PRUEBA DE ACCESO A LA UNIVERSIDAD CONVOCATORIA DE SEPTIEMBRE DE 2012

Tamaño: px
Comenzar la demostración a partir de la página:

Download "PRUEBA DE ACCESO A LA UNIVERSIDAD CONVOCATORIA DE SEPTIEMBRE DE 2012"

Transcripción

1 PRUEBA DE ACCESO A LA UNIVERSIDAD CONVOCATORIA DE SEPTIEMBRE DE 2012 EJERCICIO DE: FÍSICA TIEMPO DISPONIBLE: 1 hora 30 minutos PUNTUACIÓN QUE SE OTORGARÁ A ESTE EJERCICIO: (véanse las distintas partes del examen) El alumno debe responder a una de las dos opciones propuestas, A o B. En cada pregunta se señala la puntuación máxima. OPCIÓN A 1. Una partícula de masa m = 25 g, unida a un muelle de constante elástica k = 10 N/m, oscila armónicamente con una amplitud de 4 cm sobre una superficie horizontal sin rozamiento. a) Deduzca la expresión de la aceleración de la partícula en función del tiempo y represéntela gráficamente. Indique sobre dicha gráfica qué instantes de tiempo corresponden al paso de la partícula por las posiciones de equilibrio y de máxima elongación. (Tome el origen de tiempos cuando la partícula pasa con velocidad positiva por la posición de equilibrio, x = 0 ). (1,5 puntos) b) Calcule las energías cinética y potencial elástica de la partícula cuando se encuentra en la posición x = 1 cm. (1 punto) 2. a) Explique el concepto de energía potencial gravitatoria. Qué energía potencial gravitatoria tiene una partícula de masa m situada a una distancia r de otra partícula de masa M? En qué circunstancias es aplicable la expresión E p = mgh para la energía potencial gravitatoria? (1,5 puntos) b) Supongamos que en algún lugar lejano del Universo existe un planeta esférico cuya masa M es cuatro veces mayor que la del planeta Tierra ( M = 4 M T ). Además la intensidad del campo gravitatorio en su superficie coincide con la existente en la superficie terrestre, g = g T. b1) Cuánto valdrá la relación entre los radios de ambos planetas, R / R T? (0,5 puntos) b2) Determine el cociente entre la velocidad de escape desde la superficie de dicho planeta y la velocidad de escape desde la superficie terrestre. (1 punto) Datos: G = 6, N m 2 kg 2 ; M = 5, kg, R = 6, m. T 3. a) Enuncie y explique las leyes de inducción de Faraday y de Lenz. (1 punto) Y T b) Una espira conductora circular, de radio a = 5 cm, está situada en una región donde existe un campo magnético uniforme B = 0, 2 k T, dirigido en la dirección del eje Z (perpendicular al plano de la espira y en la figura, con sentido saliente). b1) Calcule la f.e.m. media inducida en la espira cuando gira 90º en torno a al eje Y en un intervalo de tiempo t = 0,1 s. (0,5 puntos) X b2) Si la espira permanece fija, pero el campo magnético se duplica en el mismo intervalo de tiempo indicado, cuál es la f.e.m. inducida? Razone en qué sentido circulará la corriente inducida en la espira. (1 punto) 4. a) Describa e interprete el efecto fotoeléctrico. Qué es la frecuencia umbral? (1 punto) b) Se hace incidir sobre una superficie de molibdeno radiación ultravioleta de longitud de onda λ = 2, m. Si la frecuencia umbral es de 1, Hz, calcule la función trabajo del molibdeno y la energía máxima (en ev) de los fotoelectrones emitidos. (1 punto) Datos: c = m/s, h = 6, J s, e = 1, C. Física 1

2 OPCIÓN B 1. a) Explique las cualidades (intensidad, tono y timbre) de una onda sonora. (1 punto) b) Se desea construir una flauta de forma que cuando estén tapados todos los agujeros emita como armónico fundamental la nota musical Do de 522 Hz. Si la flauta se comporta como un tubo sonoro de extremos abiertos, determine la longitud de la misma y represente gráficamente dentro de la flauta, la onda que se genera. Tome como velocidad de propagación del sonido en el aire v = 340 m/s. (1 punto) c) Para dicha frecuencia, la sonoridad de la flauta es de 20 db a una distancia d = 10 m. Suponiendo que la flauta se comporta como un foco emisor puntual, determine la máxima distancia a la que se escuchará dicho sonido. (1 punto) Dato: Umbral de audición humana, I 0 2. a) Defina el momento angular L conservación. (1,5 puntos) = W m 2. de una partícula respecto de un punto. Justifique su teorema de b) El Sputnik 1, primer satélite artificial puesto en órbita con éxito (1957), Sputnik 1 describía una órbita elíptica con el centro de la Tierra en uno de sus focos. El punto más alejado de la órbita (apogeo) y el más cercano (perigeo) se situaban a las distancias la superficie terrestre. h A = 946 km y h P = 227 km de Perigeo TIERRA h A Apogeo Determine, para cada una de las magnitudes del Sputnik 1 dadas a continuación, el cociente entre su valor en el apogeo y su valor en el h P R T perigeo: momento angular respecto del centro de la Tierra, energía cinética y energía potencial gravitatoria. (1,5 puntos) Datos: G = 6, N m 2 kg 2 ; M = 5, kg, R = 6, m. 0 T 3. a) Explique el concepto de potencial electrostático. Qué potencial electrostático crea en su entorno una partícula con carga q? Dibuje sus superficies equipotenciales. (1 punto) b) Dos partículas puntuales de cargas q 1 = 3 μc y q 2 = 2 μc están situadas respectivamente en los puntos de coordenadas ( 1, 0) y (1, 0). Determine el trabajo que tendremos que realizar para desplazar una partícula puntual con carga q 3 = 2 nc desde el punto (100, 0) al punto (10, 0), sabiendo que las coordenadas están expresadas en metros. (1 punto) Datos: K = 1/ (4πε ) = N m 2 C -2 ;1 μc =10-6 C ; 1 nc =10-9 C. 4. a) Mediante la lente convergente de la figura, de focal imagen T f = 20 cm, se quiere tener una imagen de tamaño triple que el objeto. Calcule la posición donde debe colocarse el objeto si la imagen debe ser: a1) Real e invertida. (0,5 puntos) 20 cm F F a2) Virtual y derecha. (0,5 puntos) b) Compruebe gráficamente sus resultados, en ambos casos, mediante un trazado de rayos. (1 punto) Física 2

