Introducción a la fabricación de Circuitos Integrados



Documentos relacionados
Transistores de Efecto de Campo

Figura Nº 4.1 (a) Circuito MOS de canal n con Carga de Deplexion (b) Disposición como Circuito Integrado CI

J-FET de canal n J-FET (Transistor de efecto campo de unión) J-FET de canal p FET

Transistor de Efecto de Campo con Gate aislado Es unipolar con canal tipo n o tipo p Gate = polisilicio >> dopado sustrato

CAPI TULO 2 TRANSISTORES MOSFET INTRODUCCIÓN Historia del Transistor

Instituto Tecnológico de Saltillo Ing.Electronica UNIDAD IV TRANSISTORES ING.CHRISTIAN ALDACO GLZ

MODULO Nº12 TRANSISTORES MOSFET

Transistor MOSFET ELEMENTOS ACTIVOS EL-2207 I SEMESTRE 2011

Integrantes: Luis Valero Antoni Montiel Kelwin Contreras Gabriel Jiménez Jefferson Saavedra

TEMA 5. ELECTRÓNICA DIGITAL

Introducción TEMA 1 TECNOLOGÍA DE LOS CI. ME Tema 1 Lección 1 Aspectos generales sobre diseño microelectrónico 1

De la arena al silicio La fabricación de un chip Historia ilustrada Septiembre de 2009

TRANSISTORES DE EFECTO DE CAMPO

INTRODUCCIÓN A LOS TRANSISTORES

Micro/Nano-Electrónica: Pasado, Presente y Futuro

TEMA I INTRODUCCIÓN A LA MICROELECTRÓNICA

Electrónica de potencia e instalaciones eléctricas: Semiconductores: diodo, transistor y tiristor

Nacimiento de la Microelectrónica ENIAC. Tecnología Planar Circuito Integrado W. Shockley J. Bardeen W. Brattain

CAPÍTULO COMPONENTES EL DIODO SEMICONDUCTORES: 1.1 INTRODUCCIÓN

TEMA ELECTRÓNICA 3º ESO TECNOLOGÍA


CLASE 14 TALLER: ENTORNO DE DESARROLLO L EDIT

TEGNOLOGIA ELECTROMECÀNICA V SEMESTRE

CAPITULO 4. Inversores para control de velocidad de motores de

Clase 22 - Fabricación y Layout CMOS

Instrumentación Industrial Prólogo de la asignatura

P (potencia en watios) = U (tensión eléctrica en voltios) x I (corriente eléctrica en amperios)

Familias lógicas. Introducción. Contenido. Objetivos. Capítulo. Familias lógicas

MICROPROCESADORES. Conrado Perea

TEMA 2. Dispositivos y modelos MOS.

Tecnología y Proceso de Fabricación CMOS

Instituto Tecnológico de Massachussets Departamento de Ingeniería Eléctrica e Informática Circuitos electrónicos Otoño 2000

MODULO Nº6 TIRISTORES UNIDIRECCIONALES

Proceso de Fabricación. Proceso de fabricación. Fabricación de un lingote de silicio. Cámara limpia. Cámara limpia. Microelectrónica Febrero de 2008

MASTER DEGREE: Industrial Systems Engineering

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERIA ESCUELA DE MECANICA ELECTRICA LABORATORIO DE ELECTRONICA PENSUM COMUNICACIONES 3

Primeros conmutadores: diodos de cristal y de tubos de vacío (1906). Transistor (TRT): más pequeño y fiable, de material semiconductor (1950).

Encuesta sobre utilización de la microelectrónica en la Argentina

CAPÍTULO II. FUENTES Y DETECTORES ÓPTICOS. Uno de los componentes clave en las comunicaciones ópticas es la fuente de

BIBLIOGRAFÍA 2.1 INTRODUCCIÓN 2.1 INTRODUCCIÓN (2) Tema 3: EL TRANSISTOR FET

FACULTAD de INGENIERIA

ELECTRONICA DE POTENCIA

SISTEMA DE RECTIFICACIÓN TIPO PUENTE Y FILTRADO

LOS TRANSISTORES DE EFECTO DE CAMPO

Clase 20 - Fabricación y Layout CMOS

5. Metodologías de diseño de un ASIC

Familias Lógicas. José Antonio Morfín Rojas Universidad Iberoamericana, Ciudad de México Departamento de Ingeniería Ingeniería Electrónica

Tutorial de Electrónica

UNIDAD 3 EL DIODO SEMICONDUCTOR Y MODELOS

INTRODUCCIÓN A LA ELECTRÓNICA DE POTENCIA

UNIDAD I CONCEPTOS GENERALES

DM 1 - Diseño Microelectrónico I

Transistores. 1.- Responde adecuadamente las siguientes preguntas: /1 Punto. 2.- Completa la siguiente clasificación: /1 Punto.

