Econometria de Datos en Paneles
|
|
|
- Marcos Calderón Vega
- hace 9 años
- Vistas:
Transcripción
1 Universidad de San Andres Agosto de 2011
2 Porque paneles? Ejemplo (Cronwell y Trumbull): Determinantes del crimen y = g(i), y = crimen, I = variables de justicia criminal. Corte transversal: (y i, I i ) para varias regiones i = 1,..., n I resulta muy importante Critica: I capta el efecto de otros efectos regionales, que tambien son determinantes del crimen.
3 En terminos econometricos Existe una variable omitida y relacionada positivamente con I. El estimador de MCO que regresa y en I es sesgado (hacia arriba) Solucion? Controlar por esta varaible omitida. Paneles al rescate: una solucion simple sin tener que incorporar nuevas variables
4 Datos en paneles Una base de datos en panel contiene informacion para varios individuos (empresas, paises, etc.) en el tiempo. El aspecto fundamental es esta bidimensionalidad de los datos. Ejemplos: PSID: 6500 familias desde La EPH tiene una estructura de panel rotativo.
5 Ventajas Porque paneles? Control de heterogeneidades no observables Con N individuos y T periodos podriamos estimar N modelos de series de tiempo y T modelos de corte transversal. Las ventajas de disponer de un panel tienen que ver con la posibilidad de agregar esta informacin de alguna manera. Ejemplo: y it = x it β + u it Supone que el modelo lineal subyacente es el mismo para todos los individuos y periodos. Mayor informacion sobre un mismo parametro. Mayor eficiencia.
6 Desventajas No siempre es posible agregar informacion temporal y de corte transversal (pueden ser ms observaciones pero de poblaciones heterogeneas). Los paneles son costosos de implementar y administrar. Problemas de selectividad: auto-seleccion, no respuesta, attrition. Dimension temporal corta
7 El Modelo El modelo basico es: y it = x itβ + u it u it = µ i + δ t + ɛ it i = 1,..., N, t = 1,..., T. x it es un vector de K variables explicativas, incluyendo una constante. El termino de error incluye tres componentes, que representan las tres posibles fuentes de variabilidad no observable. Supondremos δ t = 0 y que ɛ it satisface todos los supuestos clasicos.
8 Caso mas simple: µ i = 0 En este caso, u it = ɛ it satisface todos los supuestos del teorema de Gauss-Markov: E(ɛ it ) = 0 { σ 2 si i = h y t = s E(ɛ it e hs ) = 0 si i h o t s El estimador de MCO es MELI. La estructura de panel no agrega informacion
9 En terminos matriciales Y = Xβ + u Y NT 1, X NT + K, apilando las observaciones por individuo, primero ordenadas temporalmente. Entonces: ˆβ MCO = (X X) 1 X Y
10 El estimador de efectos fijos y it = x itβ + µ i + ɛ it Las realizaciones de µ i pueden ser estimadas con un panel (no con un corte transversal!). Puede ser visto un modelo lineal en donde cada individuo tiene su propia ordenada al origen: y it = µ i + β 1 }{{} +β 2 x 2,it + + β K x K,it + ɛ it El modelo se puede estimar usando N 1 variables binarias por individuo, para evitar la trampa de variables binarias.
11 En terminos matriciales Y = Xβ + Dµ + u Y es NT 1, X es NT K, X incluye el intercepto. D es una matriz de N 1 variables binarias por individuo. 1 N , Z = 1 N N N NT (N 1)T
12 Reescribamos el modelo como: con Ẋ [X D] y δ [β µ ]. Y = Xβ + Dµ + u = Ẋδ + u Entonces, el estimador de efectos fijos es: ˆδ EF = ( ˆβEF ˆµ EF ) = (Ẋ Ẋ) 1 Ẋ Y que no es otra cosa que un estimador de MCO agregando N 1 variables binarias por individuo.
13 Efectos fijos y transformacion within Comencemos con el modelo y it = x itβ + µ i + ɛ it Tomando promedios por individuo: ȳ i = x iβ + µ i + ɛ i Restando y it ȳ i = (x it x i ) β + ɛ it ɛ i o yit = x it β + ɛ it con m it m it m i, m = y, x, ɛ.
14 Resultado: ˆβ EF = (X X ) 1 X Y (Prueba: Teorema de Frisch,Waugh, Lovell) Existen dos formas identicas de computar ˆβ EF. Regresar Y en X y las variables binarias por individuo. ˆβEF son los coeficientes estimados para X. En dos pasos: 1) Expresar las variables en desvios con respecto a la media por individuo. 2) MCO en base a estos desvios.