3 SOLUCIÓN DE LA PRUEBA DE ACCESO AUTOR: Tomás Caballero Rodríguez Departamento de Ediciones Oxford Educación Opción A 1. La ecuación del movimiento que describe la masa puede expresarse así: x = A sen(ωt + δ) a) En el origen de tiempos, x = 0 y la velocidad es positiva. Es fácil deducir que para ello la fase inicial δ debe ser nula. Además, conocemos la amplitud, A = 0,04 m, y para determinar la frecuencia hacemos uso de la expresión: Es decir: x = sen 20t Para determinar la aceleración, debemos derivar dos veces: a = 16 sen 20t Los puntos de equilibrio corresponden a los puntos de cruce de la gráfica con el eje horizontal de tiempos, mientras que los puntos de máxima elongación corresponden a los máximos y mínimos de la gráfica. b) La energía mecánica del conjunto muelle-masa es: Cuando la partícula se encuentra en x = 1 cm, la energía potencial es: La energía cinética será la diferencia entre la energía mecánica, que se mantiene constante, y la energía potencial: 2. a) La energía potencial gravitatoria de una partícula de masa m situada a una distancia r de otra masa M que crea un campo gravitatorio en el espacio puede definirse como el trabajo realizado por la fuerza gravitatoria para atraer esa masa m desde el infinito hasta el punto situado a una distancia r. Esta energía potencial resulta ser: Oxford University Press España, S. A F í s i c a 3

4 La expresión E p = mgh es aplicable cerca de la superficie de la tierra, donde h es la altura del cuerpo sobre la superficie, pues: Donde R es el radio de la tierra. Si tomamos como nivel 0 la energía potencial en la superficie, resulta: Operando, resulta que: b) La expresión general del campo gravitatorio en la superficie de un planeta es: b1) Sabemos que el campo gravitatorio es el mismo en las superficies de ambos planetas, luego: b2) La velocidad de escape se determina igualando a 0 la expresión de la energía mecánica de un cuerpo sometido al campo gravitatorio de una masa M y cuyo radio es R: De este modo, la energía total es nula, condición suficiente para que el cuerpo escape del campo gravitatorio. Despejando, se obtiene la expresión: Dividiendo esta expresión para ambos planetas, se obtiene: 3. a) La inducción electromagnética se basa en dos principios: Toda variación de flujo que atraviesa un circuito cerrado produce en este una corriente inducida. Como el flujo es = BS cos α, este variará, bien porque varíe porque varíe o porque varíe el ángulo que forman ambos. La corriente inducida es una corriente instantánea que solo dura mientras varía el flujo. La ley de Faraday-Henry sirve para calcular el valor de la corriente inducida: «la fuerza electromotriz inducida que aparece en un circuito es directamente proporcional a la rapidez con que varía el flujo y al número de espiras». El signo negativo es la aportación de la ley de Lenz: «la corriente inducida se comporta de tal manera que se opone a la causa que la produce». b) La fuerza electromotriz inducida es: Oxford University Press España, S. A F í s i c a 4

5 b1) El flujo magnético inicial y final es: Luego la f.e.m. inducida será: La f.e.m. inducida genera una corriente que se opone a la disminución de flujo magnético. b2) En este caso, el flujo magnético inicial y final es: Luego la f.e.m. inducida será: La f.e.m. inducida genera una corriente que se opone a la disminución de flujo magnético, esto es, la corriente que se genera tiene sentido horario. 4. a) El efecto fotoeléctrico es la pérdida de electrones que experimenta un metal cuando es iluminado con luz de gran frecuencia. Cada metal tiene una frecuencia mínima llamada frecuencia umbral, por debajo de la cual no se produce el efecto fotoeléctrico. Si no existiera esta frecuencia umbral, se produciría efecto fotoeléctrico con cualquier tipo de luz, lo cual no sucede. La ecuación de Einstein del efecto fotoeléctrico es: E W = E c máx Donde E es la energía de la radiación incidente, E = hν; W es la energía umbral o función de trabajo, W = hν 0, donde ν 0 es la frecuencia umbral, y E c máx es la energía cinética máxima con que los electrones abandonan la lámina. b) La función de trabajo se extrae de la frecuencia umbral: W = hν 0 = 7, J La longitud de onda incidente corresponde a la frecuencia siguiente: ν = c/λ = /2, = 1, Hz La energía cinética máxima de los electrones extraídos será: E c máx. = hν hν 0 = 3, J = 0,2 ev Opción B 1. a) La intensidad es la cualidad del sonido que nos permite clasificarlos en fuertes, si son de gran amplitud, y débiles, si son de poca amplitud. La unidad de intensidad es el W/m 2, pero la escala que se utiliza para comparar la intensidad sonora es el nivel de intensidad sonora, magnitud que se expresa en decibelios (db); el cálculo se hace en la expresión: Donde I es la intensidad del sonido que consideramos e I 0 es el valor umbral de intensidad, I 0 = W/m 2. El tono está relacionado con la frecuencia. Así, hablamos de sonidos altos o agudos (de gran frecuencia) y bajos o graves (de pequeña frecuencia). El oído humano percibe sonidos comprendidos entre 20 Hz y Hz. Oxford University Press España, S. A F í s i c a 5

6 El timbre es la cualidad del sonido que nos permite distinguir sonidos de igual intensidad y tono, pero emitidos por instrumentos distintos. Reconocemos a las personas por su timbre de voz igual que diferenciamos el violín del violonchelo. b) En un tubo abierto por ambos extremos, el armónico fundamental se puede representar así: Los sucesivos armónicos han de cumplir la siguiente expresión: Donde el primer armónico, correspondiente a la máxima longitud de onda y la mínima frecuencia, se da para n = 1. Sabemos que este armónico tiene una frecuencia de 522 Hz, luego su longitud de onda será: Sustituyendo este valor en la primera expresión: c) Podemos determinar la potencia sonora de la flauta del siguiente modo: a una distancia de 10 m, la sonoridad es de 20 db, luego la intensidad sonora será: Sabemos que = 20 db, luego I = 100 I 0 = W/m 2. A partir de la intensidad sonora, podemos determinar la potencia sonora: P = 4πr 2 I = 4π 10 8 W Conocida la potencia sonora del foco, podemos determinar la distancia a la cual se hace inaudible, esto es, la distancia para la cual I =10 12 W/m 2 : 2. a) El momento angular o cinético de una partícula respecto de un punto O es el momento de su vector cantidad de movimiento, es decir, el producto vectorial del vector de posición por el vector momento lineal: El módulo es L = mvr sen ϕ (kg m 2 /s) y la dirección y el sentido del vector vienen dados por el producto vectorial. Oxford University Press España, S. A F í s i c a 6

7 Si derivamos el momento angular con respecto al tiempo, obtenemos: Por lo que la variación temporal del momento angular de un cuerpo en movimiento coincide con el momento, respecto del mismo punto, de la fuerza que actúa sobre dicho cuerpo. Para un cuerpo o partícula, la ausencia de momentos de fuerzas implica que: Esta expresión constituye el teorema de conservación del momento angular: «Si sobre un cuerpo no actúan momentos de fuerzas exteriores, su momento angular permanece constante». b) En primer lugar determinaremos la velocidad del satélite en el apogeo y en el perigeo. Para ello, igualamos la fuerza gravitatoria con la fuerza centrípeta: Donde M es la masa de la tierra y m la masa del satélite. Los radios en el apogeo y el perigeo son R apogeo = 7, m y R perigeo = 6, m. Despejando la velocidad, resulta: Sustituyendo los radios, las velocidades resultan ser v apogeo = 7 372,5 m/s y v perigeo = 7 763,3 m/s. A partir de estos valores, podemos determinar el momento angular, L = mrv, y por ello el cociente entre ambos: Recordemos que el momento angular se mantiene constante en toda la trayectoria, pues el satélite solo está sometido a fuerzas centrales. Por su parte, la energía cinética es proporcional a la velocidad al cuadrado, es decir, a GM/R. Luego el cociente entre ambas energías será: Por su parte, la energía potencial en el campo gravitatorio terrestre es E p = GMm/R, luego el cociente entre ambas será idéntico al cociente de las energías cinéticas: 3. a) El potencial del campo, V, en un punto es la energía potencial que corresponde a la unidad de carga positiva colocada en ese punto. El potencial que crea una carga Q en el espacio es: Oxford University Press España, S. A F í s i c a 7

