ELABORADO POR: PROGRAMA PASE



Documentos relacionados
Gloria Meléndez. Gabriela Soto

Requisitos del semillero

Historia del Proyecto

Composta. 2. Materia verde y excrementos. 1. Material seco y agua. 4. despues de 6 meses utilizar la composta. 3. Tierra seca y agua

Asociación para el Desarrollo Eco-Sostenible ADEES Somotillo-Chinandega

COMPOSTAJE. Para compostar requiere 1 metro por 1 metro de espacio en su jardín en donde armar una pila con los materiales orgánicos.

COMPOSTAJE Y RECUPERACION DE MATERIALES A PARTIR DE RESIDUOS SOLIDOS URBANOS. Ventajas y desventajas

Fermentación de Cacao

Taller de compostaje Comuna Villa La Serranita

SECRETARÍA DE DE SEGURIDAD / / DIRECCIÓN DIRECCIÓN DE DE MEDIO MEDIO AMBIENTE

Ficha Técnica Conceptos de la Energía de la Biomasa

ALTERACIÓN DE LOS ALIMENTOS

Microbiótica del suelo Simbiosis y microorganismos (re)generadores

Abono Tipo Bokashi. Proyecto para el Apoyo a Pequeños Agricultores en la Zona Oriental (PROPA-Oriente)

INDICADOR DE DESEMPEÑO Establece relaciones entre los elementos naturales vitales, explicando sus beneficios. LOS RECURSOS DE LA NATURALEZA

Los microorganismos transforman los nutrientes en formas accesibles para las plantas.

Recursos asociados a Monstruo terrorífico

MOSCA SOLDADO NEGRA Hermetia illucens

Cultivo de la Piña Tropical en enarenado al aire libre.

PARTE DE PRENSA. Alimentos seguros 1

BRICOLAJE - CONSTRUCCIÓN - DECORACIÓN - JARDINERÍA. Abonar el jardín

Aprovechamiento de residuos sólidos orgánicos mediante procesos microbiológicos en Puerto Inírida - Guainía

La naturaleza. Debemos cuidar la naturaleza, pero rara vez nos explican por qué debemos cuidar.

Mayor fertilidad. Mejor cosecha. Mejorador de suelos microbiano. Líquido concentrado

Temperatura. Cubriendo la Semilla. PRODUCCION de PLUGS. Etapas de Producción de Plugs. Factor Etapa 1 Etapa 4. Etapas 1 y 2: Germinación

CAPÍTULO 14. CONTROL DE LAS TERNERAS

HOJA INFORMATIVA DE HORTICULTURA

LOS FERTILIZANTES: MITOS Y REALIDADES

Reconoces a las plantas como organismos complejos de gran importancia para los seres vivos BLOQUE VI

Evaluación de diferentes fuentes de minerales para la regulación del ph y conductividad eléctrica en el tratamiento de aguas mieles.

LA ESTRATEGIA NACIONAL DE BOSQUES Y CAMBIO CLIMÁTICO

FACTORES QUE CONDICIONAN EL PROCESO DE COMPOSTAJE. Agreda González, RICARDO Deza Cano, MARÍA JESÚS

Los problemas ambientales quiénes son los responsables?


Aire acondicionado y refrigeración

6. De leche cruda a materia prima

EL ENSILAJE. como solución a la escasez de forraje. Ing. Carlos M. Campos Granados, CINA, UCR

CÓMO MANTENER LOS ALIMENTOS LIMPIOS E INOCUOS

Pensando la siembra del sorgo granífero Por ing. Agr. Alberto Chessa- Investigación Sorgo

CAPITULO 4 FLUIDIZACIÓN EMPLEANDO VAPOR SOBRECALENTADO. Potter [10], ha demostrado en una planta piloto que materiales sensibles a la

UNIDAD 6: La parte líquida de la Tierra.

CAPÍTULO 9: EL CALENTAMIENTO DE AGUA

Los gases combustibles pueden servir para accionar motores diesel, para producir electricidad, o para mover vehículos.

EFECTOS DE LA LLUVIA ÁCIDA EN EL ENTORNO

USO DE ENZIMAS EN NUTRICION PORCINA. M.V. Fernando Bartoli - M.V. Jorge Labala


EVALUACION POSTERIOR A LA VISITA DE VEGETALISTA EVALUACIÓN SUMATIVA

CAPÍTULO I INTRODUCCIÓN. específicamente de cucarachas, moscas y roedores a los que posiblemente se enfrentan

CONSTRUCCIÓN, INSTALACIÓN Y CAPACITACIÓN PARA LA OPERACIÓN DE INVERNADEROS EN MUNICIPIOS DE LA REGIÓN CARBONIFERA ENERO 2012

LIMPIEZA Y DESINFECCIÓN EN LA INDUSTRIA LÁCTEA

Factores físicos que afectan al grano almacenado

Suelos. Qué son? Cómo se forman? Su importancia. De qué está compuesto? Capítulo 1. EL SUELO: de la superficie hacia abajo.

