= κ. F e CAMPOS ELÉCTRICOS Y MAGNÉTICOS. Fuerza coulombiana

Tamaño: px
Comenzar la demostración a partir de la página:

Download "= κ. F e CAMPOS ELÉCTRICOS Y MAGNÉTICOS. Fuerza coulombiana"

Transcripción

1 CAMPOS ELÉCTRICOS Y MAGNÉTICOS Fuerza coulombiana F e qq' κ r κ Nm / C Problema. Suponga que dentro de el núcleo de un átomo dos protones (q C) se encuentran separados a una distancia de r m. Calcular fuerza de repulsión entre ambos protones. Investigue por qué si la fuerza de repulsión es tan grande, los protones permanecen fijos en el núcleo y éste no se desintegra por la repulsión coulombiana. F e ( ) ( 19 ) C Nm / C 15 ( 1 10 m) N

2 CAMPOS ELÉCTRICOS Y MAGNÉTICOS Campo eléctrico El campo eléctrico es la fuerza que sentiría la unidad de carga al ser colocada el algún punto del espacio. Sus unidades son las de fuerza por unidad de carga: N/C. Su símbolo es E. Ejemplo: a) Campo de fuerzas para una carga q positiva. Estas fuerzas son las que sentiría una carga de 1 C. b) Campo de fuerzas para una carga q negativa. Una vez creado el concepto de campo eléctrico, podemos calcular la fuerza que sentiría una carga q en cualquier punto del espacio simplemente por la ecuación: F e qe

3 Cuando se tuvieran dos cargas eléctricas de signos diferentes, el campo eléctrico saldría siempre hacia fuera de la carga positiva y entraría hacia la carga negativa, como puede verse en el diagrama: Mientras que si las dos cargas tuvieran signo positivo, saldrían de ellas las líneas del campo eléctrico:

4 CAMPOS ELÉCTRICOS Y MAGNÉTICOS Energía potencial De acuerdo con la ley de conservación de la energía, cuando se traslada una carga del punto 1 al punto se realiza un trabajo, w, que es igual a la diferencia de energías potenciales en 1 y : V V V 1 w Por convención, V 0 para los puntos donde no se ejerza atracción o repulsión sobre la carga q, lo cual ocurre si se encuentra a una distancia infinita de cualquier otra carga. EJEMPLO (La energía potencial eléctrica a una distancia r de una carga q ) Escojamos el punto 1 a una distancia infinita de la carga q y el punto a una distancia r de la carga q y calculemos la energía potencial en el punto como el trabajo (fuerza por distancia) para llevar a la carga q del punto 1 al, a través de la variable a, desde infinito hasta r. En este caso la fuerza eléctrica va a representarse como: F e qq' κ a

5 w El trabajo, que es fuerza por distancia sería una suma infinita (integral) de pequeños trabajos, porque la fuerza depende de la distancia y ésta va cambiando conforme se mueve la carga q: a r da 1 Feda κ qq ' κ qq ' a r a El signo menos de esta expresión proviene de que fuerza y w V κ qq r ' desplazamiento tienen direcciones opuestas si q y q son positivas, pero tienen la misma dirección si tienen cargas opuestas. Esta es la expresión de la energía potencial de una carga q a una distancia r de una carga q. Si q se tratara de un electrón con carga -e, y q se tratara de Z protones, de carga +e, la energía potencial sería: V κ ( Ze )( e) r. κ Ze r Vamos a emplear esta fórmula en lo que sigue. r κ qq r '

6 CAMPOS ELÉCTRICOS Y MAGNÉTICOS Campo magnético La electrodinámica estudia las cargas en movimiento. La fuerza que se ejerce sobre dos cargas en movimiento se puede expresar como: F F e + F m donde la fuerza eléctrica depende del campo eléctrico F e qe y la fuerza magnética depende de un nuevo campo, llamado magnético, que hace que la carga q sienta una fuerza adicional que depende de la carga misma, de su velocidad y de la magnitud y dirección del campo magnético (θ es el ángulo que forman los vectores v y B): F m qvb senθ De aquí que las unidades del campo magnético sean N N Unidades de B C m/s A m T(tesla) En notación vectorial: r F m q r r ( v B) Lo que implica que el vector F m es perpendicular a los vectores v y B

7 EL DESCUBRIMIENTO DEL ELECTRÓN El electrón lo descubre Joseph John Thomson, en 1897, cuando detecta que los llamados rayos.catódicos están compuestos de partículas cargadas con una relación carga/masa C/kg Los rayos catódicos viajan en línea recta y por ello dan sombras de la forma de los objetos sobre los que golpean. Además, tienen masa, porque hacen girar una rueda de paletas. Adicionalmente, tienen carga, porque son desviados por campos eléctricos y magnéticos.

8 Este es el aparato de Thomson con el que obtuvo la relación de la carga entre la masa de los corpúsculos constituyentes de los rayos catódicos. Si sólo el campo eléctrico actúa sobre los electrones, la fuerza eléctrica F e ee los desvía hacia arriba, alcanzando el punto a.

9 Si sólo actuara sobre los electrones el campo magnético, la fuerza magnética F m evb los haría moverse hacia abajo en una trayectoria circular (mientras pasan por el campo), alcanzando la pantalla en el punto c. En el movimiento circular, la partícula tendría una aceleración centrípeta, porque la fuerza siempre apunta hacia el centro del círculo: a v R donde R es el radio de curvatura del movimiento circular. Aplicando la segunda ley de Newton, la fuerza magnética debe ser igual a la masa por la aceleración: mv evb R

10 De donde la relación e/m para estas partículas sería igual a: e m v BR (1) Desafortunadamente, la velocidad, v, es una variable desconocida. Sin embargo, se puede aplicar ahora el campo eléctrico para que la fuerza eléctrica se iguale a la magnética y el haz de electrones vuelva a caer sobre el punto b de la pantalla. En ese punto: F e F m ee evb De donde podemos despejar a la velocidad en función de variables conocidas: v E B Lo que substituido en la ecuación (1), nos lleva a: e m B E R Aplicando esta ecuación, J. J. Thomson obtuvo e/m C/kg

11 DETERMINACIÓN DE LA CARGA DEL ELECTRÓN Fue en el periodo de 1909 a 1913 en el que Robert Millikan hizo la primera determinación directa de la carga del electrón, para la cual encontró e C El valor actualmente aceptado es e C. Veamos con un problema cómo fue que Millikan determinó la carga del electrón.

12 Determinación de la carga. Problema 15 págs La figura anterior muestra el esquema experimental empleado por Millikan para determinar la carga del electrón. La mayor parte de las gotitas de aceite se ionizan por la fricción al salir del atomizador. En ausencia del campo eléctrico E, el observador puede seguir la caída de una gota con carga q, masa M y radio r. Aunque en principio la gota cae aceleradamente, la fuerza de resistencia del aire, que vale: F. 6πηrv (ley de Stokes) (η es la viscosidad del aire y v la velocidad de caída), crece hasta igualarse con la fuerza de la gravedad: F g Mg

13 a) Iguale ambas fuerzas y despeje la velocidad final de caída o velocidad terminal. b) Qué unidades tendrá en el SI la viscosidad η? c) Obtenga la masa de la gota esférica como la densidad del aceite por su volumen y sustitúyala en el resultado de a) para obtener 3 4π r M ρ ; v 3 r gρ 9η d) Una gota de aceite (ρ 800 kg/m 3 ) en un aparato de Millikan cae una distancia de mm en.7 s en ausencia de campo eléctrico. La viscosidad del aire es 1.7 x 10-5 Ns/m. Calcule el radio y la masa de la gota. e) Al aplicar un campo eléctrico de 7788 N/C, la gota del inciso anterior permanece quieta al igualarse las fuerzas eléctrica y gravitacional. Calcule la carga que porta la gota. f) Cuántas veces supera q a la carga del electrón, e?