15 Terminologia: Modelo within y it ȳ i = (x it x i ) β + ɛ it ɛ i Modelo between ȳ i = x iβ + µ i + ɛ i
16 Propiedades de ˆβ EF Es insesgado (X y Dµ son exogenas con respecto a ɛ). Es consistente, cuando N o T. Importante: la insesgadez y consistencia de ˆβ EF no presupone que X y Dµ son ortogonales (puede haber correlacion entre X y Dµ
17 Efectos fijos y control de heterogeneidades no observables Supongamos que el modelo es y it = x itβ + z iδ + µ i + ɛ it z i no es observable, pero esta correlacionada con x it. La transformacion within de este modelo es y it = x it β + ɛ it La tranformacion within elimina cualquier variable que no varia en el tiempo (z i y µ i ): estimar por efectos fijos permite controlar por la presencia de z i.
18 Es relevante notar que sin datos de panel, no podriamos haber dado cuenta de z i (que no sea incluyendola en el nodelo. Con datos de corte transversal el modelo es y i = x iβ + z iδ + µ i + ɛ i, de modoe que omitir z i conduce a sesgos. Observar que la tranformacion within es inaplicable (trivialmente cero). Este es el sentido en el cual la disponibilidad de paneles permite controlar por variables omitidas que no varian en el tiempo.
19 Una exploracion grafica
20 Verbalizacion Y = tasa de criminalidad X = ineficiencia del sistema judicial (mas ineficiente, mas criminalidad). Dos regiones Determinante omitido del crimen, a que varia solo por region y correlacionado (positivamete) con la ineficiencia judicial: densidad poblacional.
21
22
23 El estimador de efectos aleatorios El modelo es el mismo En terminos matriciales y it = x itβ + µ i + ɛ it Y = Xβ + Dµ + ɛ Si Dµ es ortogonal a X, y si E(µ i X) = 0, entonces, el estimador de MCO que regresa Y en X es insesgado. Es decir, si Dµ es ortogonal a X, la omision de las variables binarias no sesga al estimador de MCO.
24 Efectos fijos vs aleatorios Discusion muy extraña. Es mas una cuestion de tratamiento Y = Xβ + Dµ + ɛ Efectos fijos (controla por Dµ) Y = Xβ + Dµ + ɛ Efectos aleatorios (trata a Dµ como variable omitida) Y = Xβ + Dµ + ɛ
25 Y = Xβ + Dµ + ɛ Y = Xβ + u, u Dµ + ɛ Problema: u no satisface los supuestos clasicos, aun cuando Dµ y ɛ por separado lo hagan. Prueba simple: supuestos clasicos por separado (esperanza nula, no correlacion ni heterocedasticidad), ademas, no correlacion entre Dµ y ɛ. Entonces V (u) = V (Dµ + ɛ) = DV (µ)d + V (ɛ) = σ 2 µ + σ 2 ɛ I NT que no es un escalar por la matriz identidad (los elementos fuera de la diagonal no son cero).
26 Intuicion: u it = µ i + ɛ it Trivialmente, u it esta correlacionado con u i,t 1 ya que ambos comparten µ i : la presencia permanente de µ i hace que la especificacion de efectos aleatorios induzca autocorrelacion. Si bien MCO es insesgado, no es eficiente, por la presencia de autocorrelacion. Eficiente? Minimos cuadrados generalizados.
27 MCG para efectos aleatorios Consideremos un modelo lineal basico: Y = X β + u en donde valen todos los supuestos clasicos, salvo que: V (u) = Ω Ω es una matriz simetrica y positiva definida (permite, potencialmente, autocorrelacion y heterocedasticidad). Teorema (Aitken): el MELI de β es: ˆβ MCG = (X Ω 1 X) 1 X Ω 1 Y
28 En nuestro caso con θ = (σ 2 µ, σ 2 ɛ ) V (u) = σ 2 µdd + σ 2 ɛ I NT Ω(θ) La implementacion de MCG requiere primero estimar θ (los componentes de varianzas). Estimador de efectos aleatorios: estimador MCG.
29 Resumen Porque paneles? Y = Xβ + Dµ + ɛ X Dµ: MCO, EF, EA y between son todos consistentes parar β. EA es eficiente. X Dµ: solo EF es consistente para β. La practica gravita mayoritariamente a EF.
30 Test de Hausman H 0 : X Dµ, H A : X Dµ Test de Hausman: bajo H 0 H = ( ˆβ EA ˆβ EF ) (Ω EF Ω EA ) 1 ( ˆβ EA ˆβ EF ) χ 2 (K) Rechazar si H es significativamente distinto de cero. Intuicion: bajo H 0, ˆβ EA y ˆβ EF son consistentes, H deberia ser pequeño. Bajo H A, solo ˆβ EF es consistente, H deberia ser alto. Permitiria, bajo H 0, explotar las ganancias de eficiencia de estimar por EA.
