RESUMEN. Palabras clave



Documentos relacionados
PLANTAS DE TRATAMIENTO DE AGUAS

Instalaciones de tratamiento de agua de alimentación de caldera

IMPORTANCIA DE LA CALIDAD DEL AGUA EN LA LIMPIEZA DEL MATERIAL EN ESTERILIZACION. Zaragoza 17 de noviembre de

II JORNADAS TECNICAS REGENERACIÓN Y REUTILIZACIÓN DE AGUAS RESIDUALES. PROBLEMAS DE SALINIDAD

IMPORTANCIA DE LA CALIDAD DEL AGUA EN LA LIMPIEZA DEL MATERIAL EN ESTERILIZACION

DEPURACIÓN ALMAZARAS TREICO MEDIOAMBIENTE, S.L.

Aplicación de Nuevas Tecnologías para la Reutilización de Aguas Regeneradas Nazaret Ontañón Nasarre DRACE MEDIOAMBIENTE

TRATAMIENTAMIENTO DE AGUAS RESIDUALES POR MEDIO DE HUMEDALES ARTIFICIALES AUTOR PATRICIA HENRIKSSON LEON

VI Congreso Nacional

FACTORES QUE INCIDEN EN LA CALIDAD DEL AGUA

La refrigeración de las Centrales de Ciclo Combinado a Gas Natural

Capítulo III. Descripción de las Estación Depuradoras de Aguas Residuales (EDAR s)

LA REUTILIZACIÓN DE LAS AGUAS RESIDUALES DEPURADAS EN ESPAÑA. PERSPECTIVAS, OPORTUNIDADES Y BARRERAS

TECNOLOGIAS DE MEMBRANA ELECTRODIÁLISIS

CÁLCULO DEL ÍNDICE DE ENSUCIAMIENTO DE LAS MEMBRANAS (SDI)

LA REUTILIZACIÓN DE LAS AGUAS DEPURADAS EN ESPAÑA. NORMATIVA Y TECNOLOGÍAS MAS UTILIZADAS

LIMPIEZA Y DESINFECCIÓN EN LA INDUSTRIA LÁCTEA

SENTIDO DEL FLUJO FILTRANDO

Inspección sanitaria de instalaciones con mayor y menor probabilidad de proliferación y dispersión de Legionella.

Sistemas de Tratamiento de Agua de Gumerman-Burris-Hansen. 9

Ablandamiento de agua mediante el uso de resinas de intercambio iónico.

GENERALIDADES VALORES LÍMITE DEL AGUA DE LA CALEFACCIÓN... 4

MÓDULO: GESTIÓN DE RESIDUOS TEMA: DESMINERALIZACIÓN

ANÁLISIS DE AGUAS INTRODUCCIÓN A LOS ANÁLISIS DE AGUAS. MEDICIONES DE : DUREZA CLORURO ACIDEZ-pH OXÍGENO DISUELTO CONDUCTIVIDAD

ESTACION DEPURADORA DE DE AGUAS RESIDUALES DE DE LOGROÑO

PROYECTO DE RECUPERACION Y OPTIMIZACIÓN DE PROCESO DE TRATAMIENTO DE LA EDAR DEL MUNICIPIO DE AGUADULCE (SEVILLA). Código Memoria.

TREN DE FILTRACIÓN DE AGUA

NUEVO PROCESO FÍSICO-QUÍMICO PARA LA POTABILIZACIÓN DE AGUA SIN LA UTILIZACIÓN DE POLIACRILAMIDAS. L. Guerrero* 1 ; C.Moreno 2 ; J.

TECNOLOGÍAS DE ADSORCIÓN CON CARBON ACTIVADO. Tecnología No Convencional de tipo Físico-químico

Reducción del consumo de agua en la producción de papel a partir de papel recuperado

Una mirada a la más reciente normativa en la gestión. sostenible del agua y de los ríos

La comunidad de El Maneadero, al igual que Yamaranguila, ha sido beneficiada por segunda vez con asistencia técnica y financiera.

TUBOS Y ACCESORIOS DE PRFV IDAM CURAÇAO DEGREMONT

PLANTAS DEPURADORAS COMPACTAS PARA AGUAS RESIDUALES URBANAS

Tecnología = Garantía

Descripción del sistema Bioreactor de Membranas

Programas para el control de la calidad microbiológica del agua de refrigeración

SKYHYDRANT. Filtro de tratamiento de agua

TECNOLOGÍAS DE FILTRACION: Filtros de Microfibra

ANEJO 5: INSTALACIÓN DE VAPOR

NOTA INFORMATIVA SOBRE SISTEMAS DE OXIDACIÓN TOTAL

Especial MANTENIMIENTO LEGAL

REUTILIZACIÓN N DE LAS AGUAS RESIDUALES

GESTION DE EFLUENTES LIQUIDOS

INFORME: INNOVACION TECNOLOGICA RECUPERACION AGUAS PLUVIALES Y AGUAS GRISES

DEMANDA BIOQUÍMICA DE OXIGENO. Calidad del Agua Ninoschtka Freire Morán

Sistema TREAC. TRatamiento por Electrocoagulación de Aguas Contaminadas DESARROLLANDO FUTURO

AHORA EN COLOMBIA EL SISTEMA MAS USADO EN EUROPA PARA EL TRATAMIENTO DE AGUAS RESIDUALES

DESALINIZACIÓN DE AGUAS RESIDUALES URBANAS POR ÓSMOSIS INVERSA CON PRETRATAMIENTO CONVENCIONAL

BIOMAX DEPURACIÓN DE ALTO RENDIMIENTO

1. Definición. 2. Proceso Productivo

Sistemas de depuración natural con humedales artificiales. Aquanea tel: fax:

MÓDULO: C. DE LAS AGUAS TEMA: CARBÓN ACTIVO

Figura 1: Filtro abierto o de gravedad. Corte transversal y vista superior del detalle del sistema de drenaje del agua filtrada..

REUTILIZACIÓN DE AGUAS DEPURADAS

CATALAGO DE PRODUCTOS T R A T A M I E N T O S D E A G U A

Calidad físico química de las aguas subterráneas

Estaciones de Tratamiento de Agua Potable. Unidad ETA-FFC

PLANTA SIKA MEXICANA CORREGIDORA, QUERÉTARO, MÉXICO.

Planta Desalinizadora de Santa Eulalia del Río (Ibiza)

Calderas y Sistemas de Agua Caliente.

E.D.A.R. Estación Depuradora de Aguas Residuales. Marcos Santamarta Calleja Marcos Beahín Vázquez Lara Rodríguez Pena Marta Alonso Corral

HIDROSTANK. Catalogo 76.1

Tratamiento Biológico de Aguas Residuales: Uso de Bacterias Benéficas

Relevancia para la toma de decisión

PLANTA DE TRATAMIENTO DE LIXIVIADOS PARQUE AMBIENTAL LOS POCITOS

Control de la calidad del agua de los vasos

PROCESO DE FABRICACIÓN DE BIODIESEL

El biodigestor ETERNIT ha sido desarrollado bajo normas peruanas, y es ideal para disponer adecuadamente las aguas residuales de aquellas

Oferta tecnológica: Sistema compacto para el tratamiento de aguas residuales de origen doméstico

IX congreso internacional Madrid > 12, 13, 14 y 15 de noviembre de 2012

LIMPIEZA Y DESINFECCIÓN

Novedoso sistema integral de tratamiento de agua.

Pura como la naturaleza

PROGRAMA DE MANTENIMIENTO PREVENTIVO IECISA TRES CANTOS

Con ECOCICLE se recuperan las aguas para su posterior uso en la cisterna del inodoro, la limpieza de suelos y el riego.

COSECHANDO EL AGUA DE LLUVIA.

Auditorías Energéticas

Aquaserve y Eco-Step Reutilización de aguas grises NOVEDAD

3.6 REGENERACIÓN Y REUTILIZACIÓN DE AGUAS DEPURADAS. DISEÑO, CONSTRUCCIÓN Y EXPLOTACIÓN.

DESCRIPCIÓN DEL FUNCIONAMIENTO DE LA DESALADORA DE AGUA DE MAR DEL CANAL DE ALICANTE

PLANTAS POTABILIZADORAS MÓVILES SOBRE CARRO PARA TRATAMIENTO DE AGUAS SUPERFICIALES FUNCIONAMIENTO AUTOMATICO LAVADOS MANUALES MOD.

Unos 500 expertos en presas concluyen que éstas son "fundamentales" para paliar sequías y avenidas

Equipos de hidrólisis - Electrólisis salina Oxymatic QP Salt 55 Autosalt 56 Poolsquad

GESTIÓN AMBIENTAL Y SEGURIDAD EN HOSTELERÍA

DURABILIDAD DE LAS ESTRUCTURAS: CORROSIÓN POR CARBONATACIÓN. INFLUENCIA DEL ESPESOR Y CALIDAD DEL RECUBRIMIENTO

DL CH12 Reactor químico combinado

O K. Unidad 5 Autocontrol y APPCC 1 CÓMO SE CONTROLA LA SEGURIDAD ALIMENTARIA?

UNIVERSIDAD AUTONOMA DE CHIHUAHUA

DESCRIPCIÓN DE LA POTABILIZADORA H2OPTIMA-L

EL SISTEMA DE COMBUSTIBLE DE LOS MOTORES DE COMBUSTIÓN INTERNA Dirección de Transporte CONAE

Las limpiezas de los ríos a la luz de la Ley de Aguas y del Reglamento del Dominio Público Hidráulico

Sustancias para el mantenimiento, limpieza y desinfección de superficies en contacto con el agua de consumo humano.