PROYECTO: FORTALECIMIENTO DE CAPACIDADES LOCALES DE RESPUESTA ANTE DESASTRES NATURALES EN EL ALTIPLANO SUD DE POTOSI ECHO/DIP/BUD/2005/03015

Tecnología EM - Microorganismos Eficaces. -

FUNDACIÓN HOSPITAL INFANTIL UNIVERSITARIO DE SAN JOSÉ

3 SIEMBRA Y TRANSPLANTE

Ficha Técnica Elaboración de Helados

MINIMIZACION,TRATAMIENTO Y COMERCIALIZACION DE RESIDUOS SOLIDOS. Por: Agr.Abrahan Valladares Grupo # 1

Guía de compra de aire acondicionado

1. Definición. 2. Proceso Productivo

Proyecto Composta Finca Alzamora

Fertilidad y manejo sustentable del recurso suelo. M. Cecilia Céspedes L.

Centro de Investigaciones de Tecnología Pesquera y Alimentos Regionales (INTI - CITEP - Centro Regional Sur)

Biodigestores empleando subproductos agropecuarios, la experiencia de Fundación Solar en Guatemala

Tecnología. a EM en el Manejo de duos Sólidos

LOS FACTORES DEL ECOSISTEMA

CENTRO DE DESARROLLO COMUNITARIO CENTEOTL, A.C.

CORPORACIÓN ARROCERA NACIONAL LABORATORIO DE CONTROL DE CALIDAD

ABONOS ORGÁNICOS (COMPOSTAJE Y LUMBRICULTURA)

Índice. 2. Comportamiento del recurso biomásico 3. Procesos de conversión de la biomasa y sus aplicaciones. 1. La biomasa. 4. Ventajas y desventajas

SÍNTESIS Y PERSPECTIVAS

DÓNDE CÓMO POR QUÉ Hogar

LABORATORIO DE ANALISIS Página 1 de 5. ANALISIS DE FERTILIZANTES Y AFINES 28/02/2006 LA MATERIA ORGANICA Revisión 1 CSR SERVICIOS

PROPUESTA ACTIVIDADES PARA NAVIDAD TALLERES DE HUERTO URBANO EN LA HUERTA DE TETUÁN Moenia

PROPIEDADES COMPOSTAJE

EL COLESTEROL LMCV LMCV

MANUAL PRACTICO DE NUTRICIÒN

MODULO 2. Uso Sostenible de los Recursos Naturales

Índice. 1. El compostaje y el compost. 2. Beneficios del compostaje. 3. Factores que influyen en el compostaje. 4. Dónde ubicar el compostador

Abonado eficiente y rentable en fertirrigación. Solub

Manual de Cloración del Agua y Desinfección del Sistema de Agua Potable

JARDINERIA ECOLOGICA FOTOS:

Fertilizar bien, un excelente negocio

Cambio del filtro y aceite de la transmision

TRATAMIENTAMIENTO DE AGUAS RESIDUALES POR MEDIO DE HUMEDALES ARTIFICIALES AUTOR PATRICIA HENRIKSSON LEON

CONTENEDORES DE 2 RUEDAS BIO SELECT

PLAN DE CAPACITACIÓN CONCEPTOS BASICOS DE UN SISTEMA DE AIRE ACONDICIONADO. Control de aire acondicionado

DE BUENAS PRÁCTICAS AGROAMBIENTALES. GUÍA Suelo-Planta-Agua-Aire

Producción de lixiviado de raquis de plátano en el Eje Cafetero de Colombia

Dpto. Desarrollo Sostenible Por una Mejora Continua

DE BUENAS PRÁCTICAS AGROAMBIENTALES. GUÍA Suelo-Planta-Agua-Aire

MANUAL DE USO CAFETERA ELÉCTRICA PERCOLADORA Modelo HEJA203DH

ESTUDIO DE LAS CONDICIONES EDÁFICAS Y FITOPATÓLOGICAS QUE DETERMINAN EL DESARROLLO DEL VETIVER

Compost: cómo fabricar compost?