14 RADIACIÓN ELECTROMAGNÉTICA Fue James Clerk Maxwell quien en 1864 halló una teoría dinámica del campo electromagnético. Sus ecuaciones predecían la existencia de ondas electromagnéticas que viajan a la velocidad de la luz ( m/s). Esas ondas fueron observadas 3 años más tarde por Heinrich Hertz, pero: Qué es una onda electromagnética? En toda onda: 1) Se propaga energía a puntos distantes ) La perturbación viaja a través del medio sin desplazarlo como un todo. En un estanque lo que se perturba es la altura del mismo o en una cuerda vibrante es la amplitud de la vibración, en el sonido es la presión del aire que llega al tímpano. Pero Cuál es la perturbación en una onda electromagnética? SE TRATA DE UN CAMPO ELÉCTRICO Y UN CAMPO MAGNÉTICOS OSCILANTES QUE VIAJAN EN UNA DIRECCIÓN Al tiempo t0 si se el campo eléctrico E es, por ejemplo, una sinusoide con longitud de onda λ Cuya ecuación es: π E( x,0) A sen x (1) λ Donde A es la máxima amplitud de la onda.

15 Pero esta onda se mueve conforme transcurre el tiempo, con una velocidad c: y ahora X es la variable que mide la onda desde el origen desplazado, o sea que la ecuación de la nueva onda, al tiempo t, es: E( x, t) pero como X x ct π A sen X λ podemos escribir la ecuación anterior en términos de x, como π E( x, t) A sen ( x ct) λ que es la ecuación de nuestra onda eléctrica (todavía no es magnética porque todo lo que viaja es una perturbación eléctrica, representada por el campo E). Para que sea electromagnética deben desplazarse dos campos, uno eléctrico y uno magnético (curiosamente perpendicular el uno ante el otro) como se dan en la figura:

16 La onda eléctrica anterior va a perturbar a una carga eléctrica que se encuentre en su camino, haciéndola oscilar:

17 Las ondas electromagnéticas tienen longitud de onda y frecuencia. La λ es la distancia entre dos oscilaciones máximas y la υ es el número de ondas que pasan en un segundo por un punto dado. Ambas variables están relacionadas por la expresión: λν c Esta relación viene de que la longitud de una onda multiplicada por el número de ellas que viajan por segundo nos da la distancia total viajada en un segundo, o sea, la velocidad. La totalidad de las ondas electromagnéticas se acostumbra representar en un diagrama llamado Espectro electromagnético, que incluye su longitud de onda, su frecuencia o ambos parámetros: ESPECTRO ELECTROMAGNÉTICO

18 Los límites entre cada uno de los tipos de onda, como se acostumbra clasificarlos, vienen dados a continuación: Ondas de radio frecuencia: λ desde varios km hasta 0.3 m Microondas: λ desde 0.3 m hasta m Infrarrojo: λ desde m hasta m Visible: λ desde m hasta m Ultravioleta: λ desde m hasta m Rayos X: λ desde m hasta m Rayos γ: λ menores que las de los rayos X, pero se acostumbra superponer ambas radiaciones En particular, las longitudes de onda en el visible corresponden a diferentes colores, de acuerdo con la siguiente tabla.

19 TRANSFERENCIA DE ENERGÍA A TRAVÉS DE LA RADIACIÓN DE UN CUERPO CALIENTE El calor puede transmitirse por conducción, convección y radiación. Este último mecanismo se da porque los cuerpos calientes alcanzan a emitir y a recibir radiación electromagnética de sus alrededores: Este fenómeno fue estudiado durante el siglo XIX por varios investigadores, entre ellos Gustav Robert Kirchhoff, quien en 1860 obtuvo una relación entre la energía absorbida y emitida por los cuerpos: El cociente entre E λ y a λ resulta ser una función J que solamente depende de la longitud de onda y de la temperatura en el equilibrio, pero para nada del material que emite y absorbe la radiación. E a λ J ( λ, T ) λ E λ es la energía radiada por el cuerpo por unidad de área, tiempo y unidad de intervalo de λ a λ es la fracción de la energía radiante absorbida por el cuerpo, siendo 1-a λ la fracción que resulta reflejada. Según Kirchhoff: Hallar la función J(λ,T) es una tarea sumamente importante. Se prevén grandes dificultades para su determinación experimental. Pero existen razones para esperarla, ya que sin duda debe tener una forma simple como la de todas las funciones que no dependen de las propiedades específicas de cada cuerpo.

20 Para evitar el cálculo de E λ y a λ Kirchhoff sugirió trabajar con un cuerpo negro (para el cual a λ 1) y posteriormente con una cavidad, que es similar a un cuerpo negro. Pasaron casi 0 años después de la aportación de Kirchhoff para que pudiera medirse la J total, que es una integración para toda lambda, con la medida que realizó Josef Stefan en 1879 del calor total emitido por el cuerpo caliente en todas las longitudes de onda del espectro. Stefan encontró que J total era proporcional a la cuarta potencia de la temperatura absoluta! J total σt 4 Posteriormente, fue Wilhelm Wein quien logró gráficas enteras de J(λ,T), como las de la figura (no tenía datos tomados a muy altas T ni λ).

21 Osado, en 1897, Wien propuso la siguiente ecuación como la que seguían sus datos,: E W λ c 1 λ 5 e 1 c λt En junio de 1900, como producto de un trabajo teórico impecable desde el punto de vista clásico, luego confirmado por James H. Jeans como aplicable solamente a un cuerpo negro, lord Rayleigh obtiene la siguiente E λ : 4 E RJ λ 8πkTλ Esta función es conocida como la catástrofe del ultravioleta, porque a longitudes de onda pequeñas crece indefinidamente. es decir, no sigue la curva de la distribución obtenida por Wien, con un máximo. La curva de Rayleigh-Jeans, sin embargo parece que se acerca a los datos experimentales obtenidos a grandes longitudes de onda. Max Planck, en 0ctubre de 1900 obtiene una nueva ecuación que solamente difiere por un 1 en el denominador con relación a la propuesta por Wein. Con ello logra aproximarse a la función de Rayleigh-Jeans a λ larga: E P λ c λ 1 5 e c λt 1 1 Los resultados experimentales obtenidos en 1900 por Lummer y Pringsheim; así como por Rubens y Karlbaum (los cuatro trabajaban en el mismo Instituto Keiser Guillermo donde laboraba Planck) confirmaron que la ecuación más apropiada era la de Max Planck.