PLANTAS DE TRATAMIENTO DE AGUAS SERVIDAS PARA INSTALACIONES DE FAENA

CARACTERISTICAS DEL AGUA. Mayeline Gómez Agudelo

PRODUCCIÓN + LIMPIA. Generalidades de su metodología

Impacto del uso de recursos hídricos no convencionales en la agricultura de zonas áridas

Digestores de Presión Hidráulica SOLUCIÓN ENERGÉTICA INTEGRAL

Universidad Tecnológica de Panamá Centro de Investigaciones Hidráulicas e Hidrotécnicas Laboratorio de Sistemas Ambientales

Requisitos del semillero

Transcripción:

RESUMEN Este trabajo se ha realizado en las instalaciones de la Estación Regeneradora del Agua residual depurada de Rincón de León, Ciudad de Alicante. La capacidad de tratamiento de esta instalación es de 60.000 m 3 /día. Se identificaron tres tipos de tratamiento del agua a regenerar. Las instalaciones cuentan con sistemas de tratamiento convencional y tratamiento avanzado a través de membranas para ultrafiltración y ósmosis inversa. Dos de los procesos de tratamiento aplicados corresponden a tratamiento sin desalación y uno con desalación. El uso de membranas para ultrafiltración y ósmosis inversa dan como respuesta una alta eficiencia en reducción de contenidos de sólidos y conductividad respectivamente en el efluente. Los resultados analíticos del agua demuestran una alta eficiencia en los procesos de tratamiento aplicados. Se han comparado los resultados del agua regenerada con las normas de calidad del RD 1620/2007, sobre reutilización del agua, y los usos a los que se puede destinar su calidad. Las medidas de parámetros del agua a través de los índices de Langelier, SDI, SAR, demuestran estar dentro de los rangos normales. Los consumos de energía para la regeneración del agua se han analizado para cada una de las líneas de tratamiento identificadas. Los volúmenes del agua regenerada y reutilizada a través de las comunidades de regantes, se entregan con niveles de conductividad media de 1800 µs/cm. Palabras clave Estación de Tratamiento del Agua Residual (EDAR). Estación Regeneradora del Agua (ERA). Punto de Entrega del Agua Depurada (PEAD). Punto de Entrega del Agua Regenerada (PEAR). Tratamiento Avanzado. Ultrafiltración (UF). Ósmosis Inversa (OI). Comunidad de Regantes. Regeneración Planificada. Pág. 1

1.- Introducción. 1.1. Descripción de la zona de estudio. Este trabajo hace una descripción de las instalaciones y características del tratamiento terciario ó estación regeneradora del agua (ERA) en Rincón de León (RL), que se encuentran ubicadas al sur en la Ciudad de Alicante, Provincia de Alicante en la Comunidad Valenciana. El agua a regenerar es el agua que proviene del sistema secundario de la EDAR de RL. La EDAR de RL sirve a una parte importante de la población ubicada en los términos municipales de Alicante, Elche y San Vicente del Raspeig. Esta instalación cuenta con una capacidad de tratamiento de dos líneas de agua bruta (A y B). La línea de agua A corresponde al agua residual doméstica y la línea de agua B que corresponde al agua residual industrial. (EPSAR, 2012). La ERA o sistema terciario avanzado, se ha instalado para regenerar el agua residual del sistema de tratamiento secundario para un caudal de 60000 m 3 /d (EPSAR, 2012). La descripción de las instalaciones hidráulicas, en cada una de sus fases abordará la forma de explotación, la eficiencia según el tipo de tecnología aplicada, y los posibles usos para su reutilización del agua regenerada. Finalmente se presentarán los resultados que se obtengan en las diferentes fases de tratamiento. En la Figura 1.1 se observa una topografía de la ERA y EDAR de Rincón de León (EPSAR, 2012). EDAR ERA Figura 1.1. ERA - EDAR Rincón de León. Pág. 2

1.2. Necesidades de agua en la Provincia de Alicante. Al sureste del mediterráneo español, existe un déficit de agua con una escasez estructural (Juárez, 2008), lo que ha obligado a los administradores del agua y usuarios a buscar alternativas de eficiencia en los usos del agua y búsqueda de recursos no convencionales (Olcina, & Moltó, 2010). La gestión planificada del agua de fuentes no convencionales como por ejemplo: los trasvases de agua de las cuencas del Segura y Tajo, desaladoras de agua de mar y reutilización del agua residual depurada, son procesos que se han incorporados al plan de aguas (Sanz et al., 2008). Estudios realizados en la Universidad de la Laguna, sostienen que los lugares donde mayormente se ha reutilizado las aguas depuradas corresponden a la Región de Murcia, Comunidad Valenciana, Canarias, Baleares y Andalucía (Delgado, 2011). En la Comunidad Valenciana se han identificado un total de 495,9 hm 3 /año de agua depurada, de ese volumen de agua 163 hm 3 /año se reutiliza de forma directa. De este volumen de agua reutilizada el 52,9% corresponde a la Provincia de Alicante (Prats, & Melgarejo, 2006). Las depuradoras de Monte Orgegia y Rincón de León, en la ciudad de Alicante, cuentan con diferentes tipos de tratamiento terciario para regenerar el agua depurada. Las aguas regeneradas por un lado se usan para la limpieza de vías públicas provocando de esta manera el ahorro de agua potable y por otro lado se aprovecha el agua para riego de plantaciones (EPSAR, 2012). En la provincia de Alicante el volumen de agua depurada con tratamiento terciario estaría sobre los 100 hm 3 /año (Prats, 2008). Según datos de EPSAR, 2012., en la Comunidad Valenciana estaría en condiciones de reutilizar 305 hm 3 /año (EPSAR, 2012) de aguas regeneradas directa e indirectamente. 1.3. Marco Legal. En el año 2007 se aprobó el RD 1620/2007 en España, que define el marco legal para la reutilización del agua residual depurada y regenerada. En este decreto se establecen los criterios de calidad requerida para los diferentes usos del agua, entre ellos se refiere al: Uso urbano.- - Calidad 1.1 Residencial. a. Riego de jardines privados b. Descarga de aparatos sanitarios Pág. 3

Uso agrícola.- - Calidad 1.2 Servicios. - Calidad 2.1 - Calidad 2.2 - Calidad 2.3 Pág. 4 c. Sistemas de calefacción y refrigeración de aire. d. Otros usos domésticos. a. Riego de zonas verdes urbanas (parques, campos deportivos y similares). b. Baldeo de calles c. Sistemas contra incendios d. Lavado industrial de vehículos. e. Fuentes y láminas ornamentales. a. Riego de cultivos con sistema de aplicación del agua que permita el contacto directo del agua regenerada con las partes comestibles para alimentación humana en fresco. a. Riego de productos para consumo humano con sistema de aplicación de agua que no evita el contacto directo del agua regenerada con las partes comestibles, pero el consumo no es en fresco sino con un tratamiento industrial posterior. b. Riego de pastos para consumo de animales productores de leche o carne. c. Acuicultura. a. Riego localizado de cultivos leñosos que impida el contacto del agua regenerada con los frutos consumidos en la alimentación humana. b. Riego de cultivos de flores ornamentales, viveros,

Uso industrial.- - Calidad 3.1 Uso recreativo.- - Calidad 4.1 - Calidad 4.2 - Calidad 4.3 Uso ambiental.- - Calidad 5.1 - Calidad 5.2 - Calidad 5.3 - Calidad 5.4 invernaderos sin contacto directo del agua regenerada con las producciones. c. Riego de cultivos industriales, viveros, forrajes ensilados, cereales y semillas oleaginosas. a. Aguas de proceso, limpieza y refrigeración industrial, excepto en la industria alimentaria. b. Otros usos industriales. a. Riego de campos de golf. b. Estanques, caudales circulantes de uso recreativo accesibles al público (excepto baño). c. Estanques, masas de agua y caudales circulantes ornamentales, en los que está impedido el acceso del público al agua. a. Recarga de acuíferos por percolación localizada a través del terreno. b. Recarga de acuíferos por inyección directa. a. Riego de bosques, zonas verdes y de otro tipo no accesibles al público. b. Silvicultura. Pág. 5

a. Otros usos ambientales (mantenimiento de humedales, caudales mínimos y similares). El control de parámetros de calidad del agua en reutilización, según los usos, está descrito en el Anexo I.A del RD 1620/2007. La calidad del agua regenerada debe cumplir con los parámetros anotados en el citado anexo anterior, entre ellos tenemos: presencia o ausencia de organismos vivos, turbidez, sólidos en suspensión y otros contaminantes que están incluidos en la calidad del agua para el vertido según la Directiva 91/271/CEE del Consejo, de 21 de mayo de 1991, relativa al tratamiento de las aguas residuales urbanas. En la tabla 1.1 se observan datos del Plan Nacional de Aguas que tienen que ver con la inversión en regeneración del agua depurada, instalaciones hidráulicas complementarias y los volúmenes estimados con horizonte en el año 2015. El agua regenerada se reutilizar mayormente en el sector agrícola, tal como se observa en la Tabla 1.1 (Córdova, 2008.). TIPO USO DEL AGUA Tabla 1.1. Uso del agua regenerada horizonte 2015 (Fuente. CEDEX 2008). VOLUMEN A UTILIZAR O ADECUAR AL RD (hm 3 /año) INVERSIÓN ESTIMADA TRATAMIENTO REGENERACIÓN ( ) INVERSIÓN ESTIMADA TRANSPORTE ( ) AGRÍCOLA 123,95 87.071.082 64.796.807 AMBIENTAL 64,61 38.260.502 62.965.894 INDUSTRIAL 36.72 25.558.321 23.955.639 RECREATIVO 5,23 1.610.552 9.502.677 URBANO 18,75 7.855.736 23.028.280 TOTAL GENERAL 249,25 160.356.192 184.249.297 En España, hasta el año 2010, el MAGRAMA había identificado el uso del agua regenerada en los porcentajes que se indican en la Figura 1.2. Pág. 6