AUTOCONSUMO EN SILOS

CONTROL BIOLÓGICO DE PLAGAS Y ENFERMEDADES : mediante hongos benéficos para el ambiente

EL PROBLEMA DE LOS NITRATOS; ALTERNATIVAS. HUESCA, 28 DE MAYO DE Ramón Mariñosa Rodríguez INSTITUTO ARAGONÉS DEL AGUA

Unidad II: Al rescate del ambiente. Lección 7: El reciclaje. Objetivos. Al finalizar la lección los superhéroes podrán:

LIMPIEZA Y DESINFECCIÓN

Uso y manejo de los biodigestores de bolsa

Transcripción:

MANUAL PARA LA PRODUCCIÓN DE COMPOST CON MICRORGANISMOS EFICACES ELABORADO POR: Programa de Apoyo a la Formación Profesional para la Inserción Laboral en el Perú Capacítate Perú (APROLAB) - Convenio ALA/2004/016-895 FONDO CONCURSABLE Instructivo No. 001-2007 / Julio 2007 PROGRAMA PASE Producción de Abono Orgánico con Microorganismos Eficaces EM-1. Material Elaborado Para Formación Profesional en Ganadería Lechera. APROLAB - Agosto Diciembre- 2007. 0

I. INTRODUCCION Uno de los principales problemas que enfrentan los agricultores en la actualidad es el alto costo de los insumos externos como fertilizantes sintéticos y agroquímicos, que además causan serios problemas de contaminación ambiental y degradación de los suelos. Una alternativa sostenible para los agricultores y empresas es la producción de compost a partir de residuos vegetales y estiércol (guano) de animales, utilizando Microorganismos Eficaces (EM), que en adelante llamaremos EM-Compost. El compostaje es un proceso dirigido y controlado de mineralización y pre-humificación de la materia orgánica. El EM-Compost, un abono orgánico de alta calidad que sirve para recuperar y/o mejorar la fertilidad de los suelos agrícolas, reducir los costos y contaminación por fertilizantes sintéticos. Sin embargo es importante conocer y aplicar muy bien la técnica para elaborar EM-Compost a partir de residuos orgánicos, porque de ello depende la calidad del producto final y evita que durante el mismo procesamiento de los desperdicios ocurran problemas ambientales tales como malos olores y la proliferación de moscas. El objetivo del presente manual es dar al lector, conceptos básicos para la producción de EM- Compost, como un proceso práctico para transformar en forma razonable, equilibrada y ambientalmente deseable los desechos orgánicos producidos en la actividad agropecuaria. En este manual revisaremos con detenimiento Qué es el compostaje?, Para qué sirve? y Cómo se produce utilizando EM?. Los conceptos y recomendaciones de este manual fueron recopilados de las experiencias obtenidas en los CEFOPs de Cajamarca del programa PASE de Fé y Alegría, y esperamos que sea de utilidad para productores agrícolas, empresarios organizaciones no gubernamentales y todo aquel interesado y comprometido con el cuidado y conservación de los recursos y la calidad de vida. 1

II. DEFINICIONES 2.1 Que son los abonos orgánicos? Es todo material que se obtiene de la degradación y mineralización de materiales orgánicos que provienen directa o indirectamente de las plantas y/o animales. En general los abonos orgánicos se clasifican en dos tipos: Abonos orgánicos sólidos: Compost, Humus de lombriz, bokashi, abonos verdes entre otros. Abonos orgánicos líquidos: biol, te humus, te de compost entre otros. 2.2 Que es el Compostaje? Podemos definir el compostaje, como un proceso dirigido y controlado de mineralización y pre-humificación de la materia orgánica, a través de un conjunto de técnicas que permiten el manejo de las variables del proceso; y que tienen como objetivo la obtención de un abono orgánico de alta calidad físico-químicas y microbiológicas. El EM-Compost resulta de la transformación de los residuos orgánicos de origen animal y vegetal, que han sido descompuestos bajo condiciones controladas, y que mediante la aplicación de EM-1 se acelerara el proceso de descomposición aumentando su calidad nutricional y biológica (Microorganismos benéficos). La materia orgánica se descompone a través de la actividad de los microorganismos (bacterias, hongos, etc.) que se van alimentando de ella. Pero para poder hacerlo necesitan oxígeno y agua (aireación y humedecimiento de los residuos orgánicos en procesamiento). Sin estas condiciones el proceso se detiene o la materia orgánica se pudre (sin suficiente oxigeno) liberando malos olores. También la materia orgánica al descomponerse se calienta hasta aproximadamente 60 C, lo cual favorece en la destrucción de patógenos y de semillas de malas hierbas. 2