8 Las superficies equipotenciales son esferas centradas en la carga Q: b) Para determinar el trabajo que tenemos que realizar, debemos calcular el potencial en los puntos P(100, 0) y Q(10, 0): W P Q = E pq E pp = Q (V Q V P ) = 7, J El signo menos indica que no es necesario realizar un trabajo para trasladar la carga Q desde P hasta Q. Es el propio campo electrostático el que realiza dicho trabajo. Es fácil entender esto cualitativamente, pues la carga neta del sistema Q 1 -Q 2 es 1 C, luego la fuerza neta que ejerce el campo sobre Q será atractiva, al ser esta una carga negativa. 4. a) Aplicaremos la ecuación de las lentes delgadas: a1) Para que la imagen sea real e invertida, el objeto debe situarse entre F y 2F. Concretamente: Sustituimos ahora en la primera ecuación: a2) Para que la imagen sea virtual y derecha, el objeto debe colocarse entre la lente y el foco. Concretamente: Oxford University Press España, S. A F í s i c a 8

9 Sustituimos ahora en la primera ecuación: b) El trazado de rayos para ambos casos es: Oxford University Press España, S. A F í s i c a 9

t=0 en la ecuación de la velocidad. Como la amplitud A = 0,04 m, la aceleración en función

t=0 en la ecuación de la velocidad. Como la amplitud A = 0,04 m, la aceleración en función Opción A. Ejercicio Una partícula de masa m = 5 g, unida a un muelle de constante elástica k = N/m, oscila armónicamente con una amplitud de 4 cm sobre una superficie horizontal sin rozamiento. [a] Deduzca

Más detalles

[a] La constante elástica del muelle y la frecuencia angular son proporcionales, de acuerdo con

[a] La constante elástica del muelle y la frecuencia angular son proporcionales, de acuerdo con Opción A. Ejercicio 1 Todos sabemos que fuera del campo gravitatorio de la Tierra los objetos pierden su peso y flotan libremente- Por ello, la masa de los astronautas en el espacio se mide con un aparato

Más detalles

FÍSICA 2º BACHILLERATO EXAMEN FINAL RECUPERACIÓN 1ª,2ª Y 3ª EVALUACIÓN 28/05/2013

FÍSICA 2º BACHILLERATO EXAMEN FINAL RECUPERACIÓN 1ª,2ª Y 3ª EVALUACIÓN 28/05/2013 EXAMEN FINAL RECUPERACIÓN 1ª,2ª Y 3ª EVALUACIÓN 28/05/2013 ALUMNO/A: CUESTIONES: CALIFICACIÓN: 1. a) Establecer la diferencia entre ondas longitudinales y transversales. Cita un ejemplo de una onda real

Más detalles

Departamento de Física y Química

Departamento de Física y Química 1 PAU Física, septiembre 2011 OPCIÓN A Cuestión 1.- Un espejo esférico convexo, proporciona una imagen virtual de un objeto que se encuentra a 3 m del espejo con un tamaño 1/5 del de la imagen real. Realice

Más detalles

Bárbara Cánovas Conesa

Bárbara Cánovas Conesa 67 70 11 1 Junio 006 Dos cargas puntuales q1 = + 0 nc y q = 1 0 nc están fijas y separadas una distancia de 8 cm. Calcular: a) El campo eléctrico en el punto T situado en el punto medio entre las cargas

Más detalles

Peso = m.g, Fuerza recuperadora = k x. m g = k x x /g = m / k = 0'05 / 9'81 = 0'005 s 2

Peso = m.g, Fuerza recuperadora = k x. m g = k x x /g = m / k = 0'05 / 9'81 = 0'005 s 2 PAU MADRID JUNIO 2004 Cuestión 1.- a) Al colgar una masa en el extremo de un muelle en posición vertical, éste se desplaza 5 cm; de qué magnitudes del sistema depende la relación entre dicho desplazamiento

Más detalles

PRUEBAS EBAU FÍSICA. Juan P. Campillo Nicolás 13 de julio de 2017

PRUEBAS EBAU FÍSICA. Juan P. Campillo Nicolás 13 de julio de 2017 Juan P. Campillo Nicolás 13 de julio de 2017 1 1. Gravitación. 1. La Luna es aproximadamente esférica, con radio R L = 1,74 10 6 m y masa M L = 7,3 10 22 kg. Desde su superficie se lanza verticalmente

Más detalles

Perí odo orbital de la tierra = 365'25 dí as

Perí odo orbital de la tierra = 365'25 dí as PAU MADRID SEPTIEMBRE 2004 Cuestión 1.- La luz solar tarda 8'31 minutos e llegar a la Tierra y 6'01 minutos en llegar a Venus. Suponiendo que las órbitas de los planetas son circulares, determine el perí

Más detalles

La energía cinética, en función del tiempo, está dada por: E c (t) = 4 cos 2 (2t). Dado que la

La energía cinética, en función del tiempo, está dada por: E c (t) = 4 cos 2 (2t). Dado que la Opción A. Ejercicio Una partícula de masa m describe, sobre el eje x, un M.A.S. de amplitud A y frecuencia angular ù. En t = 0 pasa por la posición de equilibrio, donde tomamos x = 0. [a] Escriba las ecuaciones

Más detalles

vidrio = =1,66. sen30 = 0,829 0,5 = 1,8$108 (m/s)

vidrio = =1,66. sen30 = 0,829 0,5 = 1,8$108 (m/s) Opción A. Ejercicio 1 [a] Explica los fenómenos de reflexión y de refracción de una onda y enuncia las leyes que los rigen. Cuándo se produce el fenómeno de reflexión total? [b] Un rayo de luz monocromática,

Más detalles

a) La pulsación o frecuencia angular, será: K = mω 2 = 0,2(8π) 2 = 126,3 N m b) Conocida la constante, se obtiene la amplitud: 2Em 2 KA2 A = 50 = 1

a) La pulsación o frecuencia angular, será: K = mω 2 = 0,2(8π) 2 = 126,3 N m b) Conocida la constante, se obtiene la amplitud: 2Em 2 KA2 A = 50 = 1 OPCIÓN A Cuestión 1.- Un sistema elástico, constituido por un cuerpo de masa 00 g unido a un muelle, realiza un movimiento armónico simple con un periodo de 0,5 s. Si la energía total del sistema es 8

Más detalles

SOLUCIÓN DE LA PRUEBA DE ACCESO

SOLUCIÓN DE LA PRUEBA DE ACCESO Física Física COMUNIDAD FORAL DE NAVARRA CONVOCATORIA SEPTIEMRE 009 SOLUCIÓN DE LA PRUEA DE ACCESO AUTOR: Tomás Caballero Rodríguez Ejercicio a) La energía mecánica es constante en todos los puntos de

Más detalles

PRUEBAS EBAU FÍSICA. Juan P. Campillo Nicolás 13 de agosto de 2017

PRUEBAS EBAU FÍSICA. Juan P. Campillo Nicolás 13 de agosto de 2017 Juan P. Campillo Nicolás 3 de agosto de 07 . Gravitación.. Un satélite meteorológico de masa m = 680 kg describe una órbita circular a una altura h = 750 km sobre la superficie terrestre. a) Calcula el

Más detalles

Departamento de Física y Química

Departamento de Física y Química 1 PAU Física, modelo 2011/2012 OPCIÓN A Pregunta 1.- Se ha descubierto un planeta esférico de 4100 km de radio y con una aceleración de la gravedad en su superficie de 7,2 m s -2. Calcule la masa del planeta.