22 Gráficas de las tres funciones Con una escala semilogarítmica puede observarse mejor cómo la función de Planck se aproxima a la de Rayleigh y Jeans

23 En diciembre de 1900 Planck encuentra la razón por la que su ecuación es la más afortunada. al desarrollar una teoría por la que alcanza la ecuación definitiva: E P λ 8πhc 5 λ e hc λkt 1 1 Planck ha supuesto dentro de su teoría que la energía que llega o sale del cuerpo negro lo hace en forma cuantizada, es decir, que sólo se absorben o emiten paquetes de energía, de magnitud ε hν el valor de h obtenido por Planck era muy pequeño: h J s El valor actual de la llamada constante de Planck es: h J s Esos paquetes o cuantos de energía dieron su nombre a la teoría cuántica. Estos resultados sorprendieron a los científicos (y a Planck) porque todo el mundo esperaba que la energía pudiera transferirse de una forma continua entre la materia y la radiación; y no de una manera discontinua (por paquetes). xx

Radiación del cuerpo negro

Radiación del cuerpo negro Estructura de la Materia Radiación del cuerpo negro Martha M. Flores Leonar FQ UNAM 13 de febrero de 2018 FENÓMENO DE LA RADIACIÓN TÉRMICA Consiste en la transferencia de energía por medio de radiación.

Más detalles

Ec[J] x Velocidad [ms 1 ]x

Ec[J] x Velocidad [ms 1 ]x DEPARTAMENTO DE QUÍMICA SERIE DE EJERCICIOS (Basada en reactivos de exámenes colegiados) Estructura Atómica Semestre 2019-1 Experimento de Thomson 1. Cuando un electrón entra perpendicularmente a las líneas

Más detalles

TEORÍA CORPUSCULAR DE LA LUZ.

TEORÍA CORPUSCULAR DE LA LUZ. Marta Vílchez TEORÍA CORPUSCULAR DE LA LUZ. Max Planck (1858-1947) Albert Einstein (1879-1955) Arthur H. Compton (189-196) 1 Marta Vílchez Antecedentes de la teoría corpuscular. Radiación del cuerpo negro.

Más detalles

EXPERIMENTO DE ROBERT ANDREWS MILLIKAN Determinación de la carga del electrón

EXPERIMENTO DE ROBERT ANDREWS MILLIKAN Determinación de la carga del electrón EXPERIMENTO DE ROBERT ANDREWS MILLIKAN Determinación de la carga del electrón Desarrollo matemático: Cuando la gota de aceite cargada negativamente se encuentra en caída libre, se ejercen sobre ella diferentes

Más detalles

Capítulo 1. Antecedentes de la Química Cuántica y primeras Teorías Atómicas

Capítulo 1. Antecedentes de la Química Cuántica y primeras Teorías Atómicas Capítulo 1. Antecedentes de la Química Cuántica y primeras Teorías Atómicas Objetivos: Recordar y actualizar los conocimientos sobre las características de electrones, protones y neutrones Describir la

Más detalles

La radiación electromagnética.

La radiación electromagnética. La radiación electromagnética. En la teoría de electrodinámica se ha encontrado que cuando un campo eléctrico cambia con el tiempo produce un cambio magnético y viceversa. Ondas u ondas electromagnéticas?

Más detalles

Física moderna. José Mariano Lucena Cruz Física 2 o Bachillerato

Física moderna. José Mariano Lucena Cruz Física 2 o Bachillerato José Mariano Lucena Cruz chenalc@gmail.com Física 2 o Bachillerato Radiación térmica Todo cuerpo, no importa a la temperatura que se encuentre, es fuente de radiación térmica. (Emite energía en forma de

Más detalles

EL ESPECTRO ELECTROMAGNÉTICO

EL ESPECTRO ELECTROMAGNÉTICO FACULTAD DE CIENCIAS QUÍMICAS Espectrometría Objeto de Estudio Nº 1 LECTURA N 2 EL ESPECTRO ELECTROMAGNÉTICO Bibliografía: http://almaak.tripod.com/temas/espectro.htm Facultad de Ciencias Químicas F.C.Q.

Más detalles

Radiación electromagnética

Radiación electromagnética Page 1 Radiación electromagnética Consideremos una partícula cargada en reposo respecto de un observador inercial, produciendo un campo eléctrico. Al moverse a cierta velocidad se observará un campo electromagnético.

Más detalles

EJERCICIOS DE FÍSICA III. MSc. José Fernando Pinto Parra

EJERCICIOS DE FÍSICA III. MSc. José Fernando Pinto Parra Profesor: José Fernando Pinto Parra Ejercicios de Movimiento Armónico Simple y Ondas: 1. Calcula la amplitud, el periodo de oscilación y la fase de una partícula con movimiento armónico simple, si su ecuación

Más detalles

Física, Materia y Radiación

Física, Materia y Radiación Física, Materia y Radiación La Física a finales del s. XIX Las leyes fundamentales de la física parecen claras y sólidas: Las leyes del movimiento de Newton Las leyes de Maxwell de la electrodinámica Los

Más detalles

FÍSICA MODERNA FÍSICA CUÁNTICA. José Luis Rodríguez Blanco

FÍSICA MODERNA FÍSICA CUÁNTICA. José Luis Rodríguez Blanco FÍSICA MODERNA FÍSICA CUÁNTICA José Luis Rodríguez Blanco CRISIS DE LA FÍSICA CLÁSICA Problemas de la Física Clásica a finales del siglo XIX, principios del XX Espectros discontinuos de gases Efecto fotoeléctrico

Más detalles

La física del siglo XX

La física del siglo XX Unidad 11 La física del siglo XX chenalc@gmail.com Max Planck Albert Einstein Louis de Broglie Werner Heisenberg Niels Bohr Max Born Erwin Schrödinger Radiación del cuerpo negro Todo cuerpo, no importa

Más detalles

El cuerpo negro. Imaginemos un cuerpo que absorbe toda la radiación que le llega.

El cuerpo negro. Imaginemos un cuerpo que absorbe toda la radiación que le llega. El cuerpo negro Imaginemos un cuerpo que absorbe toda la radiación que le llega. Típicamente la eficiencia no es tan grande (a~.99), pero se puede encontrar algo que se comporta casi igual: Un agujero

Más detalles

Unidad 1. Naturaleza y Propagación de la Luz

Unidad 1. Naturaleza y Propagación de la Luz Unidad 1. Naturaleza y Propagación de la Luz LA NATURALEZA DE LA LUZ Hasta la época de Isaac Newton (1642-1727), la mayoría de científicos pensaban que la luz consistía en corrientes de partículas (llamadas

Más detalles

Física Cuántica y Modelos atómicos. Preguntas de Capítulo. 1. Cómo se determinó que los rayos catódicos poseían una carga negativa?