La descomposición, putrefacción o fermentación de la materia orgánica puede ocurrir en diferentes formas: Una forma no controlada es lo que pasa con los basurales, parte trasera de las casas, en las acequias, ribera de los ríos, etc. Allí con el paso del tiempo, la parte orgánica de los residuos se pudre ocasionando malos olores y aparición de moscas. Otra forma es controlar la descomposición de la materia orgánica para producir compost sin causar problemas al medio ambiente. 2.3 Etapas del proceso de Compostaje El proceso de compostaje puede dividirse en cuatro períodos, de acuerdo con la evolución de la temperatura: Mesófila. La masa vegetal está a temperatura ambiente y los microorganismos mesófilos se multiplican rápidamente. Como consecuencia de la actividad metabólica la temperatura se eleva y se producen ácidos orgánicos que hacen bajar el ph. Termófila. Cuando se alcanza una temperatura de 40 ºC, los microorganismos termófilos actúan transformando el nitrógeno en amoníaco y el ph del medio se hace alcalino. A los 60 ºC estos hongos termófilos desaparecen y aparecen las bacterias esporígenas y actinomicetos. Estos microorganismos son los encargados de descomponer las ceras, proteínas y hemicelulosas. De enfriamiento. Cuando la temperatura es menor de 60 ºC, reaparecen los hongos termófilos que reinvaden el mantillo y descomponen la celulosa. Al bajar de 40 ºC los mesófilos también reinician su actividad y el ph del medio desciende ligeramente. De maduración. Es un periodo que requiere meses a temperatura ambiente, durante los cuales se producen reacciones secundarias de condensación y polimerización del humus. 3

Fig. 9.- Etapas de proceso de Compostaje, atendiendo a la evolución de la temperatura. 2.4 Beneficios del abonamiento con EM-Compost Mejora las propiedades físicas del suelo. La materia orgánica favorece la estabilidad de la estructura de los agregados del suelo agrícola, reduce la densidad aparente, aumenta la porosidad y permeabilidad, y aumenta su capacidad de retención de agua en el suelo. Se obtienen suelos más esponjosos y con mayor retención de agua. Mejora las propiedades químicas. Aumenta el contenido en macronutrientes N, P,K, y micronutrientes, la capacidad de intercambio catiónico (C.I.C.) y es fuente y almacén de nutrientes para los cultivos. Mejora la actividad biológica del suelo. Actúa como soporte y alimento de los microorganismos ya que viven a expensas del humus y contribuyen a su mineralización. La población microbiana es un indicador de la fertilidad del suelo. 2.5 Qué es EM? EM, es una abreviación de Effective Microorganisms (Microorganismos Eficaces), EM es una combinación de varios microorganismos benéficos. La tecnología EM, fue desarrollada por Teruo Higa, Ph. D., profesor de horticultura de la Universidad 4

de Ryukyus en Okinawa, Japón. A comienzos de los años sesenta, el profesor Higa comenzó la búsqueda de una alternativa que reemplazara los fertilizantes y pesticidas sintéticos, popularizados después de la segunda guerra mundial para la producción de alimentos en el mundo entero. Inicialmente el EM fue utilizado como un acondicionador de suelos. Hoy en día EM es usado no solo para producir alimentos de altísima calidad, libres de agroquímicos, sino también para el manejo de desechos sólidos y líquidos generados por la producción agropecuaria, la industria de procesamiento de alimentos, fabricas de papel, mataderos y municipalidades entre otros. El EM es usado en los 5 continentes, cubre más de 120 países 2.6 Importancia de los Microorganismos Eficaces Existen microorganismos en el aire, en el suelo, en nuestros intestinos, en los alimentos que consumimos, en el agua que bebemos. Las condiciones actuales de contaminación y uso excesivo de sustancias químicas sintéticas han causado la proliferación de especies de microorganismos considerados degeneradores. Estos microorganismos a grandes rasgos, son causantes de enfermedades en plantas y animales y generan malos olores y gases nocivos al descomponer residuos orgánicos. Los microorganismos eficientes, como inoculante microbiano, reestablece el equilibrio microbiológico del suelo, mejorando sus condiciones físico-químicas, incrementando la producción de los cultivos y su protección; además conserva los recursos naturales, generando una agricultura sostenible. Entre los efectos sobre el desarrollo de los cultivos se pueden encontrar: En las plantas: Aumento de la velocidad y porcentaje de germinación de las semillas, por su efecto hormonal, similar al del ácido giberélico. 5