Instrumentación y Ley de OHM

CAPITULO 3. SENSOR DE TEMPERATURA

EL42A - Circuitos Electrónicos

Del rock n roll al hafnio el transistor cumple sesenta años

Componentes: RESISTENCIAS FIJAS

TECNOLOGÍA ELECTRÓNICA DE SEMICONDUCTORES ORGÁNICOS: FABRICACIÓN DE DISPOSITIVOS EN AULAS DOCENTES

TEMA 9 REPASO SEMICONDUCTORES

Metodologías de diseño de hardware

Diodos: caracterización y aplicación en circuitos rectificadores

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES ARAGÓN

MOSFET DE ENRIQUECIMIENTO

TRANSISTORES DE EFECTO DE CAMPO

CAPÍTULO 2 SISTEMA ELECTROACÚSTICO 2.1 ANTECEDENTES. Como hemos mencionado anteriormente, la finalidad de este trabajo no es que los

MOSFET Conceptos Básicos

COMUNICACIÓN I2C (INTER-INTEGRATED CIRCUIT)

MICROPROCESADORES, EVOLUCIÓN HISTÓRICA Y CARACTERÍSTICAS TÉCNICAS BÁSICAS

Laboratorio de Diseño de Sistemas Digitales

Reprogramación de módulos de control

SISTEMAS DIGITALES III. Unidad I MEMORIAS

Otras Familias Lógicas.

Displays de 7 segmentos

Práctica 5. Circuitos digitales: control del nivel de un depósito

Curso Completo de Electrónica Digital

F.A. (Rectificación).

APLICACIONES CON OPTOS

3.1. Tabla periódica. Para entender el comportamiento del plomo es necesario, conocer su ubicación en la tabla periódica

LA ELECTRÓNICA APLICADA EN LA REPARACIÓN AUTOMOTRIZ

SERVOMOTORES. Los servos se utilizan frecuentemente en sistemas de radiocontrol, mecatrónicos y robótica, pero su uso no está limitado a estos.

EL LOGRO DE SU FORMACIÓN DEPENDE TAMBIÉN DE USTED INSTRUCTOR: ING. JULIO CÉSAR BEDOYA PINO ELECTRÓNICA DIGITAL 2014

CAPÍTULO 3. Transistores de efecto de campo MOS (MOSFET)

AMPLIFICADORES OPERACIONALES

CODIFICADORES Y DECODIFICADORES. DISPLAYS.

Unidad 2. Circuitos electrónicos y familias lógicas

S. Hambley, Electrónica, Prentice Hall, 2001.

UD 4.-ELECTRICIDAD 1. EL CIRCUITO ELÉCTRICO

TECNOLOGÍA ELECTRÓNICA DE SEMICONDUCTORES ORGÁNICOS: FABRICACIÓN DE TRANSISTORES EN AULAS DOCENTES

Placa de control MCC03

Implementación de un circuito integrado orientado a la enseñanza del proceso de diseño de circuitos analógicos básicos con tecnología CMOS.

Introducción a los sistemas electrónicos digitales

Tipos de Memoria. Microprocesadores. Microprocesadores. Carlos Canto Q. MEMORIA DE ALMACENAJE ALAMCEN SECUNDARIO ALAMACEN DE RESPALDO

Comprobación del estado de diodos de uso general y rectificadores

REGISTROS DE DESPLAZAMIENTO

Comparadores de tensión

Amplificadores de RF. 1. Objetivo. 2. Amplificadores de banda ancha. Práctica Introducción

Laboratorio III de Sistemas de Telecomunicaciones Departamento de Telemática

CONTEXTO DE LA MEMORIA EN UN SISTEMA DE CÓMPUTO M E M O R I A S

Transcripción:

