a la Probabilidad y Estadística. Contrastando una hipótesis
Objetivos del tema Conocer el proceso para contrastar hipótesis y su relación con el método científico. Diferenciar entre hipótesis nula y alternativa Nivel de significación Test de Hipótesis Introducción
Pruebas de Hipótesis-ANOVA. Curso de Seminario de Tesis Profesor QF Jose Avila Parco Año 2016
Pruebas de Hipótesis-ANOVA Curso de Seminario de Tesis Profesor Q Jose Avila Parco Año 2016 Análisis de la Varianza de un factor (ANOVA) El análisis de la varianza (ANOVA) es una técnica estadística paramétrica
1. Caso no lineal: ajuste de una función potencial
1. Caso no lineal: ajuste de una función potencial La presión (P) y el volumen (V ) en un tipo de gas están ligados por una ecuación del tipo PV b = a, siendo a y b dos parámetros desconocidos. A partir
Medidas de dispersión
Medidas de dispersión Las medidas de dispersión nos informan sobre cuánto se alejan del centro los valores de la distribución. Las medidas de dispersión son: Rango o recorrido El rango es la diferencia
Facultad de Ciencias Sociales - Universidad de la República
Facultad de Ciencias Sociales - Universidad de la República Estadística y sus aplicaciones en Ciencias Sociales Edición 2016 Ciclo Avanzado 3er. Semestre (Licenciatura en Ciencia Política/ Licenciatura
Esquema (1) Análisis de la Varianza y de la Covarianza. ANOVA y ANCOVA. ANOVA y ANCOVA 1. Análisis de la Varianza de 1 Factor
Esquema (1) Análisis de la arianza y de la Covarianza ANOA y ANCOA 1. (Muestras independientes). () 3. Análisis de la arianza de Factores 4. Análisis de la Covarianza 5. Análisis con más de Factores J.F.
Contrastes de hipótesis paramétricos
Estadística II Universidad de Salamanca Curso 2011/2012 Outline Introducción 1 Introducción 2 Contraste de Neyman-Pearson Sea X f X (x, θ). Desonocemos θ y queremos saber que valor toma este parámetro,
Tema 5: Introducción a la inferencia estadística
Tema 5: Introducción a la inferencia estadística 1. Planteamiento y objetivos 2. Estadísticos y distribución muestral 3. Estimadores puntuales 4. Estimadores por intervalos 5. Contrastes de hipótesis Lecturas
DEPARTAMENTO DE MATEMÁTICAS. IES GALLICUM
UNIDAD I: NÚMEROS (6 Horas) 1.- Repasar el cálculo con números racionales y potencias de exponente entero. 2.- Resolver problemas de la vida cotidiana en los que intervengan los números racionales. 1.-
MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES
MATEMÁTICAS APLICADAS A LAS CC SOCIALES CAPÍTULO 2 Curso preparatorio de la prueba de acceso a la universidad para mayores de 25 años curso 2010/11 Nuria Torrado Robles Departamento de Estadística Universidad
ENUNCIADOS DE PROBLEMAS
UNIVERSIDAD CARLOS III DE MADRID ECONOMETRÍA I 22 de Septiembre de 2007 ENUNCIADOS DE PROBLEMAS Muy importante: Tenga en cuenta que algunos resultados de las tablas han podido ser omitidos. PROBLEMA 1:
Tema 4: Probabilidad y Teoría de Muestras
Tema 4: Probabilidad y Teoría de Muestras Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 4: Probabilidad y Teoría de Muestras Curso 2008-2009
GRADO EN ECONOMIA SEGUNDO CURSO
GRADO EN ECONOMIA SEGUNDO CURSO Asignatura Estadística II Código 802354 Módulo Métodos cuantitativos Materia Carácter Obligatorio Presenciales 2,7 Créditos 6 No presenciales 3,3 Curso 2 Semestre 3 Estadística