Modelos Lineales para Datos en Paneles. Walter Sosa Escudero. Banco Central de Chile
Modelos Lineales para Datos en Paneles Walter Sosa Escudero. Banco Central de Chile. 2006. - 1 - Datos en paneles Una base de datos en panel contiene informacion para varios individuos (empresas, paises,
Métodos Estadísticos para Economía y Gestión IN 540 Clase 7
Métodos Estadísticos para Economía y Gestión IN 540 Clase 7 Perturbaciones no Esféricas 17 de junio de 2010 1 Preliminares Matriz de Varianzas y Covarianzas cuando ɛ t es un AR(1) Naturaleza y causas de
El problema de la endogeneidad Variables proxy Variables instrumentales STATA. Endogeneidad. Gabriel Montes-Rojas
Gabriel V. Montes-Rojas El problema de la endogeneidad Una variable es endógena si Cov(x j, error) = 0. Una variable es exógena si Cov(x j, error) = 0. Consideremos el modelo log(wage) = β 0 + β 1 educ
Regresión Lineal Múltiple
Unidad 4 Regresión Lineal Múltiple Javier Santibáñez (IIMAS, UNAM) Regresión Semestre 2017-2 1 / 35 Introducción La idea de la regresión lineal múltiple es modelar el valor esperado de la variable respuesta
Heteroscdasticidad y MCG
May 24, 2009 Modelo lineal clasico: 1 Linealidad: Y = Xβ + u. 2 Exogeneidad: E(u) = 0 3 No Multicolinealidad: ρ(x) = K. 4 No heteroscedasticidad ni correlacion serial: V (u) = σ 2 I n. Teorema de Gauss/Markov
Estadística para la Economía y la Gestión IN 3401 Clase 5
Estadística para la Economía y la Gestión IN 3401 Clase 5 Problemas con los Datos 9 de junio de 2010 1 Multicolinealidad Multicolinealidad Exacta y Multicolinealidad Aproximada Detección de Multicolinealidad
Los estimadores mínimo cuadráticos bajo los supuestos clásicos
Los estimadores mínimo cuadráticos bajo los supuestos clásicos Propiedades estadísticas e inferencia Mariana Marchionni [email protected] Mariana Marchionni MCO bajo los supuestos clásicos 1
Introduccion a los Modelos de Regresion
([email protected]) Universidad de San Andres Referencias Hayashi (2000) Capitulo 1, pp. 3-46. Cualquier texto basico de econometria (con matrices!!!) Introduccion Modelo lineal: y i = β 1 + β 2 x 2i
Estadística para la Economía y la Gestión IN 3401
Estadística para la Economía y la Gestión IN 3401 3 de junio de 2010 1 Modelo de Regresión con 2 Variables Método de Mínimos Cuadrados Ordinarios Supuestos detrás del método MCO Errores estándar de los
Estimación MCO, MCI en Modelos de Ecuaciones Simultáneas
Estimación MCO, MCI en Modelos de Ecuaciones Simultáneas Economía Aplicada III (UPV/EHU) OCW 2013 Contents 1 Estimación MCO de la Forma Estructural 2 3 4 Estimador MCO de la FE Consideremos la -ésima ecuación
ECONOMETRÍA I. Tema 3: El Modelo de Regresión Lineal Múltiple: estimación
ECONOMETRÍA I Tema 3: El Modelo de Regresión Lineal Múltiple: estimación Patricia Moreno Juan Manuel Rodriguez Poo Alexandra Soberon Departamento de Economía Alexandra Soberon (UC) ECONOMETRÍA I 1 / 45
Tema1. Modelo Lineal General.