Introducción a la Fabricación de Circuitos Integrados Escuela de Ingeniería Electrónica Instituto Tecnológico de Costa Rica Laboratorio de Elementos Activos Introducción a la fabricación de Circuitos Integrados Dr. Pablo Alvarado Adaptado de: Moreira, Paulo Introduction to VLSI digital design CERN, Suiza, 2005 Cartago, Costa Rica Octubre, 2006 Pablo Alvarado 1

Introducción a la Fabricación de Circuitos Integrados Contenido Historia Proceso de Fabricación Magic IETIX Resumen Pablo Alvarado 2

Introducción a la Fabricación de Circuitos Integrados Historia Audion (Triodo) 1906, Lee De Forest 1883 Thomas Edison ( Efecto Edison ) Experimentando con bombillos, Edison encontró que en el vacío una corriente puede fluir del filamento luminoso a una placa de metal polarizada positivamente pero no a una polarizada negativamente 1904 John Ambrose Fleming ( Diodo Fleming ) Reconoce impacto del descubrimiento de Edison, y demuestra la rectificación de señales CA. 1906 Lee de Forest ( Triodo ) Añade una rejilla al diodo de Fleming lo que permite amplificar señales. Los tubos al vacío continúan su evolución Dominan industria de radio y TV hasta los 60s, y representan la génesis de la industria electrónica actual. Son sin embargo frágiles, relativamente grandes, consumen mucha potencia y tienen altos costos de producción. Pablo Alvarado 3

Introducción a la Fabricación de Circuitos Integrados Historia (2) 1940 Russel Ohl (Union PN junction) La union PN es desarrollada en los Laboratorios Bell. 1945 Labs. Bell establece grupo para desarrollar alternativa de tubos al vacío. El grupo lo lidera William Shockley. Primer transistor de contacto puntual (germanio) 1947, John Bardeen y Walter Brattain Laboratorios Bell 1947 Bardeen and Brattain (Transistor) Se crea el primer circuito amplificador de estado sólido utilizando un transistor de contacto puntual (Ge) 1950 William Shockley (Transistor de juntura) Más fácil de producir que el transistor de contacto puntual. 1952 fabricación de silicio monocristalino 1954 primer transistor comercial de silicio Texas Instruments 1954 Primer radio de transistores (Regency TR-1) 4 transistores de Texas Instruments 1955 Primer transistor de efecto de campo Laboratorios Bell Pablo Alvarado 4

Introducción a la Fabricación de Circuitos Integrados Historia (3) 1952 Geoffrey W. A. Dummer (concepto de CI) En 1952 se publicó el concepto y en 1956 se hizo un intento 1954 Desarrollo de proceso de enmascaramiento del óxido Proceso incluye oxidación, foto-enmascaramiento, corrosión y difusión Primer circuito integrado (Ge) 1958 Jack S. Kilby, Texas Instruments 5 componentes entre transistores, resistencias y condensadores 1958 Jack Kilby (Circuito Integrado) Oscilador con 5 componentes 1959 Invento de tecnología planar Esta tecnología se usa aún en la actualidad 1960 Primer MOSFET fabricado En los Labs. Bell, por Kahng 1961 Primer Circuito Integrado comercial Fairchild and Texas Instruments 1962 Invento de TTL 1963 Primer Circuito Integrado PMOS producido por RCA 1963 CMOS inventado Pablo Alvarado 5

Introducción a la Fabricación de Circuitos Integrados Historia (4) 1971 Primer microprocesador Intel produce el 4004 (primer microprocesador de 4 bits) Conjunto de 3 chips encapsulados en DIP de 16 pines Circuito Integrado de 2 kbit ROM Circuito Integrado de 320 bit RAM Procesador: Proceso PMOS de compuertas en Si, 10 µm ~2300 transistores Velocidad de reloj: 108 khz Tamaño del dado de silicio: 13,5 mm 2 Pablo Alvarado 6

Introducción a la Fabricación de Circuitos Integrados Historia (5) 1982 Intel 80286 Proceso CMOS de compuertas en Si, 1,5 µm 1 capa de polisilicio 2 capas metalicas 134 000 transistores Velocidad de reloj 6 a 12 MHz Tamaño del dado 68,7 mm 2 Pablo Alvarado 7