Física Cuántica y Modelos atómicos. Preguntas de Capítulo. 1. Cómo se determinó que los rayos catódicos poseían una carga negativa? Física Cuántica y Modelos atómicos. Preguntas de Capítulo 1. Cómo se determinó que los rayos catódicos poseían una carga negativa? 2. J. J. Thomson encontró que los rayos catódicos están partículas, a

Más detalles

Modelo de Thomson Modelo de Rutherford. Estructura atómica. José Mariano Lucena Cruz 10 de mayo de 2010

Modelo de Thomson Modelo de Rutherford. Estructura atómica. José Mariano Lucena Cruz 10 de mayo de 2010 José Mariano Lucena Cruz chenalc@gmail.com 10 de mayo de 2010 Propiedades periódicas Aquellas cuyo valor se puede estimar según la posición que ocupen los elementos en la tabla periódica. Estas son: Tamaño

Más detalles

Motivación de la mecánica Cuántica

Motivación de la mecánica Cuántica Motivación de la mecánica Cuántica Química Física Aplicada, UAM 4 de febrero de 2011 (Química Física Aplicada, UAM) Motivación de la mecánica Cuántica 4 de febrero de 2011 1 / 13 Tema 1: Motivación de

Más detalles

MATERIAL 06. TEMA: MÉTODOS ESPECTROSCÓPICOS DE ANÁLISIS

MATERIAL 06. TEMA: MÉTODOS ESPECTROSCÓPICOS DE ANÁLISIS MATERIAL 06. TEMA: MÉTODOS ESPECTROSCÓPICOS DE ANÁLISIS La espectroscopia es el estudio de las interacciones de las radiaciones electromagnéticas con la materia (átomos y moléculas). Los métodos analíticos

Más detalles

Clase 4:Radiación del cuerpo, efecto fotoeléctrico y modelos atómicos

Clase 4:Radiación del cuerpo, efecto fotoeléctrico y modelos atómicos Clase 4:Radiación del cuerpo, efecto fotoeléctrico y modelos atómicos El experimento de Millikan Determina la carga del electrón 1.602 x 10-19 C Atomizador de gotas de aceite Fuente de Rayos X (ioniza

Más detalles

UNIVERSIDAD COMPLUTENSE DE MADRID

UNIVERSIDAD COMPLUTENSE DE MADRID MATERIA: FÍSICA UNIVERSIDAD COMPUTENSE DE MADRID PRUEBA DE ACCESO A A UNIVERSIDAD PARA OS MAYORES DE 25 AÑOS AÑO 2018 Modelo INSTRUCCIONES GENERAES Y VAORACIÓN a prueba consta de dos opciones, A y B, cada

Más detalles

INTRODUCCIÓN A LA TELEDETECCIÓN CUANTITATIVA

INTRODUCCIÓN A LA TELEDETECCIÓN CUANTITATIVA INTRODUCCIÓN A LA TELEDETECCIÓN CUANTITATIVA Haydee Karszenbaum Veronica Barrazza haydeek@iafe.uba.ar vbarraza@iafe.uba.ar Clase 1.2: ondas y leyes de la radiación Teledetección cuantitativa 1 Características

Más detalles

Capítulo 7: Ecuaciones de Maxwell y Ondas Electromagnéticas

Capítulo 7: Ecuaciones de Maxwell y Ondas Electromagnéticas Capítulo 7: Ecuaciones de Maxwell y Ondas Electromagnéticas Hasta ahora: Ley de Gauss Ley de Faraday-Henry Ley de Gauss para el magnetismo Ley de Ampere Veremos que la Ley de Ampere presenta problemas

Más detalles

Espectro electromagnético

Espectro electromagnético RADIOCOMUNICACIONES 11-03-2015 Espectro electromagnético La naturaleza de la luz ha sido estudiada desde hace muchos años por científicos tan notables como Newton y Max Plank. Para los astrónomos conocer

Más detalles

ONDAS Y PERTURBACIONES

ONDAS Y PERTURBACIONES ONDAS Y PERTURBACIONES Fenómenos ondulatorios Perturbaciones en el agua (olas) Cuerda oscilante Sonido Radio Calor (IR) Luz / UV Radiación EM / X / Gamma Fenómenos ondulatorios Todos ellos realizan transporte

Más detalles

MAGNETISMO. MsC Alexander Pérez García Video 1

MAGNETISMO. MsC Alexander Pérez García Video 1 MAGNETISMO MsC Alexander Pérez García Video 1 http://www.dailymotion.com/video/xqqir9_campomagnetico-terrestre-inversion-de-los-polos_school FUERZA MAGNÉTICA SOBRE UNA CARGA EN MOVIMIENTO LA SEGUNDA

Más detalles

Recordando. Primer Modelo atómico (1900) Segundo Modelo atómico (1910) J. J. Thomson Budín de pasas. E. Rutherford Modelo planetario

Recordando. Primer Modelo atómico (1900) Segundo Modelo atómico (1910) J. J. Thomson Budín de pasas. E. Rutherford Modelo planetario ANTECEDENTES DEL MODELO ACTUAL DEL ATOMO Raquel Villafrades Torres Universidad Pontificia Bolivariana Química General Química General Ingeniera Química Raquel Villafrades Torres Abril de 2009 Primer Modelo

Más detalles

Ecuaciones de Maxwell y Ondas Electromagnéticas

Ecuaciones de Maxwell y Ondas Electromagnéticas Capítulo 7: Ecuaciones de Maxwell y Ondas Electromagnéticas Hasta ahora: Ley de Gauss Ley de Faraday-Henry Ley de Gauss para el magnetismo Ley de Ampere Veremos que la Ley de Ampere presenta problemas

Más detalles

Tema 1: Resumen y (algunos) problemas

Tema 1: Resumen y (algunos) problemas Tema 1: Resumen y (algunos) problemas Radiación emitida por un cuerpo negro. En general los cuerpos emiten, absorben y reflejan radiación. Se llama cuerpo negro a aquel que no refleja radiación. Un ejemplo

Más detalles

Robert A. MILLIKAN ( )

Robert A. MILLIKAN ( ) Robert A. MILLIKAN (1906 1914) Modelo atómico de Rutherford - Todo átomo está formado por un núcleo y corteza. - El núcleo, muy pesado, y de muy pequeño tamaño, formado por un número de protones igual

Más detalles

Ejercicios de Ondas Mecánicas y Ondas Electromagnéticas.

Ejercicios de Ondas Mecánicas y Ondas Electromagnéticas. Ejercicios de Ondas Mecánicas y Ondas Electromagnéticas. 1.- Determine la velocidad con que se propagación de una onda a través de una cuerda sometida ala tensión F, como muestra la figura. Para ello considere

Más detalles

Las Ondas y la Luz. Las Ondas

Las Ondas y la Luz. Las Ondas Las Ondas Una onda consiste en la propagación de una perturbación física en un medio que puede ser material (aire, agua, tierra, etc) o inmaterial (vacío), según la cual existe transporte de energía, pero

Más detalles

I Unidad: Espectro electromagnético. Objetivo: Comprender el concepto de Espectro electromagnético

I Unidad: Espectro electromagnético. Objetivo: Comprender el concepto de Espectro electromagnético I Unidad: Espectro electromagnético Objetivo: Comprender el concepto de Espectro electromagnético Espectro electromagnético La naturaleza de la luz ha sido estudiada desde hace muchos años por científicos

Más detalles

IDENTIFICAR: Aplicar la ecuación F = q. v. B. sinφ y resolverla para v. SITUACIÓN: Un electrón tiene una carga eléctrica q = C EJECUTAR:

IDENTIFICAR: Aplicar la ecuación F = q. v. B. sinφ y resolverla para v. SITUACIÓN: Un electrón tiene una carga eléctrica q = C EJECUTAR: EJERCICIO 27.2. Una partícula con masa de 0,195 g lleva una carga de - 2,50x10 8 C. Se da a la partícula una velocidad horizontal inicial hacia el norte y con magnitud de 4,00 x 10 4 m/s. Cuáles son la

Más detalles

PRUEBAS EBAU FÍSICA. Juan P. Campillo Nicolás 12 de julio de 2017

PRUEBAS EBAU FÍSICA. Juan P. Campillo Nicolás 12 de julio de 2017 Juan P. Campillo Nicolás 2 de julio de 207 . Gravitación.. Un satélite de 900 kg describe una órbita circular de radio 3R Tierra. a) Calcula la aceleración del satélite en su órbita. b) Deduce y calcula

Más detalles

FISICA III. Departamento de Física y Química Escuela de Formación Básica GUÍA DE PROBLEMAS 1 - INTERACCIÓN ELÉCTRICA

FISICA III. Departamento de Física y Química Escuela de Formación Básica GUÍA DE PROBLEMAS 1 - INTERACCIÓN ELÉCTRICA : FISICA III Departamento de Física y Química Escuela de Formación Básica GUÍA DE PROBLEMAS 1 - INTERACCIÓN ELÉCTRICA Temas Ley de Coulomb. Campo eléctrico Movimiento de una partícula cargada en un campo

Más detalles

Universidad Rey Juan Carlos. Prueba de acceso para mayores de 25 años. Física obligatoria. Año 2010. Opción A. Ejercicio 1. a) Defina el vector velocidad y el vector aceleración de un movimiento y escribe

Más detalles

Unidad 1 Estructura atómica de la materia. Teoría cuántica

Unidad 1 Estructura atómica de la materia. Teoría cuántica Unidad 1 Estructura atómica de la materia. Teoría cuántica 1.El átomo y la constitución de la materia DALTON NO ACEPTADO POR LOS FÍSICOS que creían en la idea de que los átomos se encontraban como disueltos

Más detalles

2 La carga del electrón fue determinada por primera vez en: D Difracción de electrones a partir del papel de aluminio.

2 La carga del electrón fue determinada por primera vez en: D Difracción de electrones a partir del papel de aluminio. Slide 1 / 32 1 Un Tubo de Crooke (un tubo que contiene gas rarificado a través del cual se hace pasar una corriente entre un cátodo y un ánodo) fue utilizado en el descubrimiento del electrón por: A R.

Más detalles

RADIACIÓN ELECTROMAGNÉTICA Y TÉCNICAS DE OBSERVACIÓN. Curso Introducción a la Astronomía 1

RADIACIÓN ELECTROMAGNÉTICA Y TÉCNICAS DE OBSERVACIÓN. Curso Introducción a la Astronomía 1 RADIACIÓN ELECTROMAGNÉTICA Y TÉCNICAS DE OBSERVACIÓN Curso 2011-12 Introducción a la Astronomía 1 Brillo Magnitud aparente El ojo detecta la luz de forma logarítmica, es decir, detecta cambios no de manera

Más detalles

FÍSICA CUÁNTICA. Física de 2º de Bachillerato

FÍSICA CUÁNTICA. Física de 2º de Bachillerato FÍSICA CUÁNTICA Física de º de Bachillerato Física Cuántica Insuficiencia de la Física Clásica Teoría de la Radiación Térmica Radiación del Cuerpo Negro Efecto fotoeléctrico Teoría de Einstein Los espectros

Más detalles

Transferencia de Calor por Radiación

Transferencia de Calor por Radiación INSTITUTO TECNOLÓGICO de Durango Transferencia de Calor por Radiación Dr. Carlos Francisco Cruz Fierro Revisión 1 67004.97 12-jun-12 1 INTRODUCCIÓN A LA RADIACIÓN ELECTROMAGNÉTICA 2 Dualidad de la Luz

Más detalles

EL ÁTOMO CONTENIDOS. ANTECEDENTES HISTÓRICOS. ( ) MODELOS ATÓMICOS. RAYOS CATÓDICOS. MODELO DE THOMSON.

EL ÁTOMO CONTENIDOS. ANTECEDENTES HISTÓRICOS. ( ) MODELOS ATÓMICOS. RAYOS CATÓDICOS. MODELO DE THOMSON. EL ÁTOMO CONTENIDOS. 1.- Antecedentes históricos.( ) 2.- Partículas subatómicas. ( ) 3.- Modelo atómico de Thomsom. 4.- Los rayos X. 5.- La radiactividad. 6.- Modelo atómico de Rutherford. 7.- Radiación

Más detalles

MAGNETISMO. MSc. Alexander Pérez García Video 1

MAGNETISMO. MSc. Alexander Pérez García Video 1 MAGNETISMO Secciones secuenciales de una resonancia del encéfalo, mostrando concurrentemente tajadas a través de los planos transverso, sagital y coronal (izquierda a derecha) MSc. Alexander Pérez García

Más detalles

Una Introducción a la Mecánica Cuántica

Una Introducción a la Mecánica Cuántica Una Introducción a la Mecánica Cuántica 1 Estado de la Física hacia 1900 Fines del siglo XIX y principios del XX, la Física reina absoluta Newton había sentado las bases de la mecánica y la gravitación

Más detalles

RELACIÓN CARGA MASA DEL ELECTRÓN.

RELACIÓN CARGA MASA DEL ELECTRÓN. RELACIÓN CARGA MASA DEL ELECTRÓN. OBJETIVOS. *Identificar que cuando una carga eléctrica se acelera emite radiación electromagnética (luz). *Identificar la interacción de las cargas eléctricas con un campo

Más detalles

TEMA 3: Interacción de la radiación solar con la superficie de la Tierra y la atmósfera

TEMA 3: Interacción de la radiación solar con la superficie de la Tierra y la atmósfera TEMA 3: Interacción de la radiación solar con la superficie de la Tierra y la atmósfera Objetivo Entender por qué la Tierra tiene un temperatura promedio global moderada que permite su habitabilidad, y

Más detalles

EJERCICIOS ONDAS PAU

EJERCICIOS ONDAS PAU EJERCICIOS ONDAS PAU 1 Una masa m oscila en el extremo de un resorte vertical con una frecuencia de 1 Hz y una amplitud de 5 cm. Cuando se añade otra masa, de 300 g, la frecuencia de oscilación es de 0,5

Más detalles

2) Cuál de las siguientes afirmaciones que describen un cuerpo en equilibrio no es verdadera? - Categoría:

2) Cuál de las siguientes afirmaciones que describen un cuerpo en equilibrio no es verdadera? - Categoría: UNIVERSIDAD ANDRÉS BELLO Test de Diagnóstico FMF024: Física General 2013 Asignatura: Profesor: FMF000 Departamento de Ciencias Físicas Instrucciones: 1) Marque solamente una alternativa, la que usted considere

Más detalles

PROBLEMAS COMPLEMENTARIOS

PROBLEMAS COMPLEMENTARIOS Problema nº1 Indica si dos protones separados por 10-18 m tenderán a acercarse por efecto de la gravedad o a repelerse por efecto electrostático. Datos: G = 6,6 10-11 N m 2 / 2, m p = 1,6 10-27, q p =

Más detalles

La Hipótesis: Los electrones de las paredes se agitan térmicamente y emiten radiación electromagnética dentro de la cavidad.