Más detalles

Universidad Rey Juan Carlos. Prueba de acceso para mayores de 25 años. Física obligatoria. Año 2010. Opción A. Ejercicio 1. a) Defina el vector velocidad y el vector aceleración de un movimiento y escribe

Más detalles

P. A. U. FÍSICA Madrid Septiembre 2005

P. A. U. FÍSICA Madrid Septiembre 2005 P. A. U. FÍSICA Madrid Septiembre 2005 CUESTIÓN 1.- Se tienen dos muelles de constantes elásticas k 1 y k 2 en cuyos extremos se disponen dos masas m 1 y m 2 respectivamente, siendo m 1 < m 2. Al oscilar,

Más detalles

EJERCICIOS ONDAS PAU

EJERCICIOS ONDAS PAU EJERCICIOS ONDAS PAU 1 Una masa m oscila en el extremo de un resorte vertical con una frecuencia de 1 Hz y una amplitud de 5 cm. Cuando se añade otra masa, de 300 g, la frecuencia de oscilación es de 0,5

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO.

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO. UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MATERIA: FÍSICA Curso 2009-2010 FASE GENERAL INSTRUCCIONES Y CRITERIOS GENERALES DE

Más detalles

SOLUCIÓN DE LA PRUEBA DE ACCESO

SOLUCIÓN DE LA PRUEBA DE ACCESO Física 1 Física COMUNIDAD DE MADRID CONVOCATORIA JUNIO 009 OLUCIÓN DE LA PRUEA DE ACCEO AUTOR: Tomás Caballero Rodríguez Primera Parte Primero resolveremos el apartado b), para conocer el radio de la órbita.

Más detalles

PRUEBAS EBAU FÍSICA. Juan P. Campillo Nicolás 12 de julio de 2017

PRUEBAS EBAU FÍSICA. Juan P. Campillo Nicolás 12 de julio de 2017 Juan P. Campillo Nicolás 2 de julio de 207 . Gravitación.. Un satélite de 900 kg describe una órbita circular de radio 3R Tierra. a) Calcula la aceleración del satélite en su órbita. b) Deduce y calcula

Más detalles

K m = 20,0[N m 1 ] =6,32 rad/s 0,500[kg] 0,050 = 0,050 sen (ω 0+ φ 0 ) φ 0 = arc sen 1 = π / 2. x = 0,050 sen (6,32 t + 1,57) [m]

K m = 20,0[N m 1 ] =6,32 rad/s 0,500[kg] 0,050 = 0,050 sen (ω 0+ φ 0 ) φ 0 = arc sen 1 = π / 2. x = 0,050 sen (6,32 t + 1,57) [m] Física º Bach. Examen de Setiembre de 005 DEPARTAMENTO DE FÍSICA E QUÍMICA Problemas Nombre: [1½ PUNTOS / UNO] X 1. El cuerpo de la figura tiene masa m = 500 g, está apoyado sobre una superficie horizontal

Más detalles

SOLUCIONES HOJA EJERCICIOS NAVIDAD

SOLUCIONES HOJA EJERCICIOS NAVIDAD SOLUCIONES HOJA EJERCICIOS NAVIDAD 1 - Un cuerpo realiza un movimiento vibratorio armónico simple. Escriba la ecuación del movimiento si la aceleración máxima es, el período de las oscilaciones 2 s y la

Más detalles

Física Examen final 15/04/11 OPCIÓN A

Física Examen final 15/04/11 OPCIÓN A Física Examen final 15/04/11 I.E.S. Elviña DEPARTAMENTO DE FÍSICA E QUÍMICA Problemas Nombre OPCIÓN A [6 Ptos.] 1. Una masa de 0,100 kg unida a un resorte de masa despreciable realiza oscilaciones alrededor

Más detalles

a) Defina las superficies equipotenciales en un campo de fuerzas conservativo.

a) Defina las superficies equipotenciales en un campo de fuerzas conservativo. PAU MADRID SEPTIEMBRE 2003 Cuestión 1.- a) Defina las superficies equipotenciales en un campo de fuerzas conservativo. b) Cómo son las superficies equipotenciales del campo eléctrico creado por una carga

Más detalles

punto) [c] Calcule la máxima velocidad de oscilación trasversal de los puntos de la cuerda. (0,5 puntos)

punto) [c] Calcule la máxima velocidad de oscilación trasversal de los puntos de la cuerda. (0,5 puntos) Opción A. Ejercicio 1 Por una cuerda tensa se propaga, en el sentido positivo del eje x, una onda armónica transversal. Los puntos de la cuerda oscilan con una frecuencia f = 4 Hz. En la gráfica se representa

Más detalles

[a] En primer lugar, se calcula la frecuencia angular: = 2

[a] En primer lugar, se calcula la frecuencia angular: = 2 Opción A. Ejercicio 1 Una partícula de masa m = 4 g oscila armónicamente a lo largo del eje OX en la forma: x(t) =A cos( t) con una amplitud de 5 cm y un periodo de oscilación T =, s. Determina y repre-

Más detalles

tg φ 0 = sen φ 0 v máx = d A sen(ω t + ϕ 0 )

tg φ 0 = sen φ 0 v máx = d A sen(ω t + ϕ 0 ) PROBLEMAS DE FÍSICA º BACHILLERATO (PAU) Vibración y ondas 4/09/03. Pueden tener el mismo sentido el desplazamiento y la aceleración en un oscilador armónico simple?. En un oscilador armónico que tiene

Más detalles

Departamento de Física y Química. PAU Física, modelo 2012/2013 OPCIÓN A

Departamento de Física y Química. PAU Física, modelo 2012/2013 OPCIÓN A 1 PAU Física, modelo 2012/2013 OPCIÓN A Pregunta 1.- Un cierto planeta esférico tiene una masa M = 1,25 10 23 kg y un radio R = 1,5 10 6 m. Desde su superficie se lanza verticalmente hacia arriba un objeto,