Introducción a la Fabricación de Circuitos Integrados Historia (6) 2000 Pentium 4 Proceso CMOS de compuertas en Si, 0,18µm 1 capa de polisilicio 6 capas metálicas Fabricación: 21 capas / máscaras 42 millones de transistores Reloj: 1,400 to 1,500 MHz Tamaño del dado: 224 mm 2 Pablo Alvarado 8

Introducción a la Fabricación de Circuitos Integrados Historia (7) Historia de los microprocesadores de Intel (Tomado de http://www.intel.com/pressroom/kits/quickreffam.htm) Año Chip L Transistores 1971 4004 10µm 2,3k 1974 8080 6µm 6k 1976 8088 3µm 29k 1982 80286 1,5µm 134k 1985 80386 1,5µm 275k 1989 80486 0,8µm 1,2M 1993 Pentium 0,8µm 3,1M 1995 Pentium Pro 0,6µm 15,5M 1999 Mobile PII 0,25µm 27,4M 2000 Pentium 4 0,18µm 42M 2002 Pentium 4 (N) 0,13µm 55M 2005 Pentium 4 (EE) 90nm 169M Pablo Alvarado 9

Introducción a la Fabricación de Circuitos Integrados Ley de Moore En 1965 Gordon Moore (entonces en Fairchild Corp.) notó que: La complejidad de integración se duplica cada 3 años Esta afirmación se conoce comúnmente como la Ley de Moore Ha resultado correcta hasta este momento Qué motiva este ritmo de desarrollo en tecnologías de integración? El deseo de superación y motivación de las personas involucradas con tecnología? y / o es una motivación económica la mayor directriz? Ventas de la industria de semiconductores: 1962, > $1000 Millones 1978, > $10 000 Millones 1994, > $100 000 Millones Pablo Alvarado 10

Introducción a la Fabricación de Circuitos Integrados Motivador: Economía Tradicionalmente, el costo por función en un CI se reduce de un 25% a un 30% por año. Esto le permite al mercado de la electrónica a crecer un 15% por año Para lograrlo, el número de funciones por CI debe crecer, lo que requiere: Incremento del número de transistores incremento de la funcionalidad Incremento de la velocidad de reloj más operaciones por unidad de tiempo = incremento de la funcionalidad Disminución del tamaño de características si se mantiene el área se mantiene el precio mejora en el desempeño Pablo Alvarado 11

Introducción a la Fabricación de Circuitos Integrados Motivador: Economía (2) Incremento de la productividad Incremento del desempeño del maquinaria de producción Incremento en la producción (yield) Incremento en el número de chips en una oblea de silicio (wafer): reducción del área de un chip: menor tamaño de características smaller y rediseño Uso del mayor tamaño de oblea disponible Ejemplo de un producto efectivo en costo (tipicamente DRAM): el área en el CI se reduce en un 50% cada 3 años y en un 35% cada 6 años. Pablo Alvarado 12

Introducción a la Fabricación de Circuitos Integrados Hay un límite? Fábrica con gran volumen de producción Capacidad total: 40 000 obleas iniciadas por mes (Wafer Starts Per Month, WSPM) (180 nm) Inversión total capital: $2700 Millones Maquinaria y equipo de producción: 80% Servicios, Facilidades: 15% Sistemas de manejo de materiales: 3% Información y control de fábrica: 2% Ingresos mundiales del mercado mundial de semiconductores en el 2000: ~$180 000 Millones Tasa de crecimiento del mercado de semiconductores ~15% / año Tasa de crecimiento de mercado de equipo: ~19.4% / año Al 2010 los costos para equipo excederán el 30% de los ingresos del mercado de semiconductores! Limitaciones tecnológicas (tamaño de las estructuras, velocidades de transmisión, etc.) Pablo Alvarado 13

Introducción a la Fabricación de Circuitos Integrados Fabricación de un Circuito Integrado Pablo Alvarado 14

Inversor CMOS A 0 1 Y V DD A Y A Y GND Paulo Moreira Introduction 15

Transistor n-mos 4 terminales: compuerta, surtidor, drenador y sustrato Compuerta oxido sustrato conforman un condensador Compuerta y sustrato son conductores SiO 2 (oxido) es un excelente aislador Se denomina condensador MOS, aún cuando la compuerta no es metálica Source Gate Drain Polysilicon SiO 2 n+ n+ p bulk Si Paulo Moreira Introduction 16