Figura 1.2. Porcentajes de uso del agua regenerada (Fuente: MAGRAMA 2010). 1.4. Regeneración del agua residual. Por regeneración del agua residual se entiende el tratamiento al que se somete el agua residual y cuya calidad al final del proceso utilizado es apta para un uso en particular (Asano, 1998). En España en el RD 1620/2007, de 7 de diciembre, se define al agua regenerada como las aguas residuales depuradas que, en su caso, han sido sometidas a un proceso de tratamiento adicional o complementario que permite adecuar su calidad al uso al que se destinan. El agua regenerada y los posibles usos a los que se destine para su reutilización incluye un sistema integral de obras hidráulicas y de energía para su aprovechamiento. Se debe planificar el sistema de transporte del agua desde la instalación de regeneración hasta el destino para su uso, el almacenamiento-regulación para distribuir caudales, normas de uso y control de riesgos para el medio ambiente y salud pública (Mujeriego, 2005). La regeneración y reutilización planificada de las aguas residuales juegan un papel importante en la solución al problema de la contaminación además de provocar un ahorro importante en el aprovechamiento del agua convencional y agua potable que se destina a otros usos (Mujeriego, 2008). La reutilización del agua residual forma parte del ciclo natural del agua, cuando el agua residual se aprovecha de forma indirecta después de su descarga a cauces o acuíferos. La reutilización planificada del agua regenerada, juega un Pág. 7

papel importante en las zonas costeras españolas. Este nuevo recurso hídrico alternativo aporta caudales para el riego de plantaciones y mantenimiento de áreas públicas en zonas con escasez estructural, como en el Sureste del mediterráneo español, y por otro lado libera recursos destinados para abastecimiento público (Mujeriego, 2008). 1.5. Tipos de tratamiento terciario. El tratamiento terciario o avanzado se utiliza para dar un tratamiento adicional al proceso secundario del agua residual. Diferentes tratamientos se utilizan en el tratamiento terciario para el proceso de regeneración y reutilización del agua residual en diferentes usos (Ramalho, 1996). Los procesos más conocidos son los siguientes: - Adsorción en carbón activo. - Intercambio iónico. - Ultrafiltración - Ósmosis inversa. - Nanofiltración - ED y EDR. - Oxidación química. - Métodos de eliminación de nutrientes. En Estados Unidos de Norteamérica, el tratamiento del agua residual en fase de regeneración actualmente es más eficiente y su tratamiento es menos costoso, pero la percepción pública para reutilizar el agua regenerada es un obstáculo, frente a los usos de las aguas convencionales. Además de los usos frecuentes conocidos del agua de sistemas avanzados, la tendencia en la regeneración del agua es tener una fuente de disponibilidad de agua limpia para hacer frente a la escasez futura (Paulson, 2013). La Agencia Nacional de Aguas de Singapur (Blasco, 2011), reconoce tener asegurado el abastecimiento público a 4,7 millones de habitantes de la Ciudad-Estado de Singapur para los próximos 100 años, su principal fuente de abastecimiento es el agua de lluvia, aguas residuales y desalinización del agua de mar. La FAO, sostiene que más de 3300 instalaciones de regeneración de aguas residuales a nivel mundial, sirven para distintos usos, en el que se incluye la potabilización. En Europa, la mayoría de los sistemas de reutilización de aguas se ubican en las zonas costeras del mediterráneo, estando la mayor escasez acentuada en España, Italia, Grecia, Malta, en estos países es el riego donde mayormente se aprovecha el agua regenerada (FAO, 2013). Pág. 8

Del Plan Nacional de Reutilización de Aguas en España 2010, se conoce que se estaría reutilizado 368 hm 3 /año de agua residual con tratamiento terciario (CEDEX, 2008), de un total 3375 hm 3 del agua residual depurada en 2514 estaciones depuradoras. Los usos permitidos del agua regenerada se regulan según el RD 1620/2007. El uso agrícola estaría utilizando el 71% del agua regenerada mientras que el uso urbano (baldeo de calles, riego jardines y campos de golf) estarían usando un 12%. La evolución de los caudales de reutilización en España, tomando como referencia el año 1995, podría llegar en el año 2015 a los 1000 hm 3 /año. Una buena parte de los caudales reutilizados se encuentran en la Costa Brava y las Comunidades Autónomas de Valencia y Murcia (MAGRAMA, 2010). El CEDEX, 2008., en su informe preliminar ha elaborado unas figuras que identifica diferentes alternativas dentro del marco de los tipos de tratamientos descritos en el Anexo I.A del RD 1620/2007. Estos tratamientos están en las Figuras 1.3 y 1.4. Figura 1.3. Tipos de tratamiento sin desalación (Fuente: CEDEX, 2008). Pág. 9

Figura 1.4. Tipos de tratamiento con desalación (Fuente: CEDEX, 2008) Tres distintas opciones de tratamiento terciario se han identificado en la provincia de Alicante (Prats & Melgarejo, 2006). Dos de ellas corresponden a tratamiento terciario sin desalación y uno con desalación. Figura 1.5. Esquemas de tratamiento terciario. Los esquemas de la Figura 1.5, corresponden a procesos de regeneración de aguas depuradas aplicados en estaciones de regeneración de aguas depuradoras en la Provincia de Alicante, en la que se desarrollan procesos Pág. 10

avanzados como la ultrafiltración con membranas (UF) y la ósmosis inversa para procesos de desalación (OI). Las distintas opciones para los tipos de tratamiento terciario o avanzado están en función de las necesidades de su reutilización, la calidad del agua y el coste que represente el proceso a utilizar. En este sentido se puede ver en la Figura 1.5., los tipos de procesos en función de los tratamientos de regeneración sin desalación y con desalación (Trapote, 2013). Figura 1.6. Esquemas de tratamiento sin desalación. Las opciones (1-4) del esquema de la Figura 1.6, incluyen el uso de reactivos químicos para lograr reducir sólidos y microorganismos. El uso de membranas para ultrafiltración, nanofiltración, microfiltración considerados como tratamientos avanzados, permiten obtener un agua de alta calidad, cubriendo así una buena parte de las exigencias del RD 1620/2007 (Trapote A, 2013). Las opciones de tratamiento 5 y 6 del esquema de la Figura 1.7, son tratamientos avanzados. El uso de OI y electrodiálisis reversibles (EDR) permite la eliminación del contenido de sales de las aguas residuales. El proceso de OI puede ser utilizado para separar sal del agua de aguas salobres o agua de mar, mientras que la EDR se utiliza para separar sal del agua de aguas salobres. Los procesos de depuración de los esquemas en las figuras 1.6 y 1.7, describen procesos de tratamiento convencional y no convencional. Pág. 11

Figura 1.7. Esquemas de tratamiento con desalación. 1.5.1. Pre-tratamiento. Los sistemas de tratamiento terciario utilizan instalaciones para remover cargas de sólidos y niveles de turbidez que están presentes en el agua depurada. Los procesos químicos y físicos permiten la reducción de sólidos y niveles de turbidez, y los procesos de desinfección se usan para el control de organismos vivos. El pre-tratamiento puede influir en el rendimiento y mantenimiento de los procesos no convencionales como por ejemplo el de la OI (López et al., 2004). El pretratamiento físico y químico en procesos avanzados para la regeneración del agua depurada (usando procesos convencionales y no convencionales), en las instalaciones se puede ordenar de la siguiente manera (González, 2012): - Pre-tratamiento físico: desbaste, tamizado, decantación, filtración, microfiltración, ultrafiltración - Pretratamiento químico: uso de coagulantes, floculantes, cloración, decloración, corrección del ph, antiincrustantes. El pre-tratamiento convencional más utilizado sigue los siguientes pasos: - Coagulación.- Este proceso se aplica al inicio del tratamiento, añadiendo reactivos químicos para la sedimentación de los sólidos en suspensión en forma de flóculos. - Decantación.- Los flóculos formados precipitan en el tanque de decantación, logrando de esta manera clarificar el agua residual. Pág. 12

- Filtración.- Los filtros se usan para afinar el proceso de sedimentación de los sólidos del agua residual que han sido objeto del proceso de coagulación y decantación. El resultado de este proceso debe darnos como respuesta un agua con bajo contenido de sólidos y turbidez. - Desinfección.- la desinfección con reactivos químicos, UV, etc., puede verse afectada por la presencia de sólidos. Los sólidos presentes hacen que los reactivos químicos se oxiden y no sean efectivos, por otro lado el uso de UV en un agua con contenido de sólidos no es efectivo porque los sólidos forman pantallas que los rayos no pueden atravesar. La presencia de microorganismos en el agua es un parámetro que se debe controlar para los usos previstos en el RD 1620/2007. En los tratamientos que se incluyan sistemas no convencionales como ultrafiltración y ósmosis inversa, se requiere de un riguroso sistema de pretratamiento. Los filtros de anillas (Figura 1.8) son usados a modo de prefiltración en el proceso avanzado y la capacidad de retención de sólidos es de mayor de 100 µm. Las anillas se encuentran fuertemente comprimidas y la pérdida de carga puede ser de 5 m.c.a. (Benito et al., 2010). Las empresas dedicadas a las instalaciones de membranas utilizan filtros de seguridad para los procesos de ultrafiltración y ósmosis inversa. Los altos costes que representan las membranas obligan a incluir sistemas de control físicos y químicos para asegurar la durabilidad de las membranas (Zarzo & Candel, 2009). Figura 1.8. Esquema filtros de anillas. Pág. 13

1.5.2. Sistemas de filtración avanzada. Ultrafiltración. El sistema de filtración avanzada, al que se refiere este trabajo en la ERA de Rincón de León (RL), tiene que ver con el uso de membranas mediante ultrafiltración (UF). En este sentido hay dos líneas de tratamiento en la ERA de RL, por un lado está la aplicación de membranas para UF sin desalación y la otra en la que la UF es parte del pre-tratamiento para la OI. El proceso de UF con membranas incluye las siguientes operaciones: - Una fuerza impulsora a presión, - Un mecanismo de separación o cribado - Una estructura de mesoporos, en la que la fase de separación se realiza de líquido a líquido (Macías, 2012). La UF se define también como la operación intermedia entre la microfiltración y la nanofiltración, el tamaño medio del poro está entre 0,1-0,01, posee una capa activa, estructura asimétrica y mayor resistencia hidrodinámica (Mulder, 2000). El propósito de las membranas de ultrafiltración es separar partículas suspendidas, coloidales disueltas del agua (Figura 2.9). Figura 1.9. Esquema UF. El flujo que va a ser filtrado se divide en dos líneas: por una parte el agua permeada pura y por otra el agua rechazada que contiene un concentrado de impurezas. - Diferentes tipos de membranas de ultrafiltración existen en el mercado (Lora, 2011). Pág. 14