La Hipótesis: Los electrones de las paredes se agitan térmicamente y emiten radiación electromagnética dentro de la cavidad. Solución Clásica de Rayleigh-Jeans (1900) La Hipótesis: Los electrones de las paredes se agitan térmicamente y emiten radiación electromagnética dentro de la cavidad. En la cavidad se establece y se mantiene

Más detalles

1º Fenómeno: La radiación de cuerpo negro. ! Radiación: Radiación térmica en forma de ondas electromagnéticas (OEM)

1º Fenómeno: La radiación de cuerpo negro. ! Radiación: Radiación térmica en forma de ondas electromagnéticas (OEM) FÍSICA CUANTICA:! Área de la física que surgió al analizar y explicar los fenómenos mecánicos que ocurren a escala microscópica (átomos y partículas atómicas)! A principios del siglo XX, una serie de fenómenos

Más detalles

g planeta = g tierra / 2 = 4 9 m/s 2 v planeta = 11 2 / 2 = 5 6 km/s

g planeta = g tierra / 2 = 4 9 m/s 2 v planeta = 11 2 / 2 = 5 6 km/s PAU MADRID JUNIO 2003 Cuestión 1.- Suponiendo un planeta esférico que tiene un radio la mitad del radio terrestre e igual densidad que la tierra, calcule: a) La aceleración de la gravedad en la superficie

Más detalles

Nombre... TEORÍA. 1.- Sobre campo eléctrico y potencial. Contestar razonadamente a las siguientes cuestiones.

Nombre... TEORÍA. 1.- Sobre campo eléctrico y potencial. Contestar razonadamente a las siguientes cuestiones. Nombre... TEORÍA 1.- Sobre campo eléctrico y potencial. Contestar razonadamente a las siguientes cuestiones. 1 A.- Qué carga oculta la interrogación de la figura 1 A, si la carga visible es +2 C? (0.5

Más detalles

02/06/2014. Química Plan Común

02/06/2014. Química Plan Común Química Plan Común Limitaciones del Modelo Atómico de Rutherford Según el modelo atómico de Rutherford, los electrones se mueven en órbitas circulares y tienen una aceleración normal. Pero según los principios

Más detalles

T = Al sustituir el valor de la longitud de onda para la que la energía radiada es máxima, l máx, se obtiene: = 1379 K 2, m

T = Al sustituir el valor de la longitud de onda para la que la energía radiada es máxima, l máx, se obtiene: = 1379 K 2, m 2 Física cuántica Actividades del interior de la unidad. Calcula la temperatura de un ierro al rojo vivo para el cual l máx = 2, µm. Para calcular la temperatura que solicita el enunciado, aplicamos la

Más detalles

Preguntas del capítulo Ondas electromagnéticas

Preguntas del capítulo Ondas electromagnéticas Preguntas del capítulo Ondas electromagnéticas 1. Isaac Newton fue uno de los primeros físicos en estudiar la luz. Qué propiedades de la luz explicó usando el modelo de partícula? 2. Quién fue la primer

Más detalles

LICENCIATURA EN TECNOLOGÍA FÍSICA MODERNA. III. Antecedente de la Teoría Cuántica. IV. Mecánica Cuántica

LICENCIATURA EN TECNOLOGÍA FÍSICA MODERNA. III. Antecedente de la Teoría Cuántica. IV. Mecánica Cuántica III. y IV. Teoría Cuántica LICENCIATURA EN TECNOLOGÍA FÍSICA MODERNA III. Antecedente de la Teoría Cuántica IV. Mecánica Cuántica M. en C. Angel Figueroa Soto. angfsoto@geociencias.unam.mx Centro de Geociencias,

Más detalles

TEMA 13. Fundamentos de física cuántica

TEMA 13. Fundamentos de física cuántica TEMA 13. Fundamentos de física cuántica 1. Limitaciones de la física clásica Física clásica Mecánica (Newton) + Electrodinámica (Maxwell) + Termodinámica (Clausius-Boltzmann) Estas tres ramas explicaban

Más detalles

Problemas de Capítulo sobre Teoría Cuántica y Modelos Atómicos

Problemas de Capítulo sobre Teoría Cuántica y Modelos Atómicos Problemas de Capítulo sobre Teoría Cuántica y Modelos Atómicos Teoría cuántica de Plank 1. Cuál es la energía de un fotón con una frecuencia de 5*10 5 Hz? 2. Cuál es la energía de un fotón con una longitud

Más detalles

Departamento de Física y Química

Departamento de Física y Química 1 PAU Física, septiembre 2011 OPCIÓN A Cuestión 1.- Un espejo esférico convexo, proporciona una imagen virtual de un objeto que se encuentra a 3 m del espejo con un tamaño 1/5 del de la imagen real. Realice

Más detalles

transparent FÍSICA CUÁNTICA Prof. Jorge Rojo Carrascosa 21 de marzo de 2017

transparent   FÍSICA CUÁNTICA Prof. Jorge Rojo Carrascosa 21 de marzo de 2017 transparent www.profesorjrc.es 21 de marzo de 2017 Radiación del cuerpo negro 1 Ley de Stefan: E = σt 4 σ = 5, 67 10 8 Js 1 m 2 K 4 2 Ley de Desplazamiento de Wien λ m T = C C = cte = 0, 2897 cmk 3 Ley

Más detalles

RADIACIÓN ELECTROMAGNÉTICA

RADIACIÓN ELECTROMAGNÉTICA FACULTAD DE CIENCIAS QUÍMICAS Espectrometría Objeto de Estudio Nº 1 LECTURA N 1 RADIACIÓN ELECTROMAGNÉTICA Bibliografía: SKOOG, D.A.; Leary J.J.; ANÁLISIS INSTRUMENTAL, 4 ed.; Ed. McGraw-Hill (1994), págs.

Más detalles

Tema 8: Física cuántica

Tema 8: Física cuántica Tema 8: Física cuántica 1. Insuficiencia de la física clásica: Emisión del cuerpo negro Espectros atómicos discontinuos Efecto fotoeléctrico 2. Hipótesis de Planck. Cuantización de la energía. Fotón. 3.

Más detalles

Física II. El campo eléctrico. Presentación basada en el material contenido en: Serway, R. Physics for Scientists and Engineers.