INTRODUCCIÓN DIAGRAMA DE DISPERSIÓN. Figura1
Capítulo 5 Análisis de regresión INTRODUCCIÓN OBJETIVO DE LA REGRESIÓN Determinar una función matemática sencilla que describa el comportamiento de una variable dadoslosvaloresdeotrauotrasvariables. DIAGRAMA
Reporte de Pobreza por Ingresos JUNIO 2015
Reporte de Pobreza por Ingresos JUNIO 2015 1 Resumen Ejecutivo En el presente documento se exhiben los resultados obtenidos en el cálculo de pobreza y desigualdad por ingresos a partir de la Encuesta Nacional
TÉCNICAS ESTADÍSTICAS APLICADAS EN NUTRICIÓN Y SALUD
TÉCNICAS ESTADÍSTICAS APLICADAS EN NUTRICIÓN Y SALUD Contrastes de hipótesis paramétricos para una y varias muestras: contrastes sobre la media, varianza y una proporción. Contrastes sobre la diferencia
MODELO ECONOMÉTRICO. José María Cara Carmona. Adrián López Ibáñez. Explicación del desempleo
José María Cara Carmona Adrián López Ibáñez MODELO ECONOMÉTRICO Explicación del desempleo Desarrollaremos un modelo econométrico para intentar predecir el desempleo. Trataremos los diversos problemas que
INTERVALOS DE CONFIANZA. La estadística en cómic (L. Gonick y W. Smith)
INTERVALOS DE CONFIANZA La estadística en cómic (L. Gonick y W. Smith) EJEMPLO: Será elegido el senador Astuto? 2 tamaño muestral Estimador de p variable aleatoria poblacional? proporción de personas que
Prácticas de Ecología Curso 3 Práctica 1: Muestreo
PRÁCTICA 1: MUESTREO Introducción La investigación ecológica se basa en la medición de parámetros de los organismos y del medio en el que viven. Este proceso de toma de datos se denomina muestreo. En la
TEMA 4 ELABORACIÓN Y COMPROBACIÓN DE LAS HIPÓTESIS DE INVESTIGACIÓN
TEMA 4 ELABORACIÓN Y COMPROBACIÓN DE LAS HIPÓTESIS DE INVESTIGACIÓN 1 MODELO LINEAL GENERAL applemodelo estadístico appledescribe una combinación lineal de los efectos aditivos que forman la puntuación
15. Regresión lineal. Te recomiendo visitar su página de apuntes y vídeos:
15. Regresión lineal Este tema, prácticamente íntegro, está calacado de los excelentes apuntes y transparencias de Bioestadística del profesor F.J. Barón López de la Universidad de Málaga. Te recomiendo
A qué nos referimos con medidas de dispersión?
Estadística 1 Sesión No. 4 Nombre: Medidas de dispersión. Contextualización A qué nos referimos con medidas de dispersión? En esta sesión aprenderás a calcular las medidas estadísticas de dispersión, tal
A/42/10 ANEXO IV TASAS DEL PCT Y MECANISMOS RELATIVOS AL TIPO DE CAMBIO
ANEXO IV TASAS DEL PCT Y MECANISMOS RELATIVOS AL TIPO DE CAMBIO Reseña 1. Las previsiones y los ingresos del PCT en la Oficina Internacional se expresan en francos suizos. Sin embargo, los solicitantes
Nivel socioeconómico medio. Nivel socioeconómico alto SI 8 15 28 51 NO 13 16 14 43 TOTAL 21 31 42 94
6. La prueba de ji-cuadrado Del mismo modo que los estadísticos z, con su distribución normal y t, con su distribución t de Student, nos han servido para someter a prueba hipótesis que involucran a promedios
Econometría de Económicas
Econometría de Económicas Caso 2.- Función de Producción Cobb- Douglas Prof. Amparo Sancho El objetivo de este ejercicio es practicar los primeros conocimientos básicos de econometría con la función de
Validación de los métodos microbiológicos HERRAMIENTAS ESTADISTICAS. Bqca. QM Alicia I. Cuesta, Consultora Internacional de la FAO