Transistor p-mos Similar, pero dopado y tensiones invertidas Sustrato conectado a V DD Compuerta en bajo: transistor encendido Compuerta en alto: transistor apagado Círculo en la compuerta denota comportamiento invertido Polysilicon Source Gate Drain SiO 2 p+ p+ n bulk Si Paulo Moreira Introduction 17

Sección transversal del inversor Usualmente se utiliza un sustrato de tipo p para los transistores n-mos Se requiere un pozo n para los transistores tipo p-mos GND A Y V DD SiO 2 n+ diffusion n+ n+ p+ p substrate n well p+ p+ diffusion polysilicon metal1 nmos transistor pmos transistor Paulo Moreira Introduction 18

Conección a pozos y sustratos Sustrato debe ser conectado a GND y pozo n a V DD La conexión entre metal y un semiconductor levemente dopado forma una conexión eléctrica deficiente (en realidad, un diodo Shottky). Se utiliza entonces para la conexión contactos fuertemente dopados GND A Y V DD p+ n+ n+ p+ p+ n+ p substrate n well substrate tap well tap Paulo Moreira Introduction 19

Máscaras del inversor Transistores y conecciones se definen a través de máscaras La sección transversal se tomó en la línea punteada A Y GND V DD substrate tap nmos transistor pmos transistor well tap Paulo Moreira Introduction 20

Vistas detalladas de las máscaras Seis máscaras n-well Polysilicon n+ diffusion p+ diffusion Contact Metal n well Polysilicon n+ Diffusion p+ Diffusion Contact Metal Paulo Moreira Introduction 21

Pasos de fabricación Inicio con una oblea en blanco Construir inversor de abajo hacia arriba Primer paso: formar el pozo n (n-well) Cubrir la oblea con una capa protectora de óxido de silicio (SiO 2 ) Eliminar capa en el sitio donde debe construirse el pozo n Implantar o difundir dopantes n en la oblea expuesta Eliminar SiO 2 p substrate Paulo Moreira Introduction 22

Oxidación Producir SiO 2 en la parte superior de la oblea 900 C 1200 C con H 2 O o O 2 en horno de oxidación SiO 2 p substrate Paulo Moreira Introduction 23

Photoresist El Photoresist es un polímero orgánico sensitivo a la luz. Se suaviza en los sitios expuestos a la luz Photoresist SiO 2 p substrate Paulo Moreira Introduction 24

Litografía Exponer photoresist a través de la máscara del pozo n Eliminar photoresist expuesto Photoresist SiO 2 p substrate Paulo Moreira Introduction 25

Decapado (etch) Decapar el óxido con ácido hidrofluórico (HF) Solo solo se ataca al óxido donde el resist ha sido expuesto Photoresist SiO 2 p substrate Paulo Moreira Introduction 26

Eliminar Photoresist Eliminar el fotoresist remanente Se utiliza una mezcla de ácidos denominado decapado piraña Esto es necesiario para que el resist no se deshaga en los próximos pasos SiO 2 p substrate Paulo Moreira Introduction 27

Pozo n (n-well) Pozo n se forma por difusión o por implantación de iones Difusion Colocar la oblea en horno con arsénico gaseoso Calentar hasta que los átomos de As se difunden en el Si expuesto Implantación de iones Se dispara a la oblea con un rayo de iones de As Los iones bloqueados por el SiO 2, solo entran al Si expuesto SiO 2 n well Paulo Moreira Introduction 28

Eliminar óxido Eliminar óxido remanente utilizando HF (ácido hidrofluórico) Estamos de vuela con una oblea en blanco con un pozo n Los pasos siguientes involucran pasos similares p substrate n well Paulo Moreira Introduction 29

Polisilicio Depositar capa delgada de óxido para compuertas < 20 Å (6-7 capas atómicas) Deposición química de vapor (Chemical Vapor Deposition, CVD) de una capa de silicio Colocar oblea en horno con gas silano (SiH 4 ) Forma muchos cristales pequeños denominados polisilicio Fuertemente dopado para que sea buen conductor Polysilicon Thin gate oxide p substrate n well Paulo Moreira Introduction 30