Según su geometría las membranas son planas (arrollamiento espiral), tubular/capilar y fibras huecas. Figura 1.10. - Membranas planas.- sirven tanto para procesos de IO como para UF. La membrana en espiral se forma con láminas planas intercaladas con un espacio para transportar el agua. Otro espacio entre láminas planas sirve para transportar el permeado. - Membranas huecas.- son cilíndricas con un diámetro entre 0,1 a 2 mm. El flujo de alimentación tiene lugar por dentro de las fibras. Pueden trabajar a presiones menores de 5 bar. - Membrana tubular.- tiene pequeña superficie de filtrado, el diámetro de los tubos puede estar entre los 6 y 25 mm. La membrana está contenida dentro de un tubo poroso que sirve de soporte. Puede trabajar a régimen turbulento, lo que le beneficia para evacuar sólidos y residuos que puedan almacenarse en su superficie. Es más común su uso en aguas residuales. Figura 1.10. Tipos de membranas adaptadas diferentes fabricantes. - Ensuciamiento de las membranas: El principal problema que se presenta en las membranas es el ensuciamiento, debido principalmente concentración de polarización y ensuciamiento de la superficie y de los poros. El ensuciamiento de la membrana puede conllevar el fallo del proceso debido al aumento excesivo de la presión transmembrama (Macías, 2012). Pág. 15

- La limpieza de las membranas debido al ensuciamiento se realizan a través de diferentes procesos (Vargas, 2008): Retrolavado con agua permeada, difusión de aire, dosificación química (detergentes y desinfectantes). La limpieza debe ser periódica y permanente. - Limpieza con retrolavado: se realiza el retrolavado con agua del permeado y la dosificación ácida o básica y detergentes, con buenos resultados para restituir la membrana y mantener su periodo de vida útil. Existen diferentes fabricantes de membranas para el proceso de ultrafiltración. Cada uno presenta diferentes características y la conversión del agua filtrada es de 94 96% (González, 2012). Las marcas conocidas son las siguientes (Figura 1.11): - NORIT.- Sistema en presión, trabaja con configuración horizontal (XIGA) y configuración vertical (SEAFLEZ). Ambas configuraciones pueden trabajar dentro fuera. Las presiones de trabajo pueden estar entre 2 y 4 bares. - MEMCOR. Sistema de aspiración que cuenta con configuración sumergida y configuración presurizada. El tamaño de poro puede ser de 0,1 µm. - ZENON.- Sistema de aspiración que cuenta con configuración sumergida y presurizado. La configuración sumergida pueden ser módulos Zeeweed 500 Zeeweed 1000. La filtración puede ser fuera o dentro. Este sistema requiere de una pre-filtración de entre 1mm 500 µm. Otras marcas que venden membranas con sistema a presión son: HYDRANAUTICS DOW KOCH. Figura 1.11. Tipos de membranas según fabricante. Pág. 16

1.5.3. Sistemas de desalación OI. El proceso de desalación de aguas a través de ósmosis inversa requiere de un exhaustivo pre-tratamiento, en el que se incluye la UF. Previo al proceso de permeado y separación del agua es necesario incluir un último sistema de seguridad a través de los filtros de cartucho, Figura 1.12. Los filtros cartucho se componen de un alma de plástico y tela filtrante soldada. La eliminación de agentes químicos para el control biológico, que se hayan aplicado en el proceso de limpieza de las membranas en el proceso de UF, deben ser oxidadas en la fase de filtración de seguridad, debido a que concentraciones altas de desinfectantes afectan la capa activa de las membranas que se utiliza para el proceso de desalación con OI (Susial, & Soriano, 2001). Figura 1.12. Filtros de Cartucho. El proceso de desalación a través de OI se puede ver en el esquema de la figura 1.13. Figura 1.13. Esquema ósmosis inversa. Pág. 17

- Ósmosis inversa.- El proceso contrario al de osmosis convencional se les conoce como ósmosis inversa. La ósmosis inversa se logra aplicando altas presiones al lado de la membrana con mayor contenido de sales e impurezas, logrando de esta forma que pase al otro lado de la membrana agua pura. Las presiones habituales sonde 60-70 bares en el caso del agua de mar y mucho mas reducidas en aguas salobres, dependiendo de su salinidad. La conversión puede ser 45-50% en aguas de mar y 60-80 % en aguas salobres. - Agua filtrada a presión.- Es el agua que ingresa a presión al sistema de OI y que previamente ha sido sometida a los procesos de pre-tratamiento. - Concentrado.- Es la sal muera o rechazo del proceso de OI. - Permeado.- Es el agua pura con bajo contenido de sal que ha atravesado la membrana. Las características del agua que se deben conocer para el proceso de OI, son los siguientes: - Salinidad del agua.- Las aguas de mar pueden contener concentraciones de STD de 15000-45000 ppm. Las aguas salobres pueden estar entre los 500 15000 ppm. - Otros parámetros que se deben conocer.- Índice de Langelier y Stiff & Davis, ph, turbidez, índice de ensuciamiento (SDI), temperatura, precipitados. Uno de los problemas mayores de las membranas es el ensuciamiento de las mismas. En el proceso de filtrado, las concentraciones del agua de rechazo puede alcanzar entre 2 a 8 veces del contenido inicial de sales. Las sales orgánicas presentes en el agua pueden exceder su producto solubilidad y precipitar en la superficie de la membrana provocando incrustaciones. En este sentido, la reducción del periodo de vida de las membranas y la limitación a una mayor conversión tienen que ver con las siguientes causas: - Precipitaciones de sales minerales - Óxidos metálicos - Partículas coloidales - Grasas y aceites. El lavado de las membranas se hace con agua permeada o concentrada, libre de cloro residual o cualquier otro oxidante. La limpieza de las membranas en su fase mecánica, se hace a altas presiones, combinando el agua de lavado con reactivos químicos ácidos, alcalinos y biocidas. Para aguas salobres es común Pág. 18

la presencia de carbonatos (CO 3 Ca y SO 4 Ca) que provocan problemas de precipitaciones (Susial & Soriano, 2001). El índice de ensuciamiento orgánico (SDI) nos permite valorar la capacidad de ensuciamiento que tiene el agua sobre las membranas (causadas por precipitación de sales y crecimiento de microorganismos). Los períodos de tiempo considerados para este control han sido de 15 minutos y los valores de SDI están entre 0-6 (Gonzales, 2012). El control de ph del agua en el proceso de permeado en muy importante. El usos de ácidos en el agua de entrada favorece el permeado y evita las precipitaciones de carbonato cálcico y magnésico (Arias et al, 2011). Otro parámetro importante en este proceso es la medida de agresividad o corrosión de un agua. El índice de Saturación Langelier, calculado entre la diferencia del ph del agua y el phs de saturación, aporta información sobre el tipo de agua. Así, si el ph<phs el agua es corrosiva., si el ph>phs es incrustante y si el ph=phs hay equilibrio. Las membranas pueden ser de distinta composición química, siendo la poliamida aromática una de las más empleadas, se fabrican de forma plana y luego se enrollan para formar la membrana. La capa de poliamida sobre una capa de polisulfona porosa y un tejido soporte en poliéster forman la membrana. Entre membranas se forman los espaciadores que impiden que se peguen las membranas y permite que circule el agua permeada, por otro lado circula el agua concentrada en sales (Figura 1.14). Los rollos o módulos de membrana son colocados en tubos de presión llamados bastidores Figura 1.14. Esquema modulo enrollado para OI. Pág. 19

. Figura 1.15. Esquema de procesos operativos de OI. Se utiliza bombas de alta presión para lograr el paso del flujo a través de las membranas y bombas booster para recuperar energía. El proceso de OI puede funcionar por etapas y pasos, y en dos etapas. En la figura 1.15., se observan los esquemas de diferentes alternativas para la operación de membranas. Para el proceso de etapas, es el rechazo de la primera atapa la que se introduce a una segunda etapa para obtener una segunda parte de agua purificada. Para el proceso de pasos, el agua permeada se pasa por segunda vez por el proceso de permeado. Esto se hace para obtener una agua de mejor calidad y bajar los niveles de cloruro y de boro (Lora, 2011). Figura 1.16. Esquema de tubos de presión y bastidores. Pág. 20

Los tubos de presión sirven para sostener los módulos de las membranas y soportar las altas presiones necesarias para el proceso de OI. Estos tubos de presión pueden contener entre 6 y 8 módulos de membranas que ubicados en una instalación son conocidos como bastidores (Figura 1.16). La conversión en OI, depende del tipo de agua. Para aguas de mar (±45%) y salobres (±80%), varios autores dan similares referencias. 1.5.4. Necesidades de energía. El consumo de energía para desalar agua y producir agua dulce ha variado con el tiempo, especialmente por el avance tecnológico equipos eléctricos, mecánicos y tipos de membranas (Latorre, 2004). Las nuevas metodologías de desalar el agua y la mejora continua en la explotación de las instalaciones han permitido reducir costes de energía de 5.3 kwh/m 3 de agua en 1995 hasta 2,9 kwh/m 3 de agua producida en el 2010 (Gonzales, 2012). Para aguas regeneradas los costes de energía pueden variar entre 1,1 a 1,7 kwh/m 3 de agua. Los costes ambientales tienen que ver con las emisiones de CO2, siendo estos costes del orden 0.01 /m 3 (Mujeriego, 2005). Los costes de energía pueden representar un 35 45% del coste total de explotación (Bueno, & Ribes, 2011). Pág. 21

