Tema 10. Control de la expresión génica

Documentos relacionados
Tema 10. Regulación de la expresión génica

TEMA 4 REGULACIÓN DE LA EXPRESIÓN GÉNICA EN PROCARIOTAS

Capítulo 12 REGULACIÓN DE LA EXPRESIÓN GÉNICA. Factores de Transcripción. Metilación. Procesamiento del ARN. Post-traduccional

REGULACIÓN DE LA EXPRESIÓN GENÉTICA EN PROCARIOTES

Introducción. Expresión génica. Regulación de la expresión génica en procariotas

Control de Expresión Génica Procariota. Profesor: Javier Cabello Schomburg, MS

+ Expresión de Genes

Regulación génica. Necesaria tanto en procariotas como eucariotas. Todas las células del cuerpo tienen el mismo material genético

REGULACIÓN GENÉTICA EN CÉLULAS EUCARIOTAS

Regulación de la Expresión genética. Curso: Biología Celular y Molecular Oscar Nolasco Cárdenas MSc. Noviembre

Biosíntesis de Ácidos nucleicos (ARN) y Proteínas

Regulación de la expresión génica en procariotas

La síntesis de proteínas

REGULACIÓN DE LA EXPRESIÓN GÉNICA

Muchas de las células eucariotas son especializadas: el ser humano tiene más de 200 tipos de células.

A qué da lugar el mensaje del ADN?

RECOMENDACIONES DE SELECTIVIDAD

-Concepto operon -Mutante constitucional -Lac operon, represor (alolactosa), regulacion por represion catabolito -Promotor (pro. Policistronico, eu.

Transcripción. - Generalidades - DNA RNA. - Mecanismo. - Modelos Protein. - Moléculas. - Métodos de detección de RNA. Chromosome RNA DNA

Regulación de la Expresión Génica en Eucariotas

Regulación de la expresión genética en eucariontes

Universidad Nacional Autónoma de México

El Dogma Central de la Biología Molecular v.1. Manuel J. Gómez Laboratorio de Bioinformática Centro de Astrobiología INTA- CSIC

EL GENOMA HUMANO Introducción Recuerdo histórico Estructura del DNA Función del material genético Organización del genoma Proyecto Genoma Humano

Promotor Basal: secuencia de nucleótidos necesaria para la fijación de la RNA polimerasa.

Organización y estructura de genomas

Dr. Antonio Barbadilla

Nombre 10 de Marzo de Lee cuidadosamente las instrucciones para responder a las siguientes preguntas

Organización y estructura de genomas

FISIOLOGÍA GENERAL Jesús Merino Pérez y María José Noriega Borge

Qué es un gen? EXPRESION GÉNICA 01/05/2013

Capítulo 12. TRANSCRIPCIÓN Esquemas

Genomas, contenido de genes.

Dogma central de la Biología Molecular. Replicación ADN. Transcripción ARN. Traducción. Proteínas

Acción y Regulación de los Genes. Cátedra de Genética FAZ - UNT

Tema 8. Funcionamiento del DNA (I)

Flujo de información en la célula Transcripción

MICROBIOLOGIA GENERAL

Bases moleculares de la herencia. Transcripción.

Introducción. Reversibilidad de la diferenciación. Experiencias

12. REGULACION DE LA EXPRESION GENICA EN PROCARIONTES. Verónica González Núñez Universidad de Salamanca

Bioquímica inmunológica. 4. Selección clonal.. Cambio de clase

Introducción a la Biología Molecular

Orígenes de replicación en los cromosomas eucariotas

Microbiología General Tema 5: Transmisión de la información genética

Programa materia Genética Molecular UNIDAD 1. ADN COMO MATERIAL GENETICO

Bases moleculares de la herencia. Código genético y Traducción.

La transcripción en eucariótas

F.I.G.: Experimento de Volkin and Astrachan, 1956

Cátedra Biología Molecular

GENÉTICA MOLECULAR. Unidad 1: Introducción a la genética molecular

PRUEBA SOBRE GENÉTICA MOLECULAR PRUEBA SOBRE GENÉTICA MOLECULAR. Nombre:.