Tema1. Modelo Lineal General. 1. Si X = (X 1, X 2, X 3, X 4 ) t tiene distribución normal con vector de medias µ = (2, 1, 1, 3) t y matriz de covarianzas 1 0 1 1 V = 0 2 1 1 1 1 3 0 1 1 0 2 Halla: a) La
Mínimos Cuadrados Generalizados
Mínimos Cuadrados Generalizados Román Salmerón Gómez Los dos últimos temas de la asignatura han estado enfocados en estudiar por separado la relajación de las hipótesis de que las perturbaciones estén
Tema 2. Heterocedasticidad. 1 El modelo de regresión lineal con errores heterocedásticos
ema 2. Heterocedasticidad. El modelo de regresión lineal con errores heterocedásticos En este tema vamos a analizar el modelo de regresión lineal Y t = X tβ + u t, donde X t = (X t, X 2t,.., X kt y β =
Multicolinealidad Introducción. Uno de los supuestos básicos del modelo lineal general. y = Xβ + u
CAPíTULO 6 Multicolinealidad 6.1. Introducción Uno de los supuestos básicos del modelo lineal general y = Xβ + u establece que las variables explicativas son linealmente independientes, es decir, la igualdad
Modelos con Datos de Panel
Modelos con Datos de Panel Econometría II Grado en Economía Universidad de Granada Modelosdedatosdepanel 1/26 Contenidos Modelosdedatosdepanel 2/26 Elmodelo Modelosdedatosdepanel 3/26 Elmodelo Hasta el
TEMA 6. Modelos para Datos de Panel
TEMA 6. Modelos para Datos de Panel Profesor: Pedro Albarrán Pérez Universidad de Alicante. Curso 2010/2011. Contenido 1 Introducción 2 Modelos estáticos Modelo con Efectos Individuales: Fijos y Aleatorios
Economía Aplicada. Datos de panel. Ver Wooldridge cap. 13 y Stock y Watson cap. 10. Departamento de Economía Universidad Carlos III de Madrid 1 / 26
Economía Aplicada Datos de panel Departamento de Economía Universidad Carlos III de Madrid Ver Wooldridge cap. 13 y Stock y Watson cap. 10 1 / 26 Datos de Panel vs Secciones Cruzadas Repetidas En el curso
Mínimos cuadrados generalizados y máxima verosimilitud
CAPíTULO 9 Mínimos cuadrados generalizados y máxima verosimilitud 9.1. Introducción En el marco del modelo clásico, los supuestos de homocedasticidad, E(u 2 i ) = σ2 u (i = 1, 2,... n), y ausencia de autocorrelación,
Tests de Hipotesis en Base al Principio de Verosimilitud
Tests de Hipotesis en Base al Principio de Verosimilitud Universidad de San Andres, Argentina Conceptos basicos Y f(y; θ), θ Θ R K. θ es un vector de K parametros. Θ es el espacio de parametros : conjunto
Experimentos de Monte Carlo. Walter Sosa-Escudero
Introduccion Test de Breusch-Pagan de heterocedasticidad: LM = 1 2 SCE g,z χ 2 (p 1) g = residuos al cuadrado, z, variables explicativas de la heterocedasticidad. Esta es una aseveracion asintotica. Que
Econometría III Examen. 29 de Marzo de 2012
Econometría III Examen. 29 de Marzo de 2012 El examen consta de 20 preguntas de respuesta múltiple. El tiempo máximo es 1:10 minutos. nota: no se pueden hacer preguntas durante el examen a no ser que sean
Walter Sosa Escudero. Universidad Nacional de Cordoba Econometría de Datos en Paneles. 19 de Mayo de 2004
Universidad Nacional de Cordoba Econometría de Datos en Paneles Walter Sosa Escudero ([email protected]) Universidad de San Andres y UNLP 19 de Mayo de 2004 Econometria de Datos en Paneles Walter Sosa
Economía Aplicada. Datos de Panel. Departmento de Economía Universidad Carlos III de Madrid
Economía Aplicada Datos de Panel Departmento de Economía Universidad Carlos III de Madrid Ver Wooldridge (capítulo 13), y Stock and Watson (capítulo 10) 1 / 38 Datos de Panel vs Secciones Cruzadas Repetidas
ESCUELA SUPERIOR POLITECNICA DEL LITORAL
ESCUELA SUPERIOR POLITECNICA DEL LITORAL PRIMER TÉRMINO 2017 ECONOMETRÍA II EXAMEN FINAL Profesor: Gonzalo E. Sánchez Yo,, al firmar este compromiso, reconozco que el presente examen está diseñado para
Índice Introducción Economía y Estadística Análisis de Regresión. Clase 1. Introducción a la Econometría. Profesor: Felipe Avilés Lucero
Clase 1 Introducción a la Econometría Profesor: Felipe Avilés Lucero 26 de mayo de 2010 1 Introducción 2 Economía y Estadística 3 Análisis de Regresión Función de Regresión Poblacional Función de Regresión