Más detalles

CANTABRIA / SEPTIEMBRE 02. LOGSE / FÍSICA / EXAMEN COMPLETO

CANTABRIA / SEPTIEMBRE 02. LOGSE / FÍSICA / EXAMEN COMPLETO CANABRIA / SEPIEMBRE 0. LOGSE / FÍSICA / EXAMEN COMPLEO El alumno elegirá tres de las cinco cuestiones propuestas, así como sólo una de las des opciones de problemas CUESIONES ( puntos cada una) A. Para

Más detalles

TEMA: MOVIMIENTO ONDULATORIO

TEMA: MOVIMIENTO ONDULATORIO TEMA: MOVIMIENTO ONDULATORIO C-J-0 Escriba la expresión matemática de una onda armónica unidimensional como una función de x (distancia) y t (tiempo) y que contenga las magnitudes indicadas en cada uno

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO OPCIÓN A 1. a) Enuncie la ley de inducción electromagnética y explique las características del fenómeno. Comente la veracidad o falsedad de la siguiente afirmación: un transformador eléctrico no realiza

Más detalles

Por una cuerda tensa se propagan dos ondas armónicas: y 1 (x, t) = +0, 02 sen(2 t + 20 x) e

Por una cuerda tensa se propagan dos ondas armónicas: y 1 (x, t) = +0, 02 sen(2 t + 20 x) e Opción A. Ejercicio 1 [a] Eplique el fenómeno de interferencia entre dos ondas. (1 punto) Por una cuerda tensa se propagan dos ondas armónicas: y 1 (, t) = +0, 0 sen( t + 0 ) e y (, t) = 0, 0 sen( t 0

Más detalles

[a] Se cumple que la fuerza ejercida sobre el bloque es proporcional, y de sentido contrario, a la

[a] Se cumple que la fuerza ejercida sobre el bloque es proporcional, y de sentido contrario, a la Opción A. Ejercicio 1 Un bloque de 50 g, está unido a un muelle de constante elástica 35 N/m y oscila en una superficie horizontal sin rozamiento con una amplitud de 4 cm. Cuando el bloque se encuentra

Más detalles

CASTILLA LA MANCHA / JUNIO 01. LOGSE / FÍSICA / EXAMEN COMPLETO

CASTILLA LA MANCHA / JUNIO 01. LOGSE / FÍSICA / EXAMEN COMPLETO CSTILL L MNCH / JUNIO 0. LOGSE / FÍSIC / EXMEN COMPLETO El alumno deberá contestar a una de las dos opciones propuestas. Los problemas puntúan 3 puntos cada uno, y las cuestiones, punto cada una. OPCIÓN

Más detalles

Física Examen Final 20/05/05

Física Examen Final 20/05/05 Física Examen Final 20/05/05 I.E.S. Elviña DEPARTAMENTO DE FÍSICA E QUÍMICA Problemas Nombre [6 Ptos.] 1. Una partícula de 500 g describe un M.A.S. con una frecuencia de 1,59 Hz. Las energías iniciales

Más detalles

Una partícula de masa m = 10 g oscila armónicamente a lo largo del eje OX en la forma

Una partícula de masa m = 10 g oscila armónicamente a lo largo del eje OX en la forma Opción A. Ejercicio Una partícula de masa m = 0 g oscila armónicamente a lo largo del eje OX en la forma x A sen t, con A = 0,2 m y 0 (rad s ). [a] Determine y represente gráficamente la fuerza que actúa

Más detalles

Departamento de Física y Química. PAU Física. Modelo 2009/2010. Primera parte

Departamento de Física y Química. PAU Física. Modelo 2009/2010. Primera parte 1 PAU Física. Modelo 2009/2010 Primera parte Cuestión 1. Cuál es el periodo de un satélite artiicial que gira alrededor de la Tierra en una órbita circular cuyo radio es un cuarto del radio de la órbita

Más detalles

FÍSICA. 2º BACHILLERATO. BLOQUE III: ELECTROMAGNETISMO Examen 1

FÍSICA. 2º BACHILLERATO. BLOQUE III: ELECTROMAGNETISMO Examen 1 Examen 1 1. Diga si es CIERTO o FALSO y razone la respuesta: " Siempre que se produce una variación de la intensidad que circula por un circuito aparece una fuerza electromotriz inducida en ese circuito."

Más detalles

Más ejercicios y soluciones en fisicaymat.wordpress.com. 1- a) Explique en qué consiste la doble naturaleza corpuscular y ondulatoria de la luz.

Más ejercicios y soluciones en fisicaymat.wordpress.com. 1- a) Explique en qué consiste la doble naturaleza corpuscular y ondulatoria de la luz. REFLEXIÓN Y REFRACCIÓN 1- a) Explique en qué consiste la doble naturaleza corpuscular y ondulatoria de la luz. b) Un rayo de luz monocromática incide con un ángulo de incidencia de 30º sobre una lámina

Más detalles

Más ejercicios y soluciones en fisicaymat.wordpress.com

Más ejercicios y soluciones en fisicaymat.wordpress.com ELECTROSTÁTICA 1- a) Explique el concepto de potencial eléctrico. Qué potencial eléctrico crea una carga puntual? Dibuje las superficies equipotenciales en el espacio alrededor de la carga. b) Dos partículas

Más detalles

[b] La onda estacionaria es semejante a la representada seguidamente, con dos vientres: V V N N. 0 0,2 0,4 0,6 0,8 1 1,2 1,4 x

[b] La onda estacionaria es semejante a la representada seguidamente, con dos vientres: V V N N. 0 0,2 0,4 0,6 0,8 1 1,2 1,4 x Opción A. Ejercicio 1 [a] Qué es una onda estacionaria? Explique qué condiciones debe cumplirse para que se forme una onda estacionaria en una cuerda con los dos extremos fijos. (1 punto) Considere una

Más detalles

XXVII Olimpiada Española de Física

XXVII Olimpiada Española de Física XXVII Olimpiada Española de Física FASE LOCAL-UNIVERSIDADES DE GALICIA- 26 de febrero de 2016 APELLIDOS...NOMBRE... CENTRO... Nota: En el caso de que la respuesta a alguna de las cuestiones planteadas

Más detalles

Districte universitari de Catalunya

Districte universitari de Catalunya SERIE 3 PAU. Curso 2003-2004 FÍSICA Districte universitari de Catalunya Resuelva el problema P1 y responda a las cuestiones C1 y C2. Escoja una de las opciones (A o B) y resuelva el problema P2 y responda

Más detalles

1999. Señala brevemente qué analogías y diferencias existen entre los campos eléctricos y magnéticos.

1999. Señala brevemente qué analogías y diferencias existen entre los campos eléctricos y magnéticos. 1999. Un protón con una energía cinética de 1 ev se mueve perpendicularmente a un campo magnético de 1,5 T. a) Calcula la fuerza que actúa sobre esta partícula, sabiendo que su masa es de 1,67.10-27 kg.