Transcripción y Procesamiento del RNA

TEMA 2 LA INFORMACIÓN GENÉTICA COLEGIO LEONARDO DA VINCI BIOLOGÍA Y GEOLOGÍA 4º ESO CURSO 2014/15

TEMA 3: Expresión Génica

El ADN portador de la información genética.

CÓMO SE PUEDE DETERMINAR LA SECUENCIA DEL DNA A PARTIR DE UNA PROTEÍNA? DR. MANUEL E. AQUINO

Regulación de la expresión en Eucariotas

REGULACIÓN TRANSCRIPCIONAL DE LA EXPRESIÓN GENICA

PRUEBA SOBRE GENÉTICA MOLECULAR PRUEBA SOBRE GENÉTICA MOLECULAR CINETOCORO FRAGMOPLASTO MITOSIS. Nombre:.

EL A.D.N. Existen 2 tipos de Acidos Nucleicos : ADN (Acido Desoxirribonucleico) y ARN (Acido Ribonucleico) Diferencias entre ADN y ARN

Genética molecular (II)

FISIOLOGÍA GENERAL Jesús Merino Pérez y María José Noriega Borge

TEMA 6: MECANISMOS REGULADORES Y FERMENTACIONES INDUSTRIALES Dr. Pedro F. Mateos

Flujo de información en la célula

COMPOSICIÓN QUÍMICA DE LA CROMATINA

GUÌA DE APOYO 4º MEDIO NOMBRE CURSO 4º MEDIO. I.- Complete las siguientes aseveraciones, utilizando los términos adecuados.

TEMA 15 LOS GENES Y SU FUNCIÓN. IES Enric Valor Nieves Martinez Danta 1

Genética molecular I SÍNTESIS DE ARN (TRANSCRIPCIÓN)

Tema 6 Expresión y Regulación de Genes Cap. 10, pág

Tema 17: PROCESAMIENTO POST-TRANSCRIPCIONAL

LA TRANSCRIPCIÓN El paso de la información del ADN al ARN. Realizado por José Mayorga Fernández

TEMA 14. Fisiología celular. Genética molecular.

Dogma central. ADN - ARN - Proteínas

Ácidos nucleicos. 3ª y 4ª Parte: Transcripción y traducción I & II. Tema 11 de Biología NS Diploma BI Curso Ácidos nucleicos 1/33

ADN, ARN Y SÍNTESIS DE PROTEÍNAS

2. Los organizadores nucleares aportan información para la síntesis de: a- ARNm b- ARNr c- ARNt d- Histonas

DOGMA CENTRAL DE LA BIOLOGIA

CAPÍTULO 2 FLUJO DE LA INFORMACIÓN BIOLÓGICA FACULTAD DE AGRONOMÍA CURSO DE BIOQUÍMICA

Material de apoyo Transcripcio n y traduccio n

Biología Profundización

Microbiología Clínica Tema 4: Transmisión de la información genética

Los avances en las distintas ramas de la biología permitieron a Francis Crick enunciar en 1970 el DOGMA CENTRAL DE LA BIOLOGÍA MOLECULAR:

REGULACIÓN GÉNICA EN EUCARIOTAS

Los nucleótidos están formados de: Una base nitrogenada Un azúcar de cinco carbonos Uno o más grupos fosfato

Transcripción. replicación DNA. transcripción RNA. traducción. Prot. Introducción. Transcripción procariótica. Prof.

GENÉTICA MOLECULAR. El ADN, LA MOLÉCULA DE LA HERENCIA

ÍNDICE GENERAL INTRODUCCIÓN...1

Medicina y Biología Molecular y Celular

Regulación en Eucariotas

Fisiología de Guyton Capitulo 3

Trascripción. Traducción

ACTIVIDADES 2º BACHILLERATO C. Y T. GENÉTICA MOLECULAR

REGULACIÓN DE LA EXPRESIÓN GENÉTICA

Del ADN a las Proteínas

Estructura celular. Teoría Celular. Cap. 4. Los organismos se componen de una o más células. La célula es la unidad más pequeña de la vida.