T2. El modelo lineal simple
T2. El modelo lineal simple Ana J. López y Rigoberto Pérez Dpto Economía Aplicada. Universidad de Oviedo Curso 2010-2011 Curso 2010-2011 1 / 40 Índice 1 Planteamiento e hipótesis básicas 2 Estimación de
El Modelo de Regresión Lineal
ECONOMETRÍA I El Modelo de Regresión Lineal Dante A. Urbina CONTENIDOS 1. Regresión Lineal Simple 2. Regresión Lineal Múltiple 3. Multicolinealidad 4. Heterocedasticidad 5. Autocorrelación 6. Variables
Estadística para la Economía y la Gestión IN 3401 Clase 5
Estadística para la Economía y la Gestión IN 3401 Clase 5 21 de octubre de 2009 1 Variables Dummies o cualitativas 2 Omisión de Variables Relevantes Impacto sobre el Insesgamiento Impacto sobre la Varianza
Overfit, cross validation y bootstrap
Universisad de San Andrés y CONICET Cueestiones preliminares Sea z n una sucesion de variables aleatorias escalares. Consideremos la siguiente sucesion z n = n i=1 z i n Ley de grandes numeros (Kolmogorov):
Métodos Estadísticos Multivariados
Métodos Estadísticos Multivariados Victor Muñiz ITESM Victor Muñiz (ITESM) Métodos Estadísticos Multivariados Agosto-Diciembre 2011 1 / 20 Victor Muñiz (ITESM) Métodos Estadísticos Multivariados Agosto-Diciembre
Regresión lineal simple
Regresión lineal simple Unidad 1 Javier Santibáñez IIMAS, UNAM [email protected] Semestre 2018-2 Javier Santibáñez (IIMAS, UNAM) Regresión simple Semestre 2018-2 1 / 62 Contenido 1 Planteamiento
TEMA 2: Propiedades de los estimadores MCO
TEMA 2: Propiedades de los estimadores MCO Econometría I M. Angeles Carnero Departamento de Fundamentos del Análisis Económico Curso 2011-12 Econometría I (UA) Tema 2: Pdades de los estimadores MCO Curso
EXAMEN DE ECONOMETRÍA
EXAMEN DE ECONOMETRÍA UNIVERSIDAD CARLOS III DE MADRID CURSO 2015-1 Responda todas las preguntas en 2 horas y media. Valores críticos al final del examen. 1 A partir de una muestra aleatoria de compra-venta
Regresión Simple. Leticia Gracia Medrano. 2 de agosto del 2012
Regresión Simple Leticia Gracia Medrano. [email protected] 2 de agosto del 2012 La ecuación de la recta Ecuación General de la recta Ax + By + C = 0 Cuando se conoce la ordenada al origen y su pendiente
Errores de especificación
CAPíTULO 5 Errores de especificación Estrictamente hablando, un error de especificación es el incumplimiento de cualquiera de los supuestos básicos del modelo lineal general. En un sentido más laxo, esta
ECONOMETRÍA I. Tema 2: El Modelo de Regresión Lineal Simple. Patricia Moreno Juan Manuel Rodriguez Poo Alexandra Soberon Departamento de Economía
ECONOMETRÍA I Tema 2: El Modelo de Regresión Lineal Simple Patricia Moreno Juan Manuel Rodriguez Poo Alexandra Soberon Departamento de Economía Alexandra Soberon (UC) ECONOMETRÍA I 1 / 42 Modelo de Regresión
Formulación matricial del modelo lineal general
Formulación matricial del modelo lineal general Estimadores MCO, propiedades e inferencia usando matrices Mariana Marchionni [email protected] Mariana Marchionni Formulación matricial del modelo
Mínimos Cuadrados Generalizados
Tema 2 Mínimos Cuadrados Generalizados 2.1. Modelo de regresión con perturbaciones no esféricas En el tema de Mínimos Cuadrados Generalizados vamos a relajar dos de las hipótesis básicas sobre la perturbación.
Fundamentos del Análisis Econométrico. Dante A. Urbina
Fundamentos del Análisis Econométrico Dante A. Urbina Qué es la Econometría? Etimológicamente Econometría significa medición de la economía. En ese contexto, la Econometría es la aplicación de métodos
Relación 3 de problemas
ESTADÍSTICA II Curso 2016/2017 Grado en Matemáticas Relación 3 de problemas 1. La Comunidad de Madrid evalúa anualmente a los alumnos de sexto de primaria de todos los colegios sobre varias materias. Con
Econometría I Notas de Clase: Clase no. 10, 11, 12 y13.
Econometría I Notas de Clase: Clase no. 10, 11, 12 y13. Facilitador: Ovielt Baltodano López Asistente: Sebastián Hernández Leiva a. El estadístico LM: No necesita el supuesto de normalidad solo los de
Información sobre Gastos de Consumo Personal y Producto Interno Bruto ( ) en miles de millones de dólares de 1992.