Validación de los métodos microbiológicos HERRAMIENTAS ESTADISTICAS Bqca. QM Alicia I. Cuesta, Consultora Internacional de la FAO Objetivos de la clase Objetivos de la estadística. Concepto y parámetros
Econometria de Datos en Paneles
Universidad de San Andres Agosto de 2011 Porque paneles? Ejemplo (Cronwell y Trumbull): Determinantes del crimen y = g(i), y = crimen, I = variables de justicia criminal. Corte transversal: (y i, I i )
ANÁLISIS DISCRIMINANTE
DEFINICIÓN: Cómo técnica de análisis de dependencia: Pone en marcha un modelo de causalidad en el que la variable endógena es una variable NO MÉTRICA y las independientes métricas. Cómo técnica de análisis
UNIVERSIDAD AUTONOMA DE SANTO DOMINGO
UNIVERSIDAD AUTONOMA DE SANTO DOMINGO FACULTAD DE CIENCIAS ECONOMICAS Y SOCIALES DEPARTAMENTO DE ESTADISITICA CATEDRA Estadística Especializada ASIGNATURA Estadística Descriptiva Para Psicólogos (EST-225)
Estadística Descriptiva. SESIÓN 11 Medidas de dispersión
Estadística Descriptiva SESIÓN 11 Medidas de dispersión Contextualización de la sesión 11 En la sesión anterior se explicaron los temas relacionados con la dispersión, una de las medidas de dispersión,
El Modelo de Regresión Simple
El Modelo de Regresión Simple Carlos Velasco 1 1 Departamento de Economía Universidad Carlos III de Madrid Econometría I Máster en Economía Industrial Universidad Carlos III de Madrid Curso 2007/08 C Velasco
Tema 2.- Formas Cuadráticas.
Álgebra. 004 005. Ingenieros Industriales. Departamento de Matemática Aplicada II. Universidad de Sevilla. Tema.- Formas Cuadráticas. Definición y representación matricial. Clasificación de las formas
Funciones de Regresión No Lineales (SW Cap. 6)
Funciones de Regresión No Lineales (SW Cap. 6) Todo anteriormente ha sido lineal en las X s La aproximación de que la función de regresión es lineal puede ser satisfactoria para algunas variables pero
1º CURSO BIOESTADÍSTICA
E.U.E. MADRID CRUZ ROJA ESPAÑOLA UNIVERSIDAD AUTÓNOMA DE MADRID CURSO ACADÉMICO 2012/2013 1º CURSO BIOESTADÍSTICA Coordinación: Eva García-Carpintero Blas Profesores: María de la Torre Barba Fernando Vallejo
CDEE. Cuestiones 3er Ejercicio. 0 si x 1. k(x + 1) + x2 1. k(x + 1) x si x > 1
CUESTIÓN 1: El tiempo de retraso, medido en minutos, del AVE Madrid-Sevilla sigue una variable aleatoria continua con función de distribución: 0 si x 1 F (x) = k(x + 1) + x2 1 2 si 1 < x 0 k(x + 1) x2
Reporte de Pobreza y Desigualdad DICIEMBRE 2015
Reporte de Pobreza y Desigualdad DICIEMBRE 2015 1 Reporte de Pobreza y Desigualdad - Diciembre 2015 Dirección responsable de la información estadística y contenidos: Dirección de Innovación en Métricas
RESUMEN DE ALGUNOS CONCEPTOS ESTADÍSTICOS ELEMENTALES Y NOTACIÓN EMPLEADA EN EL CURSO
RESUMEN DE ALGUNOS CONCEPTOS ESTADÍSTICOS ELEMENTALES Y NOTACIÓN EMPLEADA EN EL CURSO 1 rojo 1 2 3 4 5 6 Supongamos que tenemos dos dados, uno rojo y otro verde, cada uno de los cuales toma valores entre
Estadística descriptiva y métodos diagnósticos
2.2.1. Estadística descriptiva y métodos diagnósticos Dra. Ana Dorado Díaz Consejería de Sanidad Diplomado en Salud Pública Diplomado en Salud Pública - 2 Objetivos específicos 1. El alumno aprenderá a
CAPITULO V CONCLUSIONES. a) El índice de Gini, Theil y el Coeficiente de Variación la Distribución Salarial se