Más detalles

1 Universidad de Castilla La Mancha Septiembre 2015 SEPTIEMRE 2015 Opción A Problema 1.- Tenemos tres partículas cargadas q 1 = -20 C, q 2 = +40 C y q 3 = -15 C, situadas en los puntos de coordenadas A

Más detalles

5. En una región del espacio existe un campo magnético uniforme cuyo módulo varía con el tiempo de acuerdo

5. En una región del espacio existe un campo magnético uniforme cuyo módulo varía con el tiempo de acuerdo Examen final / Tercera Evaluación. APELLIDOS: Valios 1. Carbono 14 a. Teoría: Estabilidad de los núcleos. Energía de enlace. (1 b. El es un isótopo radiactivo del carbono utilizado para determinar la antigüedad

Más detalles

[a] La constante elástica del muelle y la frecuencia angular son proporcionales, de acuerdo con

[a] La constante elástica del muelle y la frecuencia angular son proporcionales, de acuerdo con Opción A. Ejercicio 1 Dos partículas de masas m y 4m oscilan en un movimiento armónico simple; cada una de ellas está sujeta al extremo de un muelle horizontal de constante K. Calcule: [a] El cociente

Más detalles

Examen de Selectividad de Física. Modelo 2.008/09

Examen de Selectividad de Física. Modelo 2.008/09 Examen de electividad de Física. Modelo 2.008/09 Primera parte Cuestión 1.- a) Enuncie la tercera ley de Kepler y demuéstrela para el caso de órbitas circulares. Aplique dicha ley para calcular la masa

Más detalles

PRUEBAS EBAU FÍSICA. Juan P. Campillo Nicolás. 3 de octubre de 2017

PRUEBAS EBAU FÍSICA. Juan P. Campillo Nicolás. 3 de octubre de 2017 Juan P. Campillo Nicolás 3 de octubre de 2017 1 1. Gravitación. 1. a) A qué altitud sobre la superficie terrestre, la intensidad del campo gravitatorio será del 20 % del valor en dicha superficie? b) Qué

Más detalles

3 Movimiento vibratorio armónico

3 Movimiento vibratorio armónico 3 Movimiento vibratorio armónico Actividades del interior de la unidad. Una partícula que oscila armónicamente inicia su movimiento en un extremo de su trayectoria y tarda 0, s en ir al centro de esta,

Más detalles

Física 2º Bto. (A y B) Movimiento ondulatorio. Campos gravitatorio y eléctrico 19 marzo 2008

Física 2º Bto. (A y B) Movimiento ondulatorio. Campos gravitatorio y eléctrico 19 marzo 2008 Alumno o alumna: Puntuación: 1. El oscilador armónico Una partícula de 1,4 kg de masa se conecta a un muelle de masa despreciable y constante recuperadora k = 15 N/m, de manera que el sistema se mueve

Más detalles

g planeta = g tierra / 2 = 4 9 m/s 2 v planeta = 11 2 / 2 = 5 6 km/s

g planeta = g tierra / 2 = 4 9 m/s 2 v planeta = 11 2 / 2 = 5 6 km/s PAU MADRID JUNIO 2003 Cuestión 1.- Suponiendo un planeta esférico que tiene un radio la mitad del radio terrestre e igual densidad que la tierra, calcule: a) La aceleración de la gravedad en la superficie

Más detalles

PRUEBAS EBAU FÍSICA. Juan P. Campillo Nicolás. 13 de julio de 2018

PRUEBAS EBAU FÍSICA. Juan P. Campillo Nicolás. 13 de julio de 2018 Juan P. Campillo Nicolás 13 de julio de 2018 1 1. Gravitación. 1. La Luna es aproximadamente esférica, con radio R L = 1,74 10 6 m y masa M L = 7,35 10 22 kg. Desde su superficie se lanza verticalmente

Más detalles

Resuelva el problema P1 y responda a las cuestiones C1 y C2.

Resuelva el problema P1 y responda a las cuestiones C1 y C2. Generalitat de Catalunya Consell Interuniversitari de Catalunya Organització de Proves d Accés a la Universitat PAU. Curso 2005-2006 Física serie 1 Resuelva el problema P1 y responda a las cuestiones C1

Más detalles

PAAU (LOXSE) Setembro 2008

PAAU (LOXSE) Setembro 2008 PAAU (LOXSE) Setembro 008 Código: FÍSICA Elegir y desarrollar un problema y/o cuestión de cada uno de los bloques. El bloque de prácticas solo tiene una opción. Puntuación máxima: Problemas 6 puntos (

Más detalles

SOLUCIÓN DE LA PRUEBA DE ACCESO

SOLUCIÓN DE LA PRUEBA DE ACCESO Física Física REGIÓN DE MURCIA CONVOCATORIA SEPTIEMBRE 009 SOLUCIÓN DE LA PRUEBA DE ACCESO AUTOR: Tomás Caballero Rodríguez Preguntas teóricas Bloque A.ª ley o ley de las órbitas: «todos los planetas describen

Más detalles

PAU CASTILLA Y LEON JUNIO Y SEPTIEMBRE CAMPO MAGNETICO. INDUCCIÓN MAGNETICA José Mª Martín Hernández

PAU CASTILLA Y LEON JUNIO Y SEPTIEMBRE CAMPO MAGNETICO. INDUCCIÓN MAGNETICA José Mª Martín Hernández Fuerza de Lorentz: Efecto del campo magnético sobre una carga 1. (48-S09) Son verdaderas o falsas las siguientes afirmaciones? Razone su respuesta. a) La fuerza ejercida por un campo magnético sobre una

Más detalles

UNIVERSIDAD COMPLUTENSE DE MADRID

UNIVERSIDAD COMPLUTENSE DE MADRID MATERIA: FÍSICA UNIVERSIDAD COMPUTENSE DE MADRID PRUEBA DE ACCESO A A UNIVERSIDAD PARA OS MAYORES DE 25 AÑOS AÑO 2018 Modelo INSTRUCCIONES GENERAES Y VAORACIÓN a prueba consta de dos opciones, A y B, cada

Más detalles

Interacción electromagnética I. Campo eléctrico

Interacción electromagnética I. Campo eléctrico Interacción electromagnética I. Campo eléctrico Cuestiones y problemas 1. Si entre las dos placas de un condensador plano separadas 3 cm entre sí, existe un campo eléctrico uniforme de 7.10 4 N/C: a) Qué

Más detalles

T M. , que se puede escribir: M. $T T periodo de la Tierra en su movimiento alrededor del Sol es de 1 año, la duración del año.

T M. , que se puede escribir: M. $T T periodo de la Tierra en su movimiento alrededor del Sol es de 1 año, la duración del año. Física de º Bachillerato Junio de 11 Opción A. Ejercicio 1 [a] Un satélite artificial describe una órbita elíptica con el centro de la Tierra en uno de sus focos. Se conserva la energía cinética del satélite?