Universidad Nacional Autónoma de Nicaragua UNAN-Managua Curso de Análisis y Diseño de Modelos Econométricos Profesor: MSc. Julio Rito Vargas Avilés. Participantes: Docentes /FAREM-Carazo Encuentro No.4
TEMA 3: PROPIEDADES DEL ESTIMADOR MCO
TEMA 3: PROPIEDADES DEL ESTIMADOR MCO S. Álvarez, A. Beyaert, M. Camacho, M. González, A. Quesada Departamento de Métodos Cuantitativos para la Economía y la Empresa Econometría (3º GADE) Lo que estudiaremos
TEMA 5: Especificación y Predicción en el MRL
EMA 5: Especificación y Predicción en el MRL Econometría I M. Angeles Carnero Departamento de Fundamentos del Análisis Económico Curso 2011-12 Econometría I (UA) ema 5: Especificación y Predicción Curso
Tema 1. El Modelo de Regresión Lineal con Regresores Aleatorios.
ema El Modelo de Regresión Lineal con Regresores Aleatorios Introducción En este tema vamos a analizar las propiedades del modelo de regresión lineal con regresores aleatorios Suponer que los regresores
Econometría II. Hoja de Problemas 2
Econometría II. Hoja de Problemas 2 1. Se quiere estudiar si los beneficios de las empresas dependen del gasto en I+D que realizan. Para estimar la ecuación beneficios t = β 1 +β 2 ventas t +β 3 gid t
Regresión Lineal Múltiple
Universidad Nacional Agraria La Molina 2011-2 Efectos de Diagnósticos de Dos predictores X 1 y X 2 son exactamente colineales si existe una relación lineal tal que C 1 X 1 + C 2 X 2 = C 0 para algunas
Taller I Econometría I
Taller I Econometría I 1. Considere el modelo Y i β 1 + ɛ i, i 1,..., n donde ɛ i i.i.d. N (0, σ 2 ). a) Halle el estimador de β 1 por el método de mínimos cuadrados ordinarios. Para realizar el procedimiento
2. Modelos con regresores endógenos
. Introducción ema 3. Regresores Endógenos. Bibliografía: Wooldridge, 5., 5.4 y 6.2 En este tema vamos a estudiar el modelo lineal con regresores potencialmente endógenos. Veremos primero las consecuencias
Vectores Autorregresivos (VAR)
Econometria de Series Temporales Vectores Autorregresivos (VAR) Walter Sosa Escudero Universidad de San Andr es y UNLP 1 Procesos estocasticos multivariados Y t =[Y 1t ;Y 2t ; ;Y Nt ] 0 ; t =1; 2;:::;T
MÍNIMOS CUADRADOS GENERALIZADOS
Métodos Estadísticos para Economía y Gestión (IN540-2) Otoño 2008 - Semestre I, Parte II Universidad de Chile Departamento de Ingeniería Industrial Profesor: Mattia Makovec ([email protected]) Auxiliar:
Econometría II. Hoja de Problemas 1
Econometría II. Hoja de Problemas 1 Nota: En todos los contrastes tome como nivel de significación 0.05. 1. SeanZ 1,...,Z T variables aleatorias independientes, cada una de ellas con distribución de Bernouilli
Regresión Lineal Múltiple
Unidad 3 Regresión Lineal Múltiple Javier Santibáñez (IIMAS, UNAM) Estadística II Semestre 2018-1 1 / 54 Introducción La idea de la regresión lineal múltiple es modelar el valor esperado de la variable
Regresión múltiple. Demostraciones. Elisa Mª Molanes López
Regresión múltiple Demostraciones Elisa Mª Molanes López El modelo de regresión múltiple El modelo que se plantea en regresión múltiple es el siguiente: y i = β 0 + β 1 x 1i + β 2 x 2i +...+ β k x ki +
ECONOMETRÍA I. Tema 6: Heterocedasticidad. Patricia Moreno Juan Manuel Rodriguez Poo Alexandra Soberon Departamento de Economía
ECONOMETRÍA I Tema 6: Heterocedasticidad Patricia Moreno Juan Manuel Rodriguez Poo Alexandra Soberon Departamento de Economía Alexandra Soberon (UC) ECONOMETRÍA I 1 / 23 Heterocedasticidad El supuesto
ESCUELA SUPERIOR POLITECNICA DEL LITORAL
ESCUELA SUPERIOR POLITECNICA DEL LITORAL PRIMER TÉRMINO 2017 ECONOMETRÍA II EXAMEN DE MEJORAMIENTO Profesor: Gonzalo E. Sánchez Yo,, al firmar este compromiso, reconozco que el presente examen está diseñado
Modelos de regresión multinivel
Luis Guillermo Díaz Leonardo Trujillo Julio 2011 Estructura de datos multinivel Los investigadores de las ciencias sociales y naturales, se enfrentan al problema de modelar estructuras de datos complejas,
Fundamentos para la inferencia. Estadística Prof. Tamara Burdisso
Fundamentos para la inferencia Estadística 018 - Prof. Tamara Burdisso 1 Distribución muestral de la varianza muestral Hasta aquí nos ocupamos de hacer inferencia sobre la media y/o la proporción de una
Examen de Introducción a la Econometría 8 de septiembre de 2008
NOMBRE DNI: GRUPO Firma: MODELO 1: SOLUCIONES Examen de Introducción a la Econometría 8 de septiembre de 008 Sólo una respuesta es válida. Debe justificar la respuesta de cada pregunta en el espacio que
Tema 2: Introducción a la Inferencia Estadística
Tema 2: Introducción a la Inferencia Estadística 1.- En m.a.s. el estadístico varianza muestral es: a) Un estimador insesgado de la varianza poblacional. b) Un estimador insesgado de la media poblacional.