2. Objeto y alcance del presente trabajo. El objetivo de este trabajo es describir los procesos de regeneración del agua residual depurada a través de tratamiento terciario ó avanzado de la EDAR de Rincón de León, Alicante, así como también comparar la calidad del agua regenerada con la normativa española para su reutilización según marco legal vigente a la fecha. Este trabajo ha sido realizado en las propias instalaciones de la ERA de RL ubicada en la Ciudad de Alicante. La explotación del sistema de tratamiento se hace a través de la empresa EMARASA. La información ha sido suministrada por EMARASA y comprende los resultados analíticos del agua y volúmenes de explotación en cada una de las líneas de tratamiento del agua, dentro de los períodos del año 2012 y primer trimestre del año 2013. El análisis de la información se ha realizado para el año 2012, procesando resultados mensuales, semestrales y anuales del período en mención. Los parámetros analizados en cada línea de tratamiento guardan estrecha relación con los objetivos de calidad del RD 1620/2007. Se realizan los análisis eficiencia de rendimiento en eliminación de contaminantes como sólidos en suspensión, sales disueltas, población biológica, así como también determinar los niveles de conversión y volúmenes de agua regenerada, y energía consumida por metro cúbico de agua regenerada en este proceso. Pág. 22

3. Resultados y discusión. 3.1. Explotación del Tratamiento Terciario de Rincón de León. La estación depuradora del agua residual (EDAR) de Rincón de León (RL), cuenta con un tratamiento secundario a través del sistema de depuración biológica. El agua depurada es enviada a la estación regeneradora o tratamiento terciario ubicada en la misma área de la instalación Figura 3.1. Figura 3.1. Esquema de reparto del agua. La ERA tiene una capacidad de tratamiento de 60.000 m3/día y sirve a una población cercana a los 420.000 habitantes de Alicante y San Vicente del Raspeig. El agua regenerada está destinada por un lado a comunidades de regantes (1.500 usuarios de las dos comunidades de riego suscritas y 3.140 hectáreas de cultivos de esta provincia), y por otro lado al mantenimiento y limpieza de áreas públicas. Se han identificado tres alternativas de tratamiento en el proceso de regeneración del agua depurada en Rincón de León en la ERA-RL (procesos que se podría asimilar a los denominados TR-2, TR-1 y TR-5 en el estudio CEDEX, 2008), los que se explicara con más detalle en los siguientes apartados. Pág. 23

3.1.1. Alternativa 1. Tratamiento físico químico más desinfección. 3.1.1.1. Pre-tratamiento. El agua bruta (AB) ingresa a la estación regeneradora de agua (ERA) desde un repartidor de caudales ubicado a la salida del sistema secundario de la EDAR- RL. Antes de llegar el agua depurada al sistema de filtros rápidos en la ERA, el AB entra en contacto con el cloruro férrico a través de una cámara de mezcla y pasa por el decantador lamelar. En la Figura 3.2 se presenta una fotografía del pretratamiento. Figura 3.2. Instalación pre-tratamiento que incluye cámara de mezcla de químicos y filtros rápidos EDAR-ERA de RL. El agua filtrada tiene dos destinos. 1) hacia los regantes pasando por desinfección UV. 2) hacia el sistema de UF. Los fangos resultantes de la limpieza de los filtros rápidos son enviados a un sistema químico de coagulación con cloruro férrico. En este proceso el agua decantada se vierte al emisario si cumple con los parámetros de la Directiva 271/91 y el fango se recircula a la cabecera de la EDAR. El sistema de UF con membranas es parte del sistema de pre-tratamiento cuando las instalaciones de OI empiezan a funcionar. En este sentido se puede decir que existe un proceso convencional y dos procesos no convencionales. 3.1.1.2. Calidad del agua a regenerar. En la Tabla 3.1 se muestra la calidad media del agua a regenerar que proviene del sistema secundario de la EDAR de Rincón de León (RL). Pág. 24

Los parámetros de calidad corresponden a una media anual de la calidad del agua depurada, la misma que cumple con Directiva 91/271/CEE. Tabla 3.1. Calidad mensual media (año 2012) del agua a regenerar (Fuente: EMARASA). PARÁMETROS 1 2 3 4 5 6 7 8 9 10 11 12 ph 7,51 7,47 7,45 7,43 7,52 7,46 7,26 7,49 7,38 7,38 7,38 7,41 S.S. (mg/l) 17,19 20,11 20,38 20,21 18,25 23,77 18,44 15,26 13,26 12,89 12,89 11,31 Sól.totales disueltos (mg/l) 1456 1484 1581 1684 1497 1552 1439 1591 1575 1346 1382 1585 Conductividad 20ºC (µs/cm) 2313 2234 2204 2542 2477 2487 2329 2367 2479 2092 2065 2474 Turbidez (NTU) 4,19 6,05 6,57 5,43 4,48 6,39 5,16 5,1 3,18 3,81 3,34 3,91 D.Q.O. (mg/l) 45,6 58,75 63,8 59,7 49,7 62 51,7 51,3 47,88 48,9 46,38 42,88 D.B.O. 5 (mg/l) 16 14 10 16 8 14 22 8 16 16 4 8 Jar-Test 26,7 25,75 23,8 26 26,3 26,25 28,4 25,3 26,38 26,4 26,3 26,13 Nitrógeno total (mg/l) 37,5 44,5 39,5 44,5 42,5 45,5 43 41,5 36 36 29,5 39 Fósforo total (mg/l) 5,65 4,3 3,7 3,6 5,05 2,3 4,15 5,15 5,55 6,05 4,95 4,75 Fosfatos (mg/l) 15,84 12,14 9,29 9,18 6,5 8,89 8,06 14,18 13,09 19,12 12,97 14,81 Hierro total (mg/l) 0,41 0,52 0,5 0,54 0,45 0,61 0,58 0,44 0,37 0,35 0,32 0,41 Fe 2+ (mg/l) 0,33 0,37 0,3 0,46 0,37 0,49 0,35 0,3 0,25 0,27 0,25 0,25 Fe 3+ (mg/l) 0,08 0,15 0,2 0,1 0,08 0,11 0,22 0,15 0,13 0,08 0,06 0,16 Calcio (mg/l) 92 97,25 82,68 82,9 96,6 90,43 89,42 86,86 91,18 88,18 85,47 83,75 Cloruros (mg/l) 485,5 517,7 518,3 535 479,8 507,8 526,2 587,5 575,3 506 393,2 517,2 E. coli (UFC/100mL) 21420 58938 3E+05 36225 68700 4E+05 4E+05 3E+05 2E+05 2E+05 1E+05 64875 3.1.1.3. Filtros rápidos. La primera fase de este proceso empieza cuando el AB entra a un depósito de laminación de 8500 m 3 de volumen previo contacto con el cloruro ferrico (CL 3 Fe), a continuación, el agua es enviada a los filtros rápidos. El proceso químico consiste en la aplicación de cloruro férrico (FeCl 3 ). La elección del FeCl 3 tiene que ver con las características de este producto: acción de coagulación a gran velocidad, alta capacidad de adsorción de contaminantes orgánicos e inorgánicos y capacidad de trabajo en un amplio rango de ph (4 10). El cloruro férrico se utiliza para depurar las aguas residuales y para tratamiento de aguas de consumo. El FeCl 3 en medio acuoso ligeramente Pág. 25

básico reacciona con el ión hidróxido para formar flóculos de FeO(OH)- {oxihidróxido de hierro (III)}, que puede eliminar los materiales en suspensión. Se observa en la Figura 3.3, la línea de agua en el sistema de filtración y líneas de distribución en dirección de la cámara de UV y por otra vía a los trenes de UF. Figura 3.3. Pantalla control de proceso filtrado. El ingreso al sistema de filtros rápidos es en una estructura de hormigón armado. Son un total de 60 los filtros de arena de sílice y funcionan con un sistema de lavado continuo con aire. La superficie de filtración es de 317,4 m 2 y una velocidad de filtración de 7,88 m/h., para un caudal de 2500 m 3 /h. La pérdida de agua por efecto de lavado está entre el 7 8 %. Otros parámetros: granulometría de arena de 1-2 mm, densidad 1500 kg/m 3 y cantidad 1236 t. 3.1.1.4. Desinfección ultravioleta. En esta primera parte del tratamiento se deriva desde el sistema de filtración de arena la cantidad de 8800 m 3 /día de agua filtrada a un sistema de desinfección Pág. 26

a través de un equipo de radiación ultravioleta (UV). Este proceso cuenta con un tren de tratamiento UV FitTM. El tren contiene entre 1 y 3 cámaras UV. Cada cámara de UV va provista de brida de entrada y de salida, tapa final y conjunto de reactor, ver Figura 3.4. Figura 3.4. Equipo UV. La primera parte de este sistema terciario concluye con un tratamiento del agua bruta mediante proceso químico, físico y desinfección. El sistema utilizado similar al tratamiento Tipo 2 de agua no desalada descrito por CEDEX, 2008. Figura 3.5., para usos de agua regenerada exigida en el RD 1620/2007. Figura 3.5. Esquema línea de agua tratamiento sin desalación (Fuente CEDEX, 2008). Pág. 27