CAPITULO V CONCLUSIONES 5.1 Conclusiones del Análisis A partir de los resultados obtenidos se llevan cabo las siguientes conclusiones: a) El índice de Gini, Theil y el Coeficiente de Variación la Distribución
Esta expresión polinómica puede expresarse como una expresión matricial de la forma; a 11 a 12 a 1n x 1 x 2 q(x 1, x 2,, x n ) = (x 1, x 2,, x n )
Tema 3 Formas cuadráticas. 3.1. Definición y expresión matricial Definición 3.1.1. Una forma cuadrática sobre R es una aplicación q : R n R que a cada vector x = (x 1, x 2,, x n ) R n le hace corresponder
CAPÍTULO 10 ESTIMACIÓN POR PUNTO Y POR INTERVALO 1.- ESTIMACIÓN PUNTUAL DE LA MEDIA Y DE LA VARIANZA 2.- INTERVALO DE CONFIANZA PARA LA MEDIA
CAPÍTULO 10 ESTIMACIÓN POR PUNTO Y POR INTERVALO 1.- ESTIMACIÓN PUNTUAL DE LA MEDIA Y DE LA VARIANZA 2.- INTERVALO DE CONFIANZA PARA LA MEDIA 3.- INTERVALO DE CONFIANZA PARA LA VARIANZA 4.- INTERVALO DE
Análisis de datos Categóricos
Introducción a los Modelos Lineales Generalizados Universidad Nacional Agraria La Molina 2016-1 Introducción Modelos Lineales Generalizados Introducción Componentes Estimación En los capítulos anteriores
Universidad Carlos III de Madrid Econometría Funciones de regresión no lineales Hoja de Ejercicios 8
Universidad Carlos III de Madrid Econometría Funciones de regresión no lineales Hoja de Ejercicios 8 1. Las ventas de una empresa son de 196 millones de dólares en 2009 y aumentaron hasta los 198 millones
Técnicas Cuantitativas para el Management y los Negocios I
Técnicas Cuantitativas para el Management y los Negocios I Licenciado en Administración Módulo II: ESTADÍSTICA INFERENCIAL Contenidos Módulo II Unidad 4. Probabilidad Conceptos básicos de probabilidad:
DIPLOMADO EN RELACIONES LABORALES Estadística Asistida por Ordenador Curso 2008-2009
Índice general 6. Regresión Múltiple 3 6.1. Descomposición de la variabilidad y contrastes de hipótesis................. 4 6.2. Coeficiente de determinación.................................. 5 6.3. Hipótesis
4,2 + 0,67 Y c) R 2 = 0,49. 3.- En la estimación de un modelo de regresión lineal se ha obtenido:
INTRODUCCIÓN A LA ESTADÍSTICA. Relación 4: REGRESIÓN Y CORRELACIÓN 1.- En una población se ha procedido a realizar observaciones sobre un par de variables X e Y. Xi 4 5 4 5 6 5 6 6 Yi 1 1 3 3 3 4 4 ni
Desigualdad y diversidad en América Latina: hacia un análisis tipológico comparado.
Desigualdad y diversidad en América Latina: hacia un análisis tipológico comparado. Fachelli, Sandra; López, Néstor.; López Roldán, Pedro y Sourrouille, Florencia. Department de Sociologia Universitat
Reporte de Pobreza. Marzo 2016
Reporte de Pobreza Marzo 2016 1 Reporte de Pobreza - Marzo 2016 Dirección responsable de la información estadística y contenidos: Dirección de Innovación en Métricas y Metodologías Realizadores: Melody
El modelo semiclásico de las propiedades de transporte: Objetivo
El modelo semiclásico de las propiedades de transporte: Objetivo En el estudio de las propiedades de transporte se usa una aproximación que se basa en los principios usado para el estudio de los electrones
UNIDAD 6. Estadística
Matemática UNIDAD 6. Estadística 2 Medio GUÍA N 1 MEDIDAS DE DISPERSIÓN PARA DATOS NO AGRUPADOS ACTIVIDAD Consideremos los siguientes conjuntos de valores referidos a las edades de los jugadores de dos
Práctica 9: Anova (2).