Física II. El campo eléctrico. Presentación basada en el material contenido en: Serway, R. Physics for Scientists and Engineers. Física II. El campo eléctrico. Presentación basada en el material contenido en: Serway, R. Physics for Scientists and Engineers. Saunders College Pub. 3rd edition. Recordamos que: La carga eléctrica siempre

Más detalles

MATERIA MOLÉCULAS ÁTOMOS PARTÍCULAS SUBATÓMICAS. Partícula Masa (g) Carga (Coulombs) Carga unitaria. Electrón

MATERIA MOLÉCULAS ÁTOMOS PARTÍCULAS SUBATÓMICAS. Partícula Masa (g) Carga (Coulombs) Carga unitaria. Electrón MATERIA MOLÉCULAS ÁTOMOS PARTÍCULAS SUBATÓMICAS Partícula Masa (g) Carga (Coulombs) Carga unitaria Electrón 9.10939 10-28 -1.6022 10-19 -1 Protón 1.67262 10-24 +1.6022 10-19 +1 Neutrón 1.67493 10-24 0

Más detalles

La teoría atómica de Dalton (1808)

La teoría atómica de Dalton (1808) EL ÁTOMO Evolución de los modelos atómicos, partículas atómicas, masa y número atómico, mol, elementos e isótopos, modelo atómico contemporáneo, números cuánticos, principio de aufbau, principio de Pauli,

Más detalles

Óptica Fenómenos luminosos. Juan Carlos Salas Galaz

Óptica Fenómenos luminosos. Juan Carlos Salas Galaz Óptica Fenómenos luminosos Juan Carlos Salas Galaz Física La física proviene del griego phisis y que significa realidad o naturaleza y una aproximación sería, la ciencia que estudia las propiedades del

Más detalles

PRUEBAS EBAU FÍSICA. Juan P. Campillo Nicolás 13 de julio de 2017

PRUEBAS EBAU FÍSICA. Juan P. Campillo Nicolás 13 de julio de 2017 Juan P. Campillo Nicolás 13 de julio de 2017 1 1. Gravitación. 1. La Luna es aproximadamente esférica, con radio R L = 1,74 10 6 m y masa M L = 7,3 10 22 kg. Desde su superficie se lanza verticalmente

Más detalles

c = λν λ = longitud de onda (distancia entre crestas de la onda) 1Å(angstrom) = 10 8 cm = m

c = λν λ = longitud de onda (distancia entre crestas de la onda) 1Å(angstrom) = 10 8 cm = m RADIACIÓN TÉRMICA Emisión y absorción de la radiación térmica - Ley de Steffan - Radiación de un cuerpo negro - Ley de Wien - Teoría de Rayleigh-Jeans - Teoría cuántica de Planck. En la Física Clásica

Más detalles

Física 4 to de Media. Proyecto N o 3 Marzo-abril 2017 Prof. Félix R. Solano S.

Física 4 to de Media. Proyecto N o 3 Marzo-abril 2017 Prof. Félix R. Solano S. Física 4 to de Media. Proyecto N o 3 Marzo-abril 2017 Prof. Félix R. Solano S. La Ley de Ohm, postulada por el físico y matemático alemán Georg Simon Ohm, es una de las leyes fundamentales de la electrodinámica,

Más detalles

Física Contemporánea con Laboratorio p. 1

Física Contemporánea con Laboratorio p. 1 Física Contemporánea con Laboratorio Javier M. Hernández FCFM - BUAP Primavera 2015 Física Contemporánea con Laboratorio p. 1 Física clásica Física Clásica (ca. 1880) Teoría: Newton, Maxwell, Gibbs Exps:

Más detalles

P. A. U. FÍSICA Madrid Septiembre 2005

P. A. U. FÍSICA Madrid Septiembre 2005 P. A. U. FÍSICA Madrid Septiembre 2005 CUESTIÓN 1.- Se tienen dos muelles de constantes elásticas k 1 y k 2 en cuyos extremos se disponen dos masas m 1 y m 2 respectivamente, siendo m 1 < m 2. Al oscilar,

Más detalles

FíSICA MODERNA. Maestría en Ciencias (Materiales) Otoño 2013 Dra. Lilia Meza Montes Instituto de Física Luis Rivera Terrazas

FíSICA MODERNA. Maestría en Ciencias (Materiales) Otoño 2013 Dra. Lilia Meza Montes Instituto de Física Luis Rivera Terrazas FíSICA MODERNA Maestría en Ciencias (Materiales) Otoño 2013 Dra. Lilia Meza Montes Instituto de Física Luis Rivera Terrazas Parte I. Introducción a la Mecánica Cuántica 1. Orígenes de las ideas cuánticas

Más detalles

Bloque 1. La descripción del movimiento y la fuerza... 14

Bloque 1. La descripción del movimiento y la fuerza... 14 Conoce tu libro 10 Bloque 1. La descripción del movimiento y la fuerza... 14 Entrada de bloque 14 Secuencia 1. El movimiento de los objetos 16 Marco de referencia y trayectoria; diferencia entre desplazamiento

Más detalles

DEPARTAMENTO DE QUÍMICA SERIE DE EJERCICIOS. Tema 1: Estructura Atómica Semestre

DEPARTAMENTO DE QUÍMICA SERIE DE EJERCICIOS. Tema 1: Estructura Atómica Semestre DEPARTAMENTO DE QUÍMICA SERIE DE EJERCICIOS (Basada en reactivos de exámenes colegiados) Tema 1: Estructura Atómica Semestre 2017-2 Experimento de Thomson 1. En un experimento como el de Thomson, un haz

Más detalles

XXVII Olimpiada Española de Física

XXVII Olimpiada Española de Física XXVII Olimpiada Española de Física FASE LOCAL-UNIVERSIDADES DE GALICIA- 26 de febrero de 2016 APELLIDOS...NOMBRE... CENTRO... Nota: En el caso de que la respuesta a alguna de las cuestiones planteadas

Más detalles

Nacimiento de la teoría cuántica Antecedentes

Nacimiento de la teoría cuántica Antecedentes Estructura de la Materia Nacimiento de la teoría cuántica Antecedentes Martha M. Flores Leonar FQ UNAM 10 de febrero de 2016 CONTENIDO Magnitudes atómicas Nacimiento de la teoría cuántica Descubrimiento

Más detalles

SOLUCIÓN DE LA PRUEBA DE ACCESO

SOLUCIÓN DE LA PRUEBA DE ACCESO ísica EXTREMADURA CONVOCATORIA JUNIO 009 SOLUCIÓN DE LA RUEBA DE ACCESO AUTOR: Tomás Caballero Rodríguez Opción A Un sistema óptico está formado por un conjunto de superficies especulares (espejos) o transparentes

Más detalles

Física Examen Final 20/05/05

Física Examen Final 20/05/05 Física Examen Final 20/05/05 I.E.S. Elviña DEPARTAMENTO DE FÍSICA E QUÍMICA Problemas Nombre [6 Ptos.] 1. Una partícula de 500 g describe un M.A.S. con una frecuencia de 1,59 Hz. Las energías iniciales

Más detalles

Síntesis de Física 2º de Bach. Borrador Mecánica Cuántica - 1 RADIACIÓN DEL CUERPO NEGRO Y LA HIPÓTESIS DE PLANCK

Síntesis de Física 2º de Bach. Borrador Mecánica Cuántica - 1 RADIACIÓN DEL CUERPO NEGRO Y LA HIPÓTESIS DE PLANCK Síntesis de Física º de Bach. Borrador Mecánica Cuántica - 1 MECÁNICA CUÁNTICA RADIACIÓN DEL CUERPO NEGRO Y LA HIPÓTESIS DE PLANCK Todos los cuerpos emiten energía radiante debido a su temperatura. Vamos