Aumento del vigor y crecimiento del tallo y raíces, desde la germinación hasta la emergencia de las plántulas, por su efecto como rizo bacterias promotoras del crecimiento vegetal. Incremento de las probabilidades de supervivencia de las plántulas. Genera un mecanismo de supresión de insectos y enfermedades en las plantas, ya que pueden inducir la resistencia sistémica de los cultivos a enfermedades. Consume los exudados de raíces, hojas, flores y frutos, evitando la propagación de organismos patógenos y desarrollo de enfermedades. Incrementa el crecimiento, calidad y productividad de los cultivos. Promueven la floración, fructificación y maduración por sus efectos hormonales en zonas meristemáticas. Incrementa la capacidad fotosintética por medio de un mayor desarrollo foliar. En los suelos: Los efectos de los microorganismos en el suelo, están enmarcados en el mejoramiento de las características físicas, biológicas y supresión de enfermedades. Así pues entre sus efectos se pueden mencionar: Efectos en las condiciones físicas del suelo: mejora la estructura y agregación de las partículas del suelo, reduce su compactación, incrementa los espacios porosos y mejora la infiltración del agua. Efectos en la microbiología del suelo: suprime o controla las poblaciones de microorganismos patógenos que se desarrollan en el suelo por competencia. Incrementa la biodiversidad microbiana, generando las condiciones necesarias para que los microorganismos benéficos nativos prosperen. 6

2.7 Principales microorganismos en EM y su acción El EM es un cóctel líquido que contiene más de 80 Microorganismos benéficos de origen natural. A continuación se describen algunos de los principales tipos de microorganismos presentes en el EM y su acción. Bacterias fotosintéticas (Rhodopseudomonas spp) Las bacterias fotosintéticas o fototrópicas son un grupo de microorganismos independientes y autosuficientes. Estas bacterias sintetizan substancias útiles a partir de las secreciones de las raíces, materia orgánica y/o gases nocivos (sulfuro de hidrógeno), usando la luz solar y el calor del suelo como fuentes de energía. Bacterias ácido lácticas (Lactobacillus spp) Las bacterias ácido lácticas producen ácido láctico a partir de azúcares y otros carbohidratos desarrollados por bacterias fotosintéticas y levaduras. Desde tiempos antiguos, muchos alimentos y bebidas como el yogurt y los pepinillos son producidos usando bacterias ácido lácticas. Las bacterias ácido lácticas tienen la habilidad de suprimir microorganismos causantes de enfermedades como Fusarium, los cuales aparecen en sistemas de producción continua. Bajo circunstancias normales, las especies como Fusarium debilitan las plantas cultivadas, exponiéndolas a enfermedades y a poblaciones crecientes de plagas como los nemátodos. El uso de bacterias ácido lácticas reduce las poblaciones de nemátodos y controla la propagación y diseminación de Fusarium, mejorando así el medio ambiente para el crecimiento de cultivos. 7

Levaduras (Saccharomyces spp) Las levaduras sintetizan substancias antimicrobiales y otras substancias útiles para el crecimiento de las plantas, a partir de aminoácidos y azúcares secretados por las bacterias fotosintéticas, la materia orgánica y las raíces de las plantas. 2.8 Aplicaciones del EM (Microorganismos Eficaces) a). EM para la agricultura La mejor manera de utilizar EM para la agricultura depende de la región, la calidad de la tierra, el clima, el método de cultivo, irrigación, cosechas y otros factores. b). EM para la actividad pesquera De acuerdo a los estudios y experimentos, EM es extremadamente beneficioso para la actividad pesquera, la comida de los peces se fermenta con EM antes de alimentarlos. Una variedad de alimentos hechos con EM incluyen aquellos excrementos de animales desechos sólidos con Bokashi y alimento comercial. c). EM para aves de corral EM se ha vuelto muy popular en la industria avícola. Los alimentos se fermentan con EM antes de suministrarlos a las aves. Una variedad de comidas hechas con EM incluyen aquellos excrementos de animales. Se agrega EM extendido al agua potable en una preparación de 1; 1,000. También son usados en el agua de bebida el cual ayuda a mejorar microbiológica mente la calidad de la misma, además de enriquecerlas con sustancias benéficas. d). EM para la producción de animales Una amplia variedad de alimentos incluyen maíz ensilado, forraje y alimentos comerciales se pueden fermentar con EM. También se puede agregar EM 8