Más detalles

Movimiento Ondulatorio

Movimiento Ondulatorio Movimiento Ondulatorio 1. El sonido emitido por un altavoz tiene un nivel de intensidad de 60 db a una distancia de 2 m de él. Si el altavoz se considera como una fuente puntual, determine: a) La potencia

Más detalles

Colegio El Pilar-Maristas Departamento de Ciencias. Final FECHA:

Colegio El Pilar-Maristas Departamento de Ciencias. Final FECHA: 1. Un cuerpo de 500 g de masa pende de un muelle. Cuando se tira de él 10 cm de su posición de equilibrio y se abandona así mismo oscila con un periodo de 2s. a. Cuál es su velocidad al pasar por la posición

Más detalles

XIX OLIMPIADA NACIONAL DE FÍSICA

XIX OLIMPIADA NACIONAL DE FÍSICA XIX OLIMPIADA NACIONAL D FÍSICA FAS LOCAL-UNIVRSIDADS D GALICIA- 15 de febrero de 2008 APLLIDOS...NOMBR... CNTRO... 1- Para un objeto de forma cilíndrica, de longitud L y sección recta S, la relación entre

Más detalles

SOLUCIÓN DE LA PRUEBA DE ACCESO

SOLUCIÓN DE LA PRUEBA DE ACCESO Física Física COMUNIDAD FORAL DE NAVARRA CONVOCATORIA JUNIO 009 SOLUCIÓN DE LA PRUEBA DE ACCESO AUTOR: Tomás Caballero Rodríguez Ejercicio a) Según la tercera ley de Kepler: b) k (,5 0 5 s) (,44 0 6 s)

Más detalles

Física 2016 (septiembre)

Física 2016 (septiembre) Física 2016 (septiembre) Opción A Pregunta 1.- Desde la superficie de un planeta de masa 6,42 1023 kg y radio 4500 km se lanza verticalmente hacia arriba un objeto. a) Determine la altura máxima que alcanza

Más detalles

Departamento de Física y Química. PAU Física, junio 2012 OPCIÓN A

Departamento de Física y Química. PAU Física, junio 2012 OPCIÓN A 1 PAU Física, junio 2012 OPCIÓN A Pregunta 1.- Un satélite de masa m gira alrededor de la Tierra describiendo una órbita circular a una altura de 2 10 4 km sobre su superficie. Calcule la velocidad orbital

Más detalles

Física 2º Bto. (A y B) Campo magnético. Óptica. Física Moderna 04 junio 2008 B 1 = 2 $

Física 2º Bto. (A y B) Campo magnético. Óptica. Física Moderna 04 junio 2008 B 1 = 2 $ Nombre y apellidos: Puntuación:. Descripción vectorial del campo magnético Dos conductores eléctricos, rectos y paralelos, están separados por una distancia de,00 m y colocados perpendicularmente al plano

Más detalles

ONDAS. Modelo Pregunta 2B.- La función matemática que representa una onda transversal que avanza

ONDAS. Modelo Pregunta 2B.- La función matemática que representa una onda transversal que avanza ONDAS Junio 2013. Pregunta 1A.- Una onda transversal, que se propaga en el sentido positivo del eje X, tiene una velocidad de propagación de 600 m s 1 y una frecuencia de 500 Hz. a) La mínima separación

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO.

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO. UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MATERIA: FÍSICA Curso 2009-2010 INSTRUCCIONES Y CRITERIOS GENERALES DE CALIFICACIÓN

Más detalles

CAMPO ELÉCTRICO MODELO 2016

CAMPO ELÉCTRICO MODELO 2016 CAMPO ELÉCTRICO MODELO 2016 1- Una carga puntual, q = 3 μc, se encuentra situada en el origen de coordenadas, tal y como se muestra en la figura. Una segunda carga q 1 = 1 μc se encuentra inicialmente

Más detalles

Código: 25 SETEMBRO 2012 PAU FÍSICA OPCIÓN A OPCIÓN B

Código: 25 SETEMBRO 2012 PAU FÍSICA OPCIÓN A OPCIÓN B PAU Código: 5 SETEMBRO 01 FÍSICA Puntuación máxima: Cuestiones 4 puntos (1 cada cuestión, teórica o práctica). Problemas 6 puntos (1 cada apartado). No se valorará la simple anotación de un ítem cómo solución

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO OPCIÓN A 1. a) Relación entre campo y potencial gravitatorios. b) Dibuje en un esquema las líneas del campo gravitatorio creado por una masa puntual M. Una masa m, situada en un punto A, se traslada hasta

Más detalles

PRUEBAS EBAU FÍSICA. Juan P. Campillo Nicolás. 5 de octubre de 2017

PRUEBAS EBAU FÍSICA. Juan P. Campillo Nicolás. 5 de octubre de 2017 Juan P. Campillo Nicolás 5 de octubre de 017 1 1. Gravitación. 1. La órbita de Plutón en torno al Sol es elíptica. La relación de distancia entre su afelio y su perihelio es 5/3. Calcule la relación (cociente)

Más detalles

Evaluación de Bachillerato para Acceder a estudios Universitarios

Evaluación de Bachillerato para Acceder a estudios Universitarios Evaluación de Bachillerato para Acceder a estudios Universitarios Castilla y León FÍSICA EXAMEN Nº páginas: 2 OPTATIVIDAD: EL ALUMNO DEBERÁ ELEGIR OBLIGATORIAMENTE UNA DE LAS DOS OPCIONES QUE SE PROPONEN

Más detalles

CASTILLA-LA MANCHA / SEPTIEMBRE 02. LOGSE / FÍSICA / EXAMEN COMPLETO

CASTILLA-LA MANCHA / SEPTIEMBRE 02. LOGSE / FÍSICA / EXAMEN COMPLETO El alumno deberá contestar a una de las dos opciones propuestas A o B. Los problemas puntúan 3 puntos cada uno y las cuestiones 1 punto cada una. Se podrá utilizar una calculadora y una regla. OPCIÓN A

Más detalles

Pruebas de Acceso a las Universidades de Castilla y León

Pruebas de Acceso a las Universidades de Castilla y León Pruebas de Acceso a las Universidades de Castilla y León FÍSICA Septiembre 2004 Texto para los Alumnos 2 Páginas INSTRUCCIONES: Cada alumno elegirá obligatoriamente UNA de las dos opciones que se proponen.

Más detalles

ONDAS. Modelo Pregunta 2A.-

ONDAS. Modelo Pregunta 2A.- ONDAS Modelo 2018. Pregunta 2B.- En el extremo izquierdo de una cuerda tensa y horizontal se aplica un movimiento armónico simple perpendicular a la cuerda, y como consecuencia, por la cuerda se propaga

Más detalles

Pruebas de Acceso a las Universidades de Castilla y León

Pruebas de Acceso a las Universidades de Castilla y León Pruebas de Acceso a las Universidades de Castilla y León FÍSICA Septiembre 2004 Texto para los Alumnos 2 Páginas INSTRUCCIONES: Cada alumno elegirá obligatoriamente UNA de las dos opciones que se proponen.