Más detalles

PRUEBA ESPECÍFICA PRUEBA 2010

PRUEBA ESPECÍFICA PRUEBA 2010 PRUEBA DE ACCESO A LA UNIVERSIDAD MAYORES PRUEBA ESPECÍFICA PRUEBA 2010 PRUEBA SOLUCIONARIO Aclaraciones previas Tiempo de duración de la prueba: 1 hora Contesta 4 de los 5 ejercicios propuestos. (Cada

Más detalles

Radiación. La radiación electromagnética

Radiación. La radiación electromagnética Radiación Curso Introducción a las Ciencias de la Tierra y el Espacio II La radiación electromagnética Es el portador de la información de los objetos astronómicos. Es la forma en que la energía electromagnética

Más detalles

MOVIMIENTO ONDULATORIO

MOVIMIENTO ONDULATORIO ELVER ANTONIO RIVAS CÓRDOBA MOVIMIENTO ONDULATORIO El movimiento ondulatorio se manifiesta cuando la energía que se propaga en un medio elástico produce movimientos que lo cambian. Para describir una onda

Más detalles

5ta OLIMPIADA CIENTÍFICA ESTUDIANTIL PLURINACIONAL BOLIVIANA FÍSICA 2da Etapa ( Exámen Simultaneo ) 6to de Primaria

5ta OLIMPIADA CIENTÍFICA ESTUDIANTIL PLURINACIONAL BOLIVIANA FÍSICA 2da Etapa ( Exámen Simultaneo ) 6to de Primaria 6to de Primaria cálculos auxiliares al reverso de la página. Tiempo 2 horas. 1. (10%) Encierra en un círculo los incisos que corresponden a estados de la materia. a) líquido b) transparente c) gaseoso

Más detalles

LA RIOJA / JUNIO 04. LOGSE / FÍSICA / EXAMEN COMPLETO

LA RIOJA / JUNIO 04. LOGSE / FÍSICA / EXAMEN COMPLETO LA RIOJA / JUNIO 0. LOGSE / FÍSICA / EXAMEN COMPLEO EXAMEN COMPLEO El alumno elegirá una sola de las opciones de problemas, así como cuatro de las cinco Cuestiones propuestas. No deben resolverse problemas

Más detalles

SEGUNDA OLIMPIADA NACIONAL UNIVERSITARIA DE FÍSICA (ONUF) 14 de marzo de 2014

SEGUNDA OLIMPIADA NACIONAL UNIVERSITARIA DE FÍSICA (ONUF) 14 de marzo de 2014 DATOS PERSONALES: Nombre: Universidad: Carrera: Año: Dirección: Teléfono: e-mail: Fecha de nacimiento: Carnet de Identidad: FIRMA: PUNTUACIONES: 1:, 2:, 3:, 4:, 5: TOTAL: LAS SOLUCIONES: Las soluciones

Más detalles

Fuerzas de un Campo Magnético sobre Cargas Eléctricas en Movimiento

Fuerzas de un Campo Magnético sobre Cargas Eléctricas en Movimiento Fuerzas de un Campo Magnético sobre Cargas Eléctricas en Movimiento Ejercicio resuelto nº 1 Un electrón penetra perpendicularmente desde la izquierda en un campo magnético uniforme vertical hacia el techo

Más detalles

FÍSICA - 2º BACHILLERATO MOVIMIENTO ONDULATORIO - HOJA 1

FÍSICA - 2º BACHILLERATO MOVIMIENTO ONDULATORIO - HOJA 1 FÍSICA - 2º BACHILLERATO MOVIMIENTO ONDULATORIO - HOJA 1 1. Una onda transversal se propaga por una cuerda según la ecuación: y( x, = 0,4 cos(100t 0,5x) en unidades SI. Calcula: a) la longitud de onda

Más detalles

CAPÍTULO VI TRANSPORTE DE ENERGÍA POR RADIACIÓN

CAPÍTULO VI TRANSPORTE DE ENERGÍA POR RADIACIÓN CAPÍTULO VI TRANSPORTE DE ENERGÍA POR RADIACIÓN 6.1 El espectro de radiación electromagnética El transporte de energía por conducción y convección necesitan la existencia de un medio material. La conducción

Más detalles

SOLO UNAS CUANTAS DE LAS ÓRBITAS DEL ÁTOMO PLANETARIO ESTÁN PERMITIDAS. 1) La energía total del átomo de Z protones está cuantizada.

SOLO UNAS CUANTAS DE LAS ÓRBITAS DEL ÁTOMO PLANETARIO ESTÁN PERMITIDAS. 1) La energía total del átomo de Z protones está cuantizada. Recapitulando sobre el modelo de Bohr SOLO UNAS CUANTAS DE LAS ÓRBITAS DEL ÁTOMO PLANETARIO ESTÁN PERMITIDAS 1) La energía total del átomo de Z protones está cuantizada E 4 π κ Z e m con n n h 1,,3,...

Más detalles

INSTITUCIÓN EDUCATIVA GENERAL SANTANDER FÍSICA GRADO ONCE MATERIAL DE APOYO MOVIMIENTO ONDULATORIO

INSTITUCIÓN EDUCATIVA GENERAL SANTANDER FÍSICA GRADO ONCE MATERIAL DE APOYO MOVIMIENTO ONDULATORIO 1 INSTITUCIÓN EDUCATIVA GENERAL SANTANDER FÍSICA GRADO ONCE MATERIAL DE APOYO MOVIMIENTO ONDULATORIO CONSIDERACIONES GENERALES La mayor parte de información del mundo que nos rodea la percibimos a través

Más detalles

FACULTAD DE INGENIERIA. DIVISION DE CIENCIAS BASICAS UNAM. (27 DE ENERO 2014). Estrategia de Planeación del Modelo Atómico de Bohr

FACULTAD DE INGENIERIA. DIVISION DE CIENCIAS BASICAS UNAM. (27 DE ENERO 2014). Estrategia de Planeación del Modelo Atómico de Bohr FACULTAD DE INGENIERIA. DIVISION DE CIENCIAS BASICAS UNAM. (27 DE ENERO 2014). Estrategia de Planeación del Modelo Atómico de Bohr PROFESOR. DR. RAMIRO MARAVILLA GALVAN MODELOS EN LA ENSEÑANZA. EL MODELO

Más detalles

FÍSICA CUÁNTICA 1. Antecedentes y crisis. 2. Modelo atómico de Bohr. 3. Principios de la mecánica cuántica.

FÍSICA CUÁNTICA 1. Antecedentes y crisis. 2. Modelo atómico de Bohr. 3. Principios de la mecánica cuántica. FÍSICA CUÁNTICA 1. Antecedentes y crisis. 2. Modelo atómico de Bohr. 3. Principios de la mecánica cuántica. Física 2º bachillerato Física cuántica 1 0. CONOCIMIENTOS PREVIOS Los conocimientos previos que

Más detalles

Unidad Nº 10. Magnetismo

Unidad Nº 10. Magnetismo Unidad Nº 10 Magnetismo 10.1. Definición y propiedades del campo magnético. Fuerza magnética en una corriente. Movimiento de cargas en un campo magnético. 10.2. Campos magnéticos creados por corrientes.

Más detalles