Estimación Máxima Verosimilitud
Estimación Máxima Verosimilitud Microeconomía Cuantitativa R. Mora Departmento of Economía Universidad Carlos III de Madrid Outline Motivación 1 Motivación 2 3 4 5 Estrategias generales de estimación Hay
Soluciones Examen Final de Econometría Universidad Carlos III de Madrid 26 de Mayo de 2015
Soluciones Examen Final de Econometría Universidad Carlos III de Madrid 26 de Mayo de 2015 Conteste todas las preguntas en dos horas y media. Pregunta 1 (33 puntos: Un investigador está considerando las
Nombre y Apellidos:... EXAMEN ECONOMETRÍA II (Septiembre 2010)
Nombre y Apellidos:... NIU:... Grupo:... EXAMEN ECONOMETRÍA II (Septiembre 2010) Lea cuidadosamente cada pregunta. Marque muy claramente la respuesta de cada pregunta en la hoja de respuestas. Observe
T3. El modelo lineal básico
T3. El modelo lineal básico Ana J. López y Rigoberto Pérez Dpto Economía Aplicada. Universidad de Oviedo Curso 2010-2011 Curso 2010-2011 1 / 41 Índice 1 Regresión lineal múltiple Planteamiento Hipótesis
Econometria I. Tema 4: Problemas de Especi cación y los Datos. Universidad Carlos III. Getafe, Madrid. Octubre-November 2008
Econometria I Tema 4: Problemas de Especi cación y los Datos Universidad Carlos III Getafe, Madrid Octubre-November 2008 Julio Cáceres Delpiano (UC3M) Econometria I 10/08 1 / 30 Outline Mala especi cación
Modelo de Regresión Lineal Simple
1. El Modelo Modelo de Regresión Lineal Simple El modelo de regresión lineal simple es un caso especial del múltple, donde se tiene una sola variable explicativa. y = β 0 + β 1 x + u (1.1) Donde u representa
Regresión por Cuantiles
Regresión por Cuantiles Pablo Flores Universidad Iberoamericana [email protected] 22 de agosto de 2016 Pablo Flores (UNIBE) Short title 22 de agosto de 2016 1 / 1 Sumario Definición. Ejemplos Pablo Flores
Regresión Lineal. Rodrigo A. Alfaro. Rodrigo A. Alfaro (BCCh) Regresión Lineal / 16
Regresión Lineal Rodrigo A. Alfaro 2009 Rodrigo A. Alfaro (BCCh) Regresión Lineal 2009 1 / 16 Contenidos 1 Regresiones Lineales Regresión Clásica Paquetes estadísticos 2 Estadísticos de Ajuste Global 3
PROPIEDADES DEL ESTIMADOR MCO
TEMA 3 PROPIEDADES DEL ESTIMADOR MCO S. Álvarez, A. Beyaert, M. Camacho, M. González, A. Quesada Departamento de Métodos Cuantitativos para la Economía y la Empresa Econometría (3º GADE) Lo que estudiaremos
UNIVERSIDAD CARLOS III DE MADRID ECONOMETRÍA EXAMEN FINAL (Modelo A)
TIEMPO: 2 HORAS Instrucciones: UNIVERSIDAD CARLOS III DE MADRID ECONOMETRÍA EXAMEN FINAL (Modelo A) 1. Este un modelo de examen que le servirá para autoevaluarse de todos los contenidos del curso de Econometria
Regresion lineal simple
Unidad 2 Regresion lineal simple Javier Santibáñez (IIMAS, UNAM) Estadística II Semestre 2018-1 1 / 73 Planteamiento El modelo de regresión lineal simple relaciona la variable de interés Y, llamada dependiente,
Análisis de Regresión Múltiple: Estimación
Análisis de Regresión Múltiple: Estimación Carlos Velasco 1 1 Departamento de Economía Universidad Carlos III de Madrid Econometría I Máster en Economía Industrial Universidad Carlos III de Madrid Curso
Modelo lineal general (K variables)
Modelo lineal general (K variables) Interpretación y usos Mariana Marchionni [email protected] Mariana Marchionni Modelo lineal general 1 / 45 Temario de la clase 1 El modelo lineal general
Econometría de series de tiempo aplicada a macroeconomía y finanzas
Econometría de series de tiempo aplicada a macroeconomía y finanzas Series de Tiempo Estacionarias (Multivariadas) Carlos Capistrán Carmona ITAM 1 Principios de Pronóstico. 2 Pruebas de Hipótesis. 3 Estimación
El Modelo de Regresión Simple