La calidad del agua regenerada media mensual, año 2012, se observa en la Tabla 3.2. El tratamiento del agua depurada es a través de proceso químico, físico y UV. Los resultados de los parámetros están dentro de lo exigido en la normativa del Real Decreto 1260/2007 sobre Reutilización de Aguas Depuradas en los usos Urbano 1.2. a), b), c) y d); Agrícola 2.1 a); Recreativo 4.1 a). Tabla 3.2. Resultados medios mensuales (año 2012) de la calidad del efluente. PARÁMETROS 1 2 3 4 5 6 7 8 9 10 11 12 ph 7,45 7,29 7,36 7,3 7,44 7,49 7,22 7,35 7,37 7,11 7,25 7,36 S.S. (mg/l) 10,18 13,25 12,96 12,64 12,76 15,72 11 11,65 9,51 8,34 8,57 8,61 Turbidez (NTU) 2,53 4,2 4,58 3,61 3,11 5,11 3,07 2,66 2,32 2,76 2,49 1,92 D.Q.O. (mg/l) 34,7 46,63 51,5 44,9 46,5 49 37,4 37,9 40 40,38 40,4 33,63 D.B.O. 5 (mg/l) 8 6 10 4 3 9 10 6 10 9 4 4 Nitrógeno total(mg/l) 35 43 37 43 42,5 43,5 37 33 32 31,5 26,5 40 Fósforo total(mg/l) 5,1 3,85 3,55 2,85 4,8 2 3,2 4 4,9 5,35 4,3 4,55 Bicarbonatos (mg/l) 275 305 310 321 401 505 286,7 229 361 350 373 360 Calcio (mg/l) 92 105 83,4 83 86 83,5 84,3 85,5 90,8 86,5 83,8 84,5 Sulfatos (mg/l) 298 313 172 329 264 290 239 249 279 103 245 427 Estroncio (mg/l) 3,2 3,5 2,4 2,1 2,6 2,4 2,5 2,6 2,2 2,5 2,7 2,9 Fluoruros (mg/l) 0,12 0,15 0,19 0,09 0,26 <0,1 0,2 0,34 <0,10 0,11 0,16 <0,10 Hierro total (mg/l) 0,5 0,46 0,57 0,37 0,31 0,61 0,74 0,41 0,54 0,33 0,23 0,5 Bario (mg/l) <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 Silicatos (mg/l) 9,47 9,62 18,96 17,8 2,68 18,66 13,82 14,1 0,16 9,79 8,46 11,6 E. coli (UFC/100mL) 17,38 61,75 6,25 65,63 109,7 133,5 82 138,5 96,63 81,88 40 49,13 Legionella spp. (UFC/100mL) 0 0 0 0 0 0 0 0 0 0 0 0 Pág. 28

3.1.2. Alternativa 2. Tratamiento físico-químico más filtración avanzada mediante ultrafiltración. El proceso químico y de filtración rápida utilizados para el TR-2, son los mismos que se utilizan en la alternativa 1. El agua decantada y filtrada se envía al sistema de filtración avanzada. Previo al sistema de ultrafiltración (UF) se utilizan filtros de seguridad de mallas inoxidables de 25 µm de porosidad, con el fin de asegurar el control de partículas que podrían escapar del pre-tratamiento. La UF se emplea con dos objetivos en esta ERA. Por un lado para el tratamiento del agua mediante los procesos de pre-tratamiento explicados anteriormente y la ultrafiltración y por otro lado como tratamiento previo a desalación con ósmosis inversa. En esta parte se describe el proceso de UF sin desalación. Se utilizan membranas huecas marca ZENON, siendo la capacidad de tratamiento de este sistema de 60000 m 3 /día. Se han construidos seis trenes de tratamiento, cada tren con 6 casetes de membranas que se encuentran sumergidas (Figura 3.6). Figura.- 3.6. Trenes de UF. Pág. 29

El flujo medio diseñado es de 19,42 LMH. El permeado va a dos depósitos de 65 m 3 cada uno, uno de los depósitos además sirve para el proceso de retrolavado de los trenes. La conversión media mes de julio año 2012 es del 92,6%, la misma que se repite en el resto del año de estudio (Figura 3.7). 110 100 90 80 70 60 50 40 30 20 10 0 Conversión sistema UF mes julio año 2012 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 % Figura. 3.7 Conversión media mensual trenes UF. El sistema de limpieza de las membranas tubulares funciona en forma de retrolavado con agua permeada y aportación de burbujas de oxígeno: Las limpiezas químicas se hacen aplicando desinfectantes y anti-incrustantes. Los principales tipos de suciedad en las membranas son: partículas, microorganismos y acumulación de sales insolubles (Scaling) (Meier et al. 2006). La limpieza química y física de las membranas se realiza con desinfectantes, agua presión y ácidos. Este proceso de ultrafiltración requiere de un mantenimiento riguroso de las membranas para lograr un funcionamiento eficiente de la instalación y mantener en buen estado las membranas. Se utiliza ácido sulfúrico (H 2 SO 4 ) para bajar el ph del agua a 2-3 controlando de esta manera precipitaciones de bicarbonatos. La limpieza se realiza para eliminar contaminantes orgánicos con hipoclorito sódico (NaOCL). El ácido cítrico (C 6 H 8 O 7 ) se usa para eliminar contaminantes inorgánicos. En el retrolavado a presión se utiliza el agua permeada. Este proceso de limpieza dura entre 1 y 5 horas y se lo hace con frecuencias mensuales y trimestrales. Pág. 30

SDI trenes UF Figura 3.8. Pantalla control proceso UF. En la figura 3.8, se observa el sistema de flujo de la alimentación de caudal al sistema de UF con membranas y las salidas del agua filtrada-permeada y el rechazo-lodos 2,6 2,4 2,2 2 1,8 1,6 1,4 1,2 Valores medios SDI 2,37 2,32 2,27 2,21 2,18 2,11 1,99 1,94 1,97 2,01 1,91 1,75 1,57 1,39 1,89 1,81 1,76 1,43 2,28 2,45 2,12 1,58 1,87 1,87 1,68 1,72 1,67 1,69 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 Tiempo días 2,27 2,04 Figura 3.9. Registro medios diarios de SDI mes agosto 2012 (EDRA-ERA-RL) Pág. 31

El potencial de ensuciamiento (SDI) analizado del agua, que sale de los trenes de UF hacia los bastidores de OI entra en los rangos de los valores recomendados de SDI, de entre 3 y 4. En la Figura 3.9, se observa valores medios de SDI a la salida de los trenes de UF, los mismos que están dentro del rango de valores recomendados (González, 2012). Para el uso del agua en riego, se considera la relación de absorción de sodio (SAR) como indicador de calidad del suelo, por su efecto en la permeabilidad. Este parámetro incluye en su fórmula, contenidos de sodio respecto al calcio y magnesio (Mujeriego, 1990). Los valores de referencia se muestran en la Tabla 3.3. Tabla 3.3. Valores de SAR para uso agrícola. S.A.R. Riesgo 0 10 Bajo 10 18 Medio 18 26 Alto Mayor de 26 Muy alto Formula S.A.R El índice de SAR media semestral se puede observar en la Tabla 3.4, con valores de sodio para los suelos dedicados al riego con esta agua. Los resultados de esta tabla se pueden comparar con valores los de referencia de la Tabla 3.4, para determinar su nivel de riesgo. Tabla 3.4. Valor medio proceso UF. Parámetros Semestrales Muestra UF/UV SAR FECHA 10.12.12 2,02 Ca 2+ (mg/l) 86 Mg 2+ (mg/l) 54,5 Na + (mg/l) 288 Pág. 32

Otro parámetro importante en el control del agua depurada para su regeneración es el índice de Langelier. Wilfred F. Langelier, 1930, descubrió problemas de corrosión e incrustación en la red pública de agua. Estos problemas tienen como referencia el grado de saturación de carbonato cálcico en el agua, lo que guarda relación con parámetros de ph, alcalinidad y dureza. Si LSI es < 0, se dice que el agua tiende a ser corrosiva, si LSI > 0, la tendencia es incrustante. Para aguas salobres varios autores recomiendan trabajar con valores LSI ± 0,5. El índice de Langelier está determinado por la expresión LSI = ph phs (phs 0 ph saturación), se aplica como referencia para guas con una salinidad máxima de 5000 ppm. Tabla 3.5. Calidad media mensual, año 2012, del agua permeada proceso UF. PARÁMETROS 1 2 3 4 5 6 7 8 9 10 11 12 ph 7,43 7,38 7,42 7,48 7,44 7,42 7,19 7,42 7,33 7,26 7,3 7,39 S.S. (mg/l) 0,49 0,44 0,6 1,49 2,39 2,15 1,14 0,44 0,5 0,45 0,31 0,46 Sól.totales disueltos (mg/l) 1591 1392 1630 1787 1491 1446 1374 1596 1573 1503 823 1732 Conductividad 20ºC (µs/cm) 2326 2256 2178 2468 2434 2413 2376 2487 2476 2006 1920 2403 Turbidez (NTU) 0,4 0,45 0,49 0,42 0,45 0,5 0,49 0,49 0,4 0,38 0,36 0,33 D.Q.O. (mg/l) 25,24 29,13 29,8 24,5 28,64 26,25 24,4 28,75 28,5 29,75 27,08 23,48 D.B.O. 5 (mg/l) 4 4 2 2 1 5 5 3 2 7 1 1 Índice de Langelier 0,28 0,19 0,34 0,12 0,53 0,21 0,46 0,65 0,28 0,06 0.017 0,24 Nitrógeno total(mg/l) 33 40 31,5 42,5 41,5 45 35,5 32 29,5 30,5 20,5 38,5 Fósforo total(mg/l) 4,05 3,45 2,9 2,25 3,85 1,7 4,2 2,35 4,8 4,95 4,2 3,75 Fosfatos (mg/l) 12,4 10,76 9,05 8,75 6,58 8,22 7,05 9,91 11,88 13,89 11,49 11,42 Hierro total (mg/l) 0,21 0,21 0,18 0,23 0,23 0,21 0,23 0,2 0,2 0,19 0,15 0,23 Cloruros (mg/l) 490,8 504,5 497 524,5 481,2 474 515,6 570,8 534,3 485,5 387,6 524,4 E. coli (UFC/100mL) 41,8 20,75 11,75 12,88 43,3 49,25 44 44,8 39,88 54,25 35,5 6,75 Nematodos (nºhuevos/l) 0 0 0 0 0 0 0 0 0 0 0 0 Legionella spp. (UFC/100mL) 39,8 39,5 12,9 29 69,33 81 74 97,4 75,6 67,8 34,4 35,3 Pág. 33