Práctica 9: Anova (2) Dedicamos esta práctica al estudio de modelos bifactoriales del análisis de la varianza Veremos concretamente diseños bifactoriales con y sin interacción, diseño por bloques al azar
SCUACAC030MT22-A16V1. SOLUCIONARIO Ejercitación Operatoria de Logaritmos
SCUACAC00MT-A6V SOLUCIONARIO Ejercitación Operatoria de Logaritmos TABLA DE CORRECCIÓN GUÍA PRÁCTICA EJERCITACIÓN DE OPERATORIA DE LOGARITMOS Ítem Alternativa B A A 4 A 5 B 6 E ASE 7 B ASE B 9 B 0 E D
ESTRUCTURA DEL EXAMEN DE MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II PARA ALUMNOS DE BACHILLERATO
ESTRUCTURA DEL EXAMEN DE MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II PARA ALUMNOS DE BACHILLERATO El examen presentará dos opciones diferentes entre las que el alumno deberá elegir una y responder
ÁREA: MATEMÁTICAS UNIDAD : 1 TEMPORALIZACIÓN: OCTUBRE 1ª QUINCENA OBJETIVOS CONTENIDOS CRITERIOS DE EVALUACIÓN
ÁREA: MATEMÁTICAS UNIDAD : 1 TEMPORALIZACIÓN: OCTUBRE 1ª QUINCENA Conocer los nueve primeros órdenes de unidades y las equivalencias entre ellos. Leer, escribir y descomponer números de hasta nueve cifras.
Estadística II Examen Final - Enero 2012. Responda a los siguientes ejercicios en los cuadernillos de la Universidad.
Estadística II Examen Final - Enero 2012 Responda a los siguientes ejercicios en los cuadernillos de la Universidad. No olvide poner su nombre y el número del grupo de clase en cada hoja. Indique claramente
Estadística aplicada al Periodismo
Estadística aplicada al Periodismo Primera prueba parcial (B) Alumno: Grupo: Fecha: Ejercicio. La Encuesta de Pobreza y Desigualdades Sociales (EPDS) realizada por el Gobierno Vasco tiene como objetivo
MODELO DE REGRESIÓN LINEAL Y MÚLTIPLE ESTADÍSTICA APLICADA AL MEDIO AMBIENTE Grado en Ciencias Ambientales
MODELO DE REGRESIÓN LINEAL Y MÚLTIPLE ESTADÍSTICA APLICADA AL MEDIO AMBIENTE Grado en Ciencias Ambientales 3.1. En algunas reservas naturales se controla el número Y de ejemplares de cierta especie al
UNIDAD 12.- Estadística. Tablas y gráficos (tema12 del libro)
UNIDAD 12.- Estadística. Tablas y gráficos (tema12 del libro) 1. ESTADÍSTICA: CLASES Y CONCEPTOS BÁSICOS En sus orígenes históricos, la Estadística estuvo ligada a cuestiones de Estado (recuentos, censos,
2.- Tablas de frecuencias
º BACHILLERATO MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II TEMA 3.- ESTADÍSTICA DESCRIPTIVA PROFESOR: RAFAEL NÚÑEZ -----------------------------------------------------------------------------------------------------------------------------------------------------------------
a. Poisson: los totales marginales y el total muestral varían libremente.
TEMA 2º: TABLAS DE CONTINGENCIA BIDIMENSIONALES 1º Distribución de frecuencias observadas El único aspecto cuantificable en el análisis cualitativo es el número de individuos que presenta una combinación
Simulación I. Investigación Operativa, Grado en Estadística y Empresa, 2011/12
Simulación I Prof. José Niño Mora Investigación Operativa, Grado en Estadística y Empresa, 2011/12 Esquema Modelos de simulación y el método de Montecarlo Ejemplo: estimación de un área Ejemplo: estimación