Conformación del Polisilicio Usa mismo proceso litográfico anterior para dar forma al polisilicio Polysilicon Polysilicon Thin gate oxide p substrate n well Paulo Moreira Introduction 31

Proceso autoalineado Utilizar óxido y máscaras para exponer los sitios donde los dopantes n+ deberán ser difundidos o implantados La difusión n forma la fuente y drenador del transistor n-mos y el contacto con el pozo n p substrate n well Paulo Moreira Introduction 32

Difusión n Dar forma al óxido y conformar las regiones n+ Proceso auto-alineado donde la compuerta bloquea la difusión Polisilicion es mejor que el metal para las compuertas autoalineadas porque no se deshace en procesos posteriores n+ Diffusion p substrate n well Paulo Moreira Introduction 33

Difusión n (2) Históricamente los dopantes eran difundidos En la actualidad se usa implantación de iones A pesar de eso a las regiones se les denomina difusión n+ n+ n+ p substrate n well Paulo Moreira Introduction 34

Difusión n (3) Eliminar óxido para terminar la conformación. n+ n+ n+ p substrate n well Paulo Moreira Introduction 35

Difusión P Serie similar de pasos se utiliza para conformar las regiones de difusión p+, usadas en fuente y drenador del transistor p-mos y en el contacto del sustrato p+ Diffusion p+ n+ n+ p+ p+ n+ p substrate n well Paulo Moreira Introduction 36

Contactos Ahora deben interconectarse los dispositivos Se cubre al chip con una capa gruesa de óxido Se decapa el óxido donde los cortes para contactos se requieran Contact p+ n+ n+ p+ p+ n+ Thick field oxide p substrate n well Paulo Moreira Introduction 37

Metalización Depositar aluminio sobre toda la oblea Conformar para remover exceso de metal, dejando solo las conexiones Metal p+ n+ n+ p+ p+ n+ Metal Thick field oxide p substrate n well Paulo Moreira Introduction 38

Layout Chips se especifican con un conjunto de máscaras Las dimensiones mínimas de las máscaras determinan el tamaño del transitor (e indirectamente velocidad, costo y potencia) Tamaño característico f = distancia entre drenador y surtidor Dado por el ancho mínimo del polisilicio Tamaño característico se mejora un 30% cada 3 años aproximadamente Paulo Moreira Introduction 39

Reglas de diseño simplificadas Reglas conservadoras para iniciar Paulo Moreira Introduction 40

Introducción a la Fabricación de Circuitos Integrados Niveles de abstracción en el Diseño VLSI Alto High Especificación System Specification del sistema Sistema System Nivel Level de Abstracción of Abstraction Módulo Functional funcional Module Compuerta Gate Circuito + Dispositivo Device Bajo Low S G D Pablo Alvarado 41

Introducción a la Fabricación de Circuitos Integrados Dominios de Descripción de Diseño VLSI Dominio Comportamental Dominio Estructural Aplicaciones Sistemas Operativos Programas Subrutinas Transistores Procesador RISC Sumadores, compuertas, registros Instrucciones Transistores circuital RTL, lógico Celdas arquitectural Módulos Chips Tarjetas Dominio Físico Niveles de abstracción Pablo Alvarado 42

Introducción a la Fabricación de Circuitos Integrados El flujo de diseño analógico Especificación Ingreso del Diseño Simulación del Pre-layout Layout Velocidad Potencia Ancho de Banda Área... Crear esquemático Dimensionamiento de dispositivos Simulación del circuito Rediseño Distribución Ubicación Enrutamiento Front end Back end Pablo Alvarado 43

Introducción a la Fabricación de Circuitos Integrados Flujo de diseño (2) Verificación Extracción del Diseño Extracción de Elementos Parásitos Simulación del Post-layout Comprobación de reglas de diseño Comprobación de reglas eléctricas Extracción Layout vs Esquemático Extracción de elementos parásitos Simulación del circuito Rediseño Front end Back end Pablo Alvarado 44

Introducción a la Fabricación de Circuitos Integrados Referencias Moreira, Paulo Introduction to VLSI digital design CERN, Suiza, 2005 Pablo Alvarado 45