En la Tabla 3.5, se muestra la calidad del agua después del tratamiento que se ha descrito como Alternativa 2, a través de los procesos de filtración, físico químico, y UF. Según el Real Decreto sobre Reutilización de Aguas Depuradas los posibles usos podrían ser Uso Urbano, Agrícola, Industrial, Ambiental, Recreativo. La media mensual del Índice de Saturación de Langelier (LSI) se encuentra en los rangos de 0,1 > 0,6., con tendencia a ser incrustante. El tipo de tratamiento es similar al tratamiento TR-1 de agua no desalada descrito por CEDEX, 2008. En la Figura 3.10, se observan las recomendaciones del proceso de tratamiento y calidad biológica del agua regenerada. Figura 3.10. Proceso línea del agua con UF sin desalación. Pág. 34

3.1.3. Alternativa 3. Tratamiento físico-químico más ultrafiltración más ósmosis inversa. El proceso de pre-tratamiento para este proceso incluye el sistema de filtración avanzada a través de membranas para UF. El agua se envía a los bastidores de OI previo el paso por los filtros de seguridad. El control de sustancias que puedan deteriorar las membranas y reducir la eficiencia del sistema, desde el punto de vista económico y de calidad del agua, tiene que ver con la aplicación de un riguroso tratamiento previo químico y físico antes de separar el agua por OI. Para preservar las membranas se hace uso de procesos químicos y físicos. El proceso químico consiste en controlar residuos de cloro que puedan oxidar las membranas. Para ello se utiliza bisulfito de sodio (NaHSO 3 ), acción que se hace efectiva en el sistema físico de filtros de cartucho. El proceso físico se hace a través de filtros de cartucho. Se instalan 88 filtros de cartucho de 5 µm en un depósito de acero, para cada bastidor (Figura 3.10). Los filtros se sustituyen cuando se detecta variación de presión en los manómetros a la entrada y salida de esta instalación, siendo la variación de presión un indicador de ensuciamiento de los filtros cartuchos. Figura. 3.10. Bastidores con filtros de cartucho proceso OI. Los bastidores están instalados en dos etapas, se utiliza 7 membranas de poliamida de arrollamiento espiral por tubo de presión. Cada bastidor cuenta con 60 tubos, de estos el 60% de tubos de presión son de primera etapa y el 40% tubos presión de segunda etapa. La instalación completa está constituida Pág. 35

Conversión % por 5 bastidores. La conversión media es del 70%. Para el mantenimiento y conservación de las membranas se utiliza un anti-incrustante comercial con sistema de limpieza ácida y básica, en las dos etapas de cada bastidor. Este proceso debe lograr la remoción de sales y capa biológica que puedan incrustarse en las superficies de las membranas de OI. Se completa la limpieza con sistema de retrolavado. En los bastidores se ha instalado una bomba tipo BOSTER para recuperar energía, la misma que se incorpora al sistema de energía local de la EDAR-RL. En la figura 3.10 se observa el sistema de alimentación de caudal a bastidores, el permeado y rechazo-concentrado. Figura 3.10. Pantalla control proceso OI. 74 Referencia media conversión 73 72 71 70 69 68-1 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 Días del mes de julio 2012 Figura 3.11. Conversión media OI. Pág. 36

La conversión media mensual (Julio 2012) en esta fase de OI (EDAR.ERA.RL) es del 70%, tal como se representa en la Figura 3.11 La calidad del agua resultado del proceso de OI se puede observar en la tabla 3.6. El contenido de SS y de microorganismos de las aguas tratadas ha sido totalmente eliminado en esta fase de tratamiento. Esta calidad del agua, después del tratamiento descrito, que se ha descrito como Alternativa 3, a través de los procesos de filtración, físico químico, UF y OI. La calidad del agua en este caso se puede usar en todos los usos según de RD 1620/2007..Tabla 3.6. La calidad del agua media del efluente de OI. PARÁMETROS 1 2 3 4 5 6 7 8 9 10 11 12 ph 6,43 6,33 6,86 6,59 6,57 6,64 6,64 6,83 6,83 6,61 7 6,5 S.S. (mg/l) 0,12 0,1 2,1 0,2 0,25 0,05 0,1 0,33 0 0 Sól.Totales disueltos (mg/l) 14,5 9 25 7 25 41,5 26 41,5 34,5 10,5 12,5 59,5 Conductividad 20ºC (µs/cm) 48,71 50,75 39,46 51,41 52,31 65,99 76,13 76,57 72,47 61,92 49,99 39,32 Turbidez (NTU) 0,17 0,2 0,22 0,21 0,21 0,17 0,23 0,2 0,21 0,23 0,24 0,15 D.Q.O. (mg/l) 2,6 4,4 3,5 2,16 2,4 3,74 4,43 4,5 7,3 0,8 1,9 D.B.O. 5 (mg/l) 1 1 1 0 1 2 1 0 1 1 1 1 Nitrógeno total(mg/l) 3,5 2,05 3 4,5 8,6 1,85 3,6 7,5 2,55 1,75 2 2,25 Fósforo total(mg/l) 0,2 0,06 0,13 0,3 0,2 0,11 0,55 0,25 0,2 0,4 0,05 0 Cloruros (mg/l) 11,5 16,5 11,5 14 15,6 18,25 17,6 20,5 22,75 13,75 12 12,6 Nematodos (nºhuevos/l) 0 0 0 0 0 0 0 0 0 0 0 0 Coliformes total (UFC/100mL) 0 0 0 0 0 0 0 0 0 0 0 0 Coliformes fecal (UFC/100mL) 0 0 0 0 0 0 0 0 0 0 0 0 Legionella spp. (UFC/100mL) 0 0 0 0 0 0 0 0 0 0 0 0 E. Coli (UFC/100 ml) 0 0 0 0 0 0 0 0 0 0 0 0 Según se observa en la Tabla 3.7, de acuerdo a los resultados del índice de SAR, el agua osmotizada está dentro del rango de bajo riesgo de degradación del suelo por riesgo de sodio. Pág. 37

Tabla 3.7. Índice SAR efluente OI. Parámetros Semestrales S.A.R OI 3,5 FECHA 10.12.12 Ca 2+ (mg/l) 0,90 Mg 2+ (mg/l) 0,05 Na + (mg/l) 6,12 El caudal de rechazo o concentrado es enviado al emisario, las concentraciones de sales son menores de los 7000 ppm. La salmuera es vertida al mar (Tabla 3.8) en las inmediaciones de la zona portuaria y área de captación de las desaladoras Alicante I y II, ubicadas en la Ciudad de Alicante Mar Mediterráneo. Los valores de DQO, nitrógeno y fósforo total se han elevado respecto al influente o agua bruta de entrada a la ERA. En principio estos serían los únicos parámetros que estarían por encima de lo indicado en la Directiva 91/271/CEE. Tabla 3.8. Efluente sal muera Valor medio mensual periodo año 2012 PARÁMETROS 1 2 3 4 5 6 7 8 9 10 11 12 S.S. (mg/l) 11,1 10,13 6 14,3 12,8 9,38 9,5 16,5 19,75 13,25 11,33 14,58 Sól.Totales disueltos (mg/l) 5541 5425 6412 6583 5578 5646 5234 6046 5793 4868 4839 5884 Conductividad 20ºC (µs/cm) 7180 6874 6461 8604 7936 7716 7551 7294 7074 6696 6073 7301 Turbidez (NTU) 0,65 0,78 0,56 0,83 0,48 0,54 0,48 0,58 0,61 0,81 1,62 1,43 D.Q.O. (mg/l) 106,6 152 127,3 171,8 135 128,8 108 112,3 116 114,8 104,3 125,8 D.B.O. 5 (mg/l) 6 0 0 6 8 6 40 8 8 8 6 24 Nitratos (mg/l) 19,3 7 10,6 8,1 9,8 2,9 4,7 22,5 13,6 9,6 20,5 14,4 Cloruros (mg/l) 1882 1509 1441 2024 1430 1612 1977 2166 1704 1803 966 2009 Nitrógeno (mg/l) 105 144 111,5 137,5 153 122 88,5 103,5 101 98,5 82,5 116 Fósforo (mg/l) 19,25 13,75 11,25 9,3 15,35 6 11,65 15,15 17,55 20,05 17,4 16,4 El proceso de tratamiento en esta fase de la EDAR-ERA-RL es equivalente corresponde a un tratamiento tipo TR-5. (CEDEX, 2008), como se muestra en la Figura 3.12. En este proceso de tratamiento se cumple con la normativa del RD 1620/2007, pudiendo el agua ser reutilizada en todos los usos permitidos. Pág. 38

La calidad del agua al final de este proceso está casi libre de sales disueltas por lo que su uso en la agricultura podría ser para todo tipo de cultivo. Figura 3.12. Proceso línea del agua OI. Pág. 39