El Modelo de Regresión Simple Carlos Velasco 1 1 Departamento de Economía Universidad Carlos III de Madrid Econometría I Máster en Economía Industrial Universidad Carlos III de Madrid Curso 2007/08 C Velasco
ECONOMETRÍA II Prof.: Begoña Álvarez TEMA 1 INTRODUCCIÓN. Estimación por máxima verosimilitud y conceptos de teoría asintótica
ECONOMETRÍA II Prof.: Begoña Álvarez 2007-2008 TEMA 1 INTRODUCCIÓN Estimación por máxima verosimilitud y conceptos de teoría asintótica 1. ESTIMACIÓN POR MÁXIMA VEROSIMILITUD (MAXIMUM LIKELIHOOD) La estimación
Inferencia y Especificación en Modelos de Ecuaciones Simultáneas
Inferencia y Especificación en Modelos de Ecuaciones Simultáneas Economía Aplicada III (UPV/EHU) OCW 2013 Contenidos 1 Inferencia con estimadores de información limitada Contrastes de restricciones con
Se trata de: Explicar el comportamiento de una variable dependiente ( Y ) en función de otras variables ( i ) 2 Investigar si las variables están asoc
4 ASOCIACION ENTRE VARIABLES En la investigación estadística- y en lo fundamental aquella relacionada a variables socioeconómicas-, es común encontrar variables relacionadas o asociadas Estadísticamente
EXAMEN FINAL DE ECONOMETRÍA SOLUCIONES Conteste cada pregunta en un cuadernillo diferente en dos horas y media
EXAMEN FINAL DE ECONOMETRÍA SOLUCIONES Conteste cada pregunta en un cuadernillo diferente en dos horas y media 1. Sean (Y; X; W ) tres variables aleatorias relacionadas por el siguiente modelo de regresión
Tema 4. Regresión lineal simple
Tema 4. Regresión lineal simple Contenidos El objeto del análisis de regresión La especificación de un modelo de regresión lineal simple Estimadores de mínimos cuadrados: construcción y propiedades Inferencias
Anomalías en regresión y medidas remediales
Universidad Nacional Agraria La Molina 2011-2 C:/Users/moranjara/Desktop/trabajo_inf Introducción Introducción En este capítulo se estudiarán algunas medidas de diagnóstico que permitirán vericar si los
Variables Dependientes Limitadas
Variables Dependientes Limitadas Muestras Truncadas y Censuradas: revisión En algunos casos las variables dependientes pueden estar limitadas en su rango. Ejemplos típicos son las limitaciones por la forma
Estadística y sus aplicaciones en Ciencias Sociales 7. El modelo de regresión simple. Facultad de Ciencias Sociales - UdelaR
Estadística y sus aplicaciones en Ciencias Sociales 7. El modelo de regresión simple Facultad de Ciencias Sociales - UdelaR Índice 7.1 Introducción 7.2 Análisis de regresión 7.3 El Modelo de Regresión
Econometría Universidad Carlos III de Madrid Examen Extraordinario 25 de Junio de Pr (N (0, 1) > 1, 282) = 0, 10
Econometría Universidad Carlos III de Madrid Examen Extraordinario 25 de Junio de 2014 Instrucciones para la realización del examen: Dispone de 2 horas y media para responder al examen La evaluación consta
INTERPRETACIÓN DE LA REGRESIÓN. Interpretación de la regresión
INTERPRETACIÓN DE LA REGRESIÓN Este gráfico muestra el salario por hora de 570 individuos. 1 Interpretación de la regresión. regresión Salario-Estudios Source SS df MS Number of obs = 570 ---------+------------------------------
ANÁLISIS DE REGRESIÓN
ANÁLISIS DE REGRESIÓN INTRODUCCIÓN Francis Galtón DEFINICIÓN Análisis de Regresión Es una técnica estadística que se usa para investigar y modelar la relación entre variables. Respuesta Independiente Y
ECONOMETRIA. Tema 5: ERRORES DE ESPECIFICACIÓN. César Alonso UC3M. César Alonso (UC3M) ECONOMETRIA. Tema 5 1 / 35
ECONOMETRIA Tema 5: ERRORES DE ESPECIFICACIÓN César Alonso UC3M César Alonso (UC3M) ECONOMETRIA. Tema 5 1 / 35 Introducción Hemos visto que el estimador MCO tiene buenas propiedades bajo los supuestos