activado al agua potable, diluido en una proporción de 1:500; usar EM también ayuda a reducir, en carne y en la leche, los efectos secundarios dañinos de los vacunos y otros medicamentos. e). EM para tratamiento de agua contaminada. Normalmente el agua contaminada incluye niveles altos de BOO, COD, ph, E. Coli y otros contaminantes. Antes de usar EM, se recomienda evaluar las propiedades de agua. El propósito de reciclar también debe determinarse; simplemente para eliminar olores desagradables, para uso en agricultura. f). EM para reciclar desechos sólidos Los desechos sólidos y la basura de cocina se pueden reciclar para hacer fertilizantes con EM, el olor de los desechos se pueden eliminar rápidamente. Generalmente EM convierte a los desechos en productos inofensivos y útiles. Normalmente la descomposición de los desechos tarda varios meses, con EM tarda únicamente de 4 a 6 semanas. g). EM en la vida diaria EM puede usarse en nuestra vida diaria de diferentes maneras. Se puede vaciar en los servicios sanitarios para eliminar olores desagradables y en los baños para protegerlos de hongos, en las cocinas para eliminar el olor de la comida, en los jardines para cultivar flores, frutas y vegetales. Se recomienda EM diluido en una preparación de 1_500 ó EM diluido en una proporción de 1:5000 para las aplicaciones mencionadas Actinomicetos La estructura de los Actinomicetos, intermedia entre la de las bacterias y hongos, producen substancias antimicrobianas a partir de los aminoácidos y azúcares producidos por las bacterias fotosintéticas y por la materia orgánica. Esas sustancias antimicrobianas suprimen hongos dañinos y bacterias patógenas. 9

Los Actinomicetos pueden coexistir con la bacteria fotosintética. Así, ambas especies mejoran la calidad de los suelos a través del incremento de la actividad microbiana. Hongos de Fermentación Los hongos de fermentación como el Aspergillus y el Penicilina actúan descomponiendo rápidamente la materia orgánica para producir alcohol, esteres y substancias antimicrobianas. Esto es lo que produce la desodorización y previene la aparición de insectos perjudiciales y gusanos. 2.8 Principales diferencias entre la producción de compost con EM y el compost tradicional (Sin EM) Compost con EM Menor tiempo de descomposición. Entre 1 a 2 meses. No hay presencia de malos olores ni moscas Producto final con mayor contenido de nutrientes Mayor contenido de Microorganismos benéficos Compost tradicional Mayor tiempo de descomposición. Normalmente entre 3 a 6 meses Puede haber presencia de malos olores y moscas Menor contenido nutricional en comparación al EM-compost Menor contenido de Microorganismos benéficos III. FACTORES QUE INFLUYEN EN EL PROCESO DE COMPOSTAJE El proceso de compostaje se basa en la actividad de los microorganismos, para que estos microorganismos puedan vivir y descomponer la materia orgánica es importante tener en cuenta los principales factores que influyen en el proceso y 10

que influyen directamente en la calidad final del EM-Compost. Los factores más importantes son: 3.1 Evaluación de la materia orgánica disponible Antes de iniciar el proceso de compostaje, es necesario hacer una evaluación de la ubicación de los residuos orgánicos como estiércoles de Vacuno, Bovino, Cuy, rastrojos de cosecha entre otros. Además es importante determinar la cantidad y calidad de la materia orgánica que se dispone semanal, mensual y/o anual, para elaborar un programa de producción de EM-Compost que puede ser utilizado en la misma chacra y/o destinar a la venta. Otras consideraciones a tener en cuenta son el porcentaje de humedad y el grado de descomposición de los residuos orgánicos. Entre más fresco están los residuos mayor es la calidad nutricional. 3.2 Instalaciones Es importante que cada agricultor cuente con un área permanente para la producción de EM-Compost. El área de compostaje debe de estar ubicada cercano al sitio de producción de desechos vegetales y/o animales y de fácil acceso para facilitar el transporte. Además es indispensable que las instalaciones cuenten con un piso firme y protección en épocas de lluvias, para evitar exceso de humedad en las pilas de compost y la pérdida de los nutrientes solubles en agua. Las instalaciones pueden ser techadas y con piso de cemento. Sin embargo también pueden tener instalaciones mucho más baratas con un piso firme bien compactado y plástico de color para proteger las camas de las lluvias. En época de verano puede tapar las pilas con rastrojos de cosecha, para evitar la incidencia directa de los rayos del sol que pueden afectar los microorganismos benéficos, mantener la humedad de la pilas y reducir las pérdidas del Nitrógeno por volatilización (amoniaco). 11

Fig. 1. Diferentes instalaciones para producir EM-Compost. La de la izquierda con plástico y piso de tierra bien compactado. En la derecha instalaciones techadas y piso de cemento. Fig. 2. Pilas de EM-Compost tapadas con rastrojos de cosecha en época de verano. 3.3 Relación Carbono/Nitrógeno La relación C/N, expresa las unidades de Carbono por unidades de Nitrógeno que contiene un material. Una relación adecuada entre estos dos nutrientes, favorecerá un buen crecimiento y reproducción. La relación C/N óptimo para el inicio del compostaje con EM esta comprendida entre 25-35/1, esta relación va bajando hasta llegar a valores cercanos a 10-15/1 y es cuando el material está listo para ser usado. Se tiene que tener en cuenta que el Carbono es utilizado por los microorganismos como fuente de energía, mientras que el nitrógeno es utilizado 12