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID INSTRUCCIONES GENERALES Y VALORACIÓN

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID INSTRUCCIONES GENERALES Y VALORACIÓN UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A ESTUDIOS UNIVERSITARIOS (LOGSE) MATERIA: FÍSICA La prueba consta de dos partes: Curso 2006-2007 INSTRUCCIONES GENERALES Y VALORACIÓN

Más detalles

Solución: a) Las fuerzas gravitatorias son centrales, por tanto, el momento angular es constante: sen 90 º. v p

Solución: a) Las fuerzas gravitatorias son centrales, por tanto, el momento angular es constante: sen 90 º. v p A Opción A A.1 Pregunta El planeta Marte, en su movimiento alrededor del Sol, describe una órbita elíptica. El punto de la órbita más cercano al Sol, perihelio, se encuentra a 06.7 10 6 km, mientras que

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD MATERIAS DE MODALIDAD: FASES GENERAL Y ESPECÍFICA

PRUEBAS DE ACCESO A LA UNIVERSIDAD MATERIAS DE MODALIDAD: FASES GENERAL Y ESPECÍFICA PRUEBAS DE ACCESO A LA UNIVERSIDAD MATERIAS DE MODALIDAD: FASES GENERAL Y ESPECÍFICA CURSO 2012-2013 CONVOCATORIA: JULIO MATERIA: FÍSICA De las dos opciones propuestas, sólo hay que desarrollar una opción

Más detalles

NOTA CALI/ORDEN/PRES ORTOGRAFÍA PUNTUACIÓN EXPRESIÓN NOTA FINAL

NOTA CALI/ORDEN/PRES ORTOGRAFÍA PUNTUACIÓN EXPRESIÓN NOTA FINAL 1. Conteste razonadamente a las siguientes preguntas: a) Puede asociarse una energía potencial a una fuerza de rozamiento? b) Qué tiene más sentido físico, la energía potencial en un punto o la variación

Más detalles

Elongación. La distancia a la que está un punto de la cuerda de su posición de reposo.

Elongación. La distancia a la que está un punto de la cuerda de su posición de reposo. 1. CONSIDERACIONES GENERALES La mayor parte de información del mundo que nos rodea la percibimos a través de los sentidos de la vista y del oído. Ambos son estimulados por medio de ondas de diferentes

Más detalles

Física Ondas 10/11/06

Física Ondas 10/11/06 Física Ondas 10/11/06 I.E.S. Elviña DEPARTAMENTO DE FÍSICA E QUÍMICA Nombre Problemas [5 Ptos.] 1. Para el proyectil de la figura, calcula: (a) El vector velocidad con que se incrusta en el suelo. [1]

Más detalles

FÍSICA de 2º de BACHILLERATO INTERACCIÓN ELECTROMAGNÉTICA

FÍSICA de 2º de BACHILLERATO INTERACCIÓN ELECTROMAGNÉTICA FÍSICA de 2º de BACHILLERATO INTERACCIÓN ELECTROMAGNÉTICA EJERCICIOS RESUELTOS QUE HAN SIDO PROPUESTOS EN LOS EXÁMENES DE LAS PRUEBAS DE ACCESO A ESTUDIOS UNIVERSITARIOS EN LA COMUNIDAD DE MADRID (1996

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO OPCIÓN A 1. a) Describa las características de la interacción gravitatoria entre dos masas puntuales. b) Razone en qué punto, situado entre dos masas puntuales m 1 y m 2 (m 1 = m 2 ), sería nula la fuerza

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO OPCIÓN A 1. a) Explique, con la ayuda de un esquema, las fuerzas que se ejercen entre sí dos corrientes rectilíneas paralelas. b) Utilice la fuerza entre dos corrientes paralelas para definir la unidad

Más detalles

Olimpiadas de Física Córdoba 2010

Olimpiadas de Física Córdoba 2010 E n el interior encontrarás las pruebas que componen esta fase local de las olimpiadas de Física 2012. Están separadas en tres bloques. Uno relativo a dinámica y campo gravitatorio (obligatorio) y otros

Más detalles

Campo Eléctrico PAU. eléctrico no uniforme, que viene dado por

Campo Eléctrico PAU. eléctrico no uniforme, que viene dado por CY 01. Dos partículas de masa 10 g se encuentran suspendidas desde un mismo punto por dos hilos de 30 cm de longitud. Se suministra a ambas partículas la misma carga, separándose de modo que los hilos

Más detalles

OLIMPIADA DE FÍSICA 2009 FASE LOCAL PRINCIPADO DE ASTURIAS

OLIMPIADA DE FÍSICA 2009 FASE LOCAL PRINCIPADO DE ASTURIAS OLIMPIADA DE FÍSICA 2009 FASE LOCAL PRINCIPADO DE ASTURIAS CUESTIONES (40 puntos). Se marcará con una cruz la casilla que se considere acertada (sólo hay una) en la hoja de respuestas (no en el cuestionario).

Más detalles

CAMPO ELÉCTRICO Modelo A. Pregunta 3.- Tres cargas puntuales, q 1 = 3 μc, q 2 = 1 μc y una tercera carga desconocida q 3, se encuentran en

CAMPO ELÉCTRICO Modelo A. Pregunta 3.- Tres cargas puntuales, q 1 = 3 μc, q 2 = 1 μc y una tercera carga desconocida q 3, se encuentran en CAMPO ELÉCTRICO 1.- 2015-Modelo A. Pregunta 3.- Tres cargas puntuales, q 1 = 3 μc, q 2 = 1 μc y una tercera carga desconocida q 3, se encuentran en el vacío colocadas en los puntos A (0,0), B(3,0) y C(0,4),

Más detalles

1. Las gráficas nos informan

1. Las gráficas nos informan Nombre y apellidos: Puntuación: 1. Las gráficas nos informan Una partícula de 50 g de masa está realizando un movimiento armónico simple. La figura representa la elongación en función del tiempo. 0,6 0,5

Más detalles

PROBLEMAS CAMPO ELÉCTRICO

PROBLEMAS CAMPO ELÉCTRICO PROBLEMAS CAMPO ELÉCTRICO 1. Explica las semejanzas y las diferencias entre los campos gravitatorio y eléctrico 2. En una región del espacio, la intensidad del campo eléctrico es nula. Debe ser nulo también

Más detalles

0,1 = 20 (m 1 ). La frecuencia angular se puede obtener a partir de la frecuencia: =2 f =200 ( rad

0,1 = 20 (m 1 ). La frecuencia angular se puede obtener a partir de la frecuencia: =2 f =200 ( rad Opción A. Ejercicio 1 Una onda transversal se propaga de izquierda a derecha, según el eje OX, a lo largo de una cuerda horizontal tensa e indefinida, siendo su longitud de onda =10 cm. La onda está generada

Más detalles

Y B. F m R X = = = ( ) 10 R = = m = = ( ) 2. m v = R. m v q m v v m q. Modelo 3A/ Problema 1/ 2012

Y B. F m R X = = = ( ) 10 R = = m = = ( ) 2. m v = R. m v q m v v m q. Modelo 3A/ Problema 1/ 2012 Modelo 3A/ Problema 1/ 01 Un protón y una partícula alfa, previamente acelerados desde el reposo mediante diferencias de potencial distintas, entran en una región del espacio donde existe un campo magnético

Más detalles

EXAMEN FÍSICA 2º BACHILLERATO TEMA 2: CAMPO ELECTROMAGNÉTICO

EXAMEN FÍSICA 2º BACHILLERATO TEMA 2: CAMPO ELECTROMAGNÉTICO INSTRUCCIONES GENERALES Y VALORACIÓN La prueba consiste de dos opciones, A y B, y el alumno deberá optar por una de las opciones y resolver las tres cuestiones y los dos problemas planteados en ella, sin

Más detalles