3.1.4.- Consumo de energía. El consumo de energía se ha calculado considerando tres conjuntos de tratamientos: - Filtración, físico químico y ultravioleta.- Energía consumida en los filtros de arena (FA), físico químico (FQ), equipo ultravioleta (UV) y agitadores. - Ultrafiltración.- Energía consumida en las membranas de ultrafiltración (UF). - Ósmosis inversa.- Energía consumida membranas de ósmosis inversa (OI). En la figura 3.13 se muestran los consumos medios mensuales del proceso de regeneración de aguas. El 20% del consumo de energía corresponde a los procesos de filtración, físico químico y desinfección, el 23% a ultrafiltración y el 57% a desalación. Si se suman todos los procesos la media anual de consumo de energía por cada m 3 de agua tratada estaría en los 2,61 kwh/m 3. 3,5 Consumo energía media mensual kw/m 3 3 2,5 2 1,5 1 0,5 Q+F+UV UF OI Media Total 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 meses (año 2012) Figura 3.13. Consumo de energía por áreas de tratamiento. Para calcular los costes energéticos se consideran las tarifas oficiales del segundo trimestre del año 2013, que son de 0,138658 /kwh. Así resulta un coste energético medio para el agua tratada con Filtración+F-Q+UV de 0,071 /m 3, para el tratamiento con UF de 0,082 /m 3, y para la OI de 0,21 /m 3. Si se suman todos los costes energéticos el coste total sería de 0,362 /m 3. Pág. 40

m 3 /d agua tratada 3.1.5.- Reutilización del agua regenerada. Los caudales de agua regenerados en 2012 por cada una de las alternativas citadas se muestran en la Figura 3.14 Líneas de regeneración de agua ERA - Rincón de León 1800000 1600000 1400000 1200000 1000000 800000 600000 400000 200000 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 meses (año 2012) F+FQ+UV m3/d UF m3/d 0I m3/d Figura 3.14. Línea del agua de los tres tipos de tratamiento. La ERA de Rincón de León produce una media de 11 hm 3 de agua regenerada. El 63% del agua regenerada está destinada a comunidades de regantes y el resto para uso urbano en la ciudad de Alicante. El 44% del agua regenerada corresponde al proceso F+Q+UV. El 43% del agua regenerada corresponde al proceso UF. El 12 % del agua regenerada corresponde al proceso OI. La suma de caudales tratados corresponde a las tres alternativas estudiadas. El agua reutilizada a través de las comunidades de regantes de Alicante (ARALVI - AGRICOOP), en el año 2012 fue de 7 hm 3 que corresponde al 63% del total del agua regenerada. El resto de volúmenes de agua regenerada son utilizados para limpieza de calles y riego de áreas verdes en Alicante. En la Tablas 3.9, 3.10 y 3.11, se indican los volúmenes mensuales destinados a las comunidades de regantes con la correspondiente conductividad eléctrica. Como se puede apreciar en los meses de junio a septiembre se produce una mayor demanda. Pág. 41

Tabla 3.9 Registro de caudales medios mensuales tratados y reutilizados año 2012. C.R. Agricoop -Depósito 1- Mes Caudal OI (m 3 /mes) Conduct. OI (µs/cm) Caudal UF/UV (m 3 /mes) Conduct. UF/UV (µs/cm) Caudal Total (m 3 /mes) Conduct. Promedio (µs/cm) Enero 41.745 36 113.597 2.398 155.342 1.764 Febrero 38.093 37 110.684 2.399 148.777 1.794 Marzo 41.831 37 178.360 2.163 220.191 1.761 Abril 54.107 46 142.078 2.301 196.185 1.681 Mayo 54.999 54 132.646 2.441 187.645 1.746 Junio 73.862 83 179.356 2.411 253.218 1.736 Julio 103.695 86 228.905 2.395 332.600 1.676 Agosto 112.625 98 237.954 2.622 350.579 1.811 Septiembre 76.271 94 229.927 2.462 306.198 1.872 Octubre 39.997 45 152.300 1.487 192.297 1.187 Noviembre 9.377 57 71.711 2.063 81.088 1.831 Diciembre 45.326 47 107.861 2.549 153.187 1.809 Total 691.928 1.885.379 2.577.307 Promedio 57.661 60 157.115 2.308 214.776 1.722 Tabla 3.10 Registro de caudales medios mensuales tratados y reutilizados año 2012. Mes Caudal OI (m 3 /mes) Conduct. OI (µs/cm) C.R. Agricoop -Depósito 2- Caudal UF/UV (m 3 /mes) Conduct. UF/UV (µs/cm) Caudal Total (m 3 /mes) Conduct. Promedio (µs/cm) Enero 11.285 32 41.603 2.508 52.888 1.981 Febrero 9.018 33 31.922 2.506 40.940 1.961 Marzo 9.443 31 50.051 2.132 59.494 1.799 Abril 14.427 39 41.569 2.336 55.996 1.744 Mayo 23.267 43 75.640 2.446 98.907 1.881 Junio 24.221 64 84.173 2.374 108.394 1.858 Julio 29.096 67 92.801 2.416 121.897 1.856 Agosto 30.219 73 87.122 2.501 117.341 1.876 Septiembre 21.627 75 81.859 2.541 103.486 2.026 Octubre 10.493 29 47.542 1.345 58.035 1.107 Noviembre 1.649 51 11.686 2.077 13.335 1.826 Diciembre 14.586 46 44.429 2.510 59.015 1.901 Total 199.331 690.397 889.728 Promedio 16.611 49 57.533 2.308 74.144 1.818 Pág. 42

Tabla 3.11 Registro de caudales medios mensuales tratados y reutilizados año 2012. C.R. Aralvi Mes Caudal OI (m 3 /mes) Conduct. OI (µs/cm) Caudal UF/UV (m 3 /mes) Conduct. UF/UV (µs/cm) Caudal Total (m 3 /mes) Conduct. Promedio (µs/cm) Enero 45.976 36 167.990 2.417 213.966 1.906 Febrero 57.103 37 225.401 2.467 282.504 1.976 Marzo 93.149 37 180.849 2.228 273.998 1.739 Abril 83.934 45 104.972 2.360 188.906 1.813 Mayo 100.798 55 176.100 2.456 276.898 2.221 Junio 111.051 83 228.381 2.398 339.432 1.976 Julio 130.460 87 240.548 2.341 371.008 2.170 Agosto 160.683 100 236.219 2.563 396.902 1.566 Septiembre 130.302 93 189.707 2.518 320.009 1.531 Octubre 33.747 42 245.724 1.842 279.471 1.625 Noviembre 348 74 85.603 2.025 85.951 2.017 Diciembre 9.321 49 24.667 2.516 33.988 1.839 Total 956.872 2.106.161 3.063.033 Promedio 79.739 61 175.513 2.344 255.253 1.865 Pág. 43

4. Resultados globales. a) Los resultados analíticos del agua media anual para tipo de tratamiento TR-2 se observa en la Tabla 4.1 y Figura 4.1; Tabla 4.1. Calidad media anual (año 2012) del efluente de filtros de arena + UV. FASE EFLUENTE FILTRO ARENA RL/FA/UV PARÁMETROS ph 7,33 S.S. (mg/l) 11,27 Turbidez (NTU) 3,20 D.Q.O. (mg/l) 41,91 D.B.O. 5 (mg/l) 6,92 Nitrógeno total(mg/l) 37,00 Fósforo total(mg/l) 4,04 Bicarbonatos (mg/l) 339,73 Calcio (mg/l) 87,36 Sulfatos (mg/l) 267,33 Estroncio (mg/l) 2,63 Fluoruros (mg/l) 0,14 Hierro total (mg/l) 0,46 Bario (mg/l) 0,00 Silicatos (mg/l) 11,26 E. coli (UFC/100mL) 73,52 Legionella spp. (UFC/100mL) 0,00 Figura 4.1. Usos según calidad del agua regenerada. Pág. 44

b) Los resultados analíticos medios anuales del agua para tipo de tratamiento TR-1 se observa en la Tabla 4.2. Figura 4.2. Tabla 4.2. Calidad media anual (año 2012) del efluente de membranas UF. PARÁMETROS Media anual 2012 ph 7,37 S.S. (mg/l) 0,91 Sól.totales disueltos (mg/l) 1494,83 Conductividad 20ºC (µs/cm) 2311,92 Turbidez (NTU) 0,43 D.Q.O. (mg/l) 27,13 D.B.O.5 (mg/l) 3,08 Índice de Langelier 0,28 Nitrógeno total(mg/l) 35,00 Fósforo total(mg/l) 3,54 Fosfatos (mg/l) 10,12 Hierro total (mg/l) 0,21 Cloruros (mg/l) 499,18 E. coli (UFC/100mL) 33,74 Nematodos (nºhuevos/l) 0,00 Legionella spp. (UFC/100mL) 0,00 Figura 4.2. Usos según calidad del agua regenerada. Pág. 45

c) Los índices de calidad identificados (Tabla 4.3), como el de Langelier dan como resultado una calidad del agua incrustante. Por tanto el control de precipitaciones se podría hacer con carbonato cálcico considerando que esta agua contiene valores menores de 5000 ppm de salinidad (Gonzales, 2012). Los valores de SDI son menores a 5, por lo no se prevén problemas en el uso de membranas para OI. El valor del SAR indica valores de riesgo bajo de sodio para los suelos dedicados al riego. Tabla 4.3. Media anual (año 2012) indicadores de calidad. PARÁMETROS VALOR Índice de Langelier 0,28 SAR 3,58 SDI 1,39 2,45 ph 6,65 d) Los resultados analíticos del agua media anual para tipo de tratamiento TR-5 se observan en la Tabla 4.4. y Figura 4.3. Tabla 4.4. Calidad media anual (año 2012) del efluente de OI. FASE OSMOSIS INVERSA RL/OI PARÁMETROS ph 6,65 S.S. (mg/l) 0,41 Sól.Totales disueltos (mg/l) 25,54 Conductividad 20ºC (µs/cm) 57,09 Turbidez (NTU) 0,20 D.Q.O. (mg/l) 3,43 D.B.O. 5 (mg/l) 0,92 Nitrógeno total(mg/l) 3,60 Fósforo total(mg/l) 0,20 Cloruros (mg/l) 15,55 Nematodos (nºhuevos/l) 0,00 Coliformes total (UFC/100mL) 0,00 Legionella spp. (UFC/100mL) 0,00 0,00 E. Coli (UFC/100 ml) 0,00 Pág. 46

Figura 4.3. Usos según calidad del agua regenerada. e) Las comunidades de regantes reciben un agua con calidad media en lo que se refiere a conductividad del agua (Tabla 4.5). Se ha calculado una media anual de 11 hm 3 (año 2012) de agua regenerada que utilizan tres comunidades de regantes. Tabla 4.5. Calidad media anual (año 2012) agua reutilizada comunidad de regantes. FASE PARÁMETROS media ARALVI AGRICOP- 1 AGRICOP- 2 ph (U) 7,03 Conductividad 20ºC (µs/cm) 1538,47 ph (U) 7,16 Conductividad 20ºC (µs/cm) 1807,59 ph (U) 7,16 Conductividad 20ºC (µs/cm) 1853,98 Pág. 47