para la síntesis de sustancia y para las funciones vitales de los microorganismos, cuando la relación C/N es mayor de 40 los microorganismos demoraran mucho en descomponer los residuos por carecer de nitrógeno disminuyendo el rendimiento de compostaje, si la relación C/N es baja se producen perdidas de nitrógeno en forma amoniacal debido a elevaciones considerables de temperatura. Con respecto a la relación C/N podemos sacar las siguientes reglas básicas: Utilizando materiales con una buena relación C/N, no es necesario realizar mezclas. Los materiales con relativo alto contenido en Carbono deben mezclarse con materiales con relativo alto contenido en Nitrógeno y viceversa. Cuadro 1. Contenido referenciales de C/N de algunos residuos orgánicos. MATERIALES- Base Seca C% N% C/N Aserrines 40 0.1 400 Podas, tallos, maíz 45 0.3 150 Paja de caña 40 0.5 80 Hojas de árboles 40 1 40 Estiércol de equino 15 0.5 30 Estiércol ovino 16 0.8 20 Heno 40 2 20 Estiércol bovino 7 0.5 15 Estiércol suino 8 0,7 12 Estiércol de gallina 15 1.5 10 Harina de sangre 35 15 2 Fuente: Manual para la elaboración de compost bases conceptuales y procedimientos. OPS/HEP/HES/URU 3.4 Tamaño de las partículas En el proceso de compostaje el tamaño de los residuos orgánicos juega un papel muy importante. Las partículas demasiado grandes presentan poca superficie de contacto para ser atacadas por los microorganismos haciendo que el tiempo de procesamiento se alargue, el tamaño ideal de las partículas debe ser de 3 a 6 cm. Si en nuestra parcela contamos con rastrojos de cosecha es necesario picarlos con 13

machete ó picadora mecánica, antes de mezclarlos con los excretas de los animales. Fig. 3. Rastrojos de cosecha antes y después de picados. 3.5 Dimensiones de la pila Las dimensiones de la pila de compostaje influyen básicamente en la aireación y temperatura de la pila, y por lo tanto en la transformación adecuada del material orgánico. Es importante mencionar que no existen medidas estándar de las dimensiones de pilas, sin embargo se recomienda un ancho entre 0.8 a 1.50 m, una altura de 1.00 a 1,20 m y el largo dependerá de la disponibilidad del terreno. La altura puede variar según el clima de la zona, en climas cálidos se trabaja menor altura para que la pila no caliente en exceso y en climas fríos pilas más altas para mantener la temperatura. Es necesario para esto producir y determinar la altura de la pila para cada localidad. Fig. 4. Dimensiones de pilas de compostaje. 14

3.6 Aireación (volteos) del EM-Compost El objetivo de la aireación durante el proceso de compostaje es suministrar Oxigeno para la degradación microbiana, controlar la temperatura y eliminar la humedad de la materia orgánica. Cuando existe una mala aireación en las pilas de compostaje, se producen condiciones favorables para el inicio de las fermentaciones y las respiraciones anaeróbicas(degradación por la vía de putrefacción, generación de dihidruro de azufre SH2) esta situación se diagnostica por la aparición de olores nauseabundos, o fuerte olor a Amoníaco producto de la AmonificaciónAl inicio del compostaje se recomienda hacer volteos semanales ó quincenales, hasta que el material sea cosechado. Fig. 5. Volteos manual y mecanizado de las pilas de compost. 3.7 La inoculación de la pila La inoculación de la pila de compostaje con microorganismos Eficaces (EM), tiene el objetivo de disminuir el tiempo de elaboración del abono orgánico, obtener un material microbiológico y nutricionalmente mejorado. El EM promueve la transformación aeróbica de compuestos orgánicos, evitando que se liberen gases generadores de olores molestos (sulfurosos, amoniacales y mercaptanos). Adicionalmente, evita la proliferación de insectos vectores, como 15

moscas, ya que estas no encuentran un medio adecuado para su desarrollo. Además incrementa la eficiencia de la materia orgánica como fertilizante, ya que durante el proceso de fermentación se liberan y sintetizan sustancias y compuestos como: aminoácidos, enzimas, vitaminas, sustancias bioactivas, hormonas y minerales solubles, que al ser incorporados al suelo a través del abono orgánico, mejoran sus características físicas, químicas y microbiológicas. Fig. 6. Durante el volteo se hace la inoculación uniforme de EM con bomba de mochila ó a través de micro aspersores. 3.8 Control de Humedad El agua es requerida por los microorganismos para desarrollar sus funciones metabólicas, además, es utilizada como vehículo de trasporte de nutrientes y productos de desecho. Un bajo contenido de humedad afectan el metabolismo microbiano, mientras que altos valores de humedad, con llevan a la acumulación de agua en las cavidades intersticiales, dificultando la difusión de O 2 y favoreciendo las condiciones de anaeróbicas. La humedad de la pila de compostaje debe oscilar entre el 50-70 %. Para el control del contenido de humedad, se puede aplicar el siguiente procedimiento empírico. Tome con la mano una muestra de material del centro de la pila de compost. Cierre la mano y apriete fuertemente el mismo: 16

A. Si con esta operación verifica que salen muy pocas gotas de agua por medio de los dedos, entonces el nivel de humedad es bueno y no aplicamos agua. B. Si no sale nada de agua después de apretar y se desmorona (disgrega) el material, es una señal que hace falta agua. C. Sin sale entre los dedos un hilo continuo de agua del material y sentimos un olor desagradable, como podrido, es que hay un exceso de agua. En este caso se debe extender la pila y esperar que seque un poco. Fig. 7. Control manual de la humedad 3.9 Control de Temperatura. El control de la temperatura juega un papel muy importarte en el proceso y la calidad final del EM- compost. La temperatura en la cama de compostaje comienza con una rápida elevación, a causa del metabolismo de los microorganismos. Se necesita calor para que la materia orgánica ase descomponga, y garantizar la eliminación de patógenos y la inhabilitación de semillas, que puedan venir de los materiales empleados. Es importante mantener la temperatura de la pila de compost en un nivel intermedio entre 45 a 50 grados Centígrados. Temperaturas superiores a los 50-60 ºC ocasiona la pérdida del Nitrógeno por volatilización (amoniaco) y obtendremos un EM-Compost pobre en este nutriente. 17

Fig. 8. Control de temperatura con termómetro para compost IV. PROCEDEMINETO EN LA ELABORACIÓN DE EM- COMPOST EN ZONAS ALTOANDINAS Paso1: Preparación del Terreno El lugar donde van formar las pilas debe estar nivelado, limpio y sin piedras, para evitar que existan elementos que afecten y/o dificulten el proceso de compostaje Fig. 10.- Nivelación y construcción del piso para la cama compostera con EM-1. 18

Fig. 11.- Elaboración de la cama con alumnos de la formación regular del Proyecto Aprolab. Paso 2: Formación de las camas o pilas con los residuos orgánicos: - Se procede a colocar la primera capa, la cual corresponde a los rastrojos de cosechas. Esta capa debe tener una altura de 30 cm. durante el proceso de compostaje. - Posteriormente se procede a colocar la segunda capa, la cual corresponde al estiércol. Esta capa debe tener una altura de 20 cm. Este procedimiento de vuelve a repetir hasta alcanzar el tamaño deseado de la pila de compost entre 1.20 a 1.50 metros - Finalmente, si es necesario, se procede a regar toda la cama ya formada, tratando en lo posible de humedecerla por completo en agua, teniendo cuidado que no hayan lixiviados. Fig. 12.- Formación de las pilas de Compost. 19

Paso 3. Inoculación de los residuos orgánicos Paralelo al proceso de LA colocación de las capas de los diferentes residuos orgánicos, se va inoculando uniformemente con bomba de mochila, empleando una dosis de 100 a 200 ml de EM-1 en 20 litros de agua. Fig. 13.- Volteo e inoculación de las pilas de Compost. Paso 4. Volteos, control de humedad y Temperatura Después de cuatro días aproximadamente, la pila esta empieza a calentar y es necesario controlar la humedad, temperatura y hacer volteos una vez por semana. Paso 5. Cosecha del EM-Compost Después de 6 semanas aproximadamente, la temperatura de la pila de compost empieza a bajar, el material tiene un color marrón oscuro, esponjoso y de un olor agradable a tierra; estos son indicadores que el compost esta listo para ser cosechado. El EM-compost, se puede usar inmediatamente en los cultivos ó se puede almacenar es sacos en un lugar sombreado. También se puede dejar madurando en el área de compostaje manteniendo una humedad del 14% para mantener la población microbiana benéfica. 20

Fig. 14.- Cosecha y almacenamiento del EM- Compost V. REFERENCIAS BIBLIOGRÁFICAS SHINTANI, M. TABORA, P. 2000. Abonos orgánicos. Universidad EARTH. Guácimo, Limón, costa Rica. 22 p. SZTERN, D. Pravia, M. Manual para la elaboración de compost bases conceptuales y procedimientos. Organización Panamericana de la Salud (OPS) 69 p. 21