Complejo de iniciación de la transcripción Fosforilación de el CTD de la ARN pol II

Regulación de la expresión en Eucariotas

CONCEPTO MOLECULAR DEL GEN. ESTRUCTURA DE LOS GENES EN EUCARIOTAS

BIOQUÍMICA-1º de Medicina Dpto. Biología Molecular Isabel Andrés. Generalidades sobre la transcripción

Transcripción:

Tema 10. Control de la expresión génica Genética CC. Mar 2004-05 Objetivos Estudiar el funcionamiento del control de la expresión génica en procariotas: operones Regulación transcripcional y no transcripcional en eucariotas Introducción a la genética del desarrollo Genética CC Mar 2004/5 D. Posada, Universidad de Vigo 2

Genes regulados y constitutivos Adaptación al medio ambiente => habilidad de activar e inactivar genes como respuesta a señales extracelulares Producción de tipos específicos de proteínas cuando y dónde se necesite. Genes regulados o adaptativos: genes cuya actividad está controlada en respuesta a las necesidades de una célula u organismo. Genes constitutivos o housekeeping : genes que siempre permanecen activos, independientemente de las condiciones del medio. Genética CC Mar 2004/5 D. Posada, Universidad de Vigo 3 Sistemas inducibles y represibles en procariotas Sistemas inducibles: un inductor activa la expresión génica. Catabolismo (degradación de lactosa, maltosa). Sistemas represibles: un represor reprime la expresión génica. Metabolismo (síntesis de triptófano, histidina). Control positivo: el producto del gen regulador activa la expresión de los genes. Control negativo: el producto del gen regulador reprime o impide la expresión de los genes Genética CC Mar 2004/5 D. Posada, Universidad de Vigo 4

Operones Operón: grupo de genes estructurales cuya expresión está regulada por los mismos elementos de control (promotor y operador) y por genes reguladores: Genes estructurales: llevan información para polipéptidos. Se trata de los genes cuya expresión está regulada. Se transcriben juntos en un mrna poligénico. Promotor: secuencia de DNA reconocida por la ARN polimerasa para el comienzo de la transcripción. Se encuentra inmediatamente antes de los genes estructurales Operador: secuencia de ADN reconocida por la proteína reguladora. Se sitúa entre la región promotora y los genes estructurales Gen regulador: codifica la proteína reguladora que reconoce la secuencia del operador. Está cerca de los genes estructurales del operón pero no inmediatamente al lado. Proteína reguladora: proteína codificada por el gen regulador. Se une a la región del operador. Inductor: compuesto cuya presencia induce la expresión de los genes. Genética CC Mar 2004/5 D. Posada, Universidad de Vigo 5 Uso de lactosa por E. coli En E. coli, si la fuente de carbono es únicamente lactosa (glucosa + galactosa), tres enzimas van a ser sintetizados rápidamente para metabolizar la lactosa!-galactosidasa: rompe la lactosa en glucosa y galactosa, pudiendo además transformar lactosa en alolactosa Lactosa permeasa: proteína de membrana que transporta lactosa en la célula Transacetilasa: función desconocida En ausencia de lactosa en el medio hay ~3 moléculas de!-galactosidasa. En presencia de lactosa está cantidad puede aumentar hasta 3000. Genética CC Mar 2004/5 D. Posada, Universidad de Vigo 6

Operón lactosa (lac) Org anización del operón lac Sistema inducible bajo control negativo. Genes estructurales: lacz + (!-galactosidasa), lacy + (lactosa permeasa) y laca + (transacetilasa). Operador laco +. Gen regulador laci + : separado, se expresa de de forma constitutiva, pero débilmente, y codifica una proteína represora. Genética CC Mar 2004/5 D. Posada, Universidad de Vigo 7 Operón lac en ausencia de lactosa Operón lac en ausencia de lactosa En ausencia de lactosa, la proteína represora se une al operador: la RNA polimerasa puede unirse al promotor pero no es capaz de iniciar la transcripción. Las pocas moléculas de enzima que se producen lo hacen aprovechando las constantes uniones y desuniones del represor. Genética CC Mar 2004/5 D. Posada, Universidad de Vigo 8

Operón lac en presencia de lactosa Operón lac en presencia de lactosa Única fuente de carbono es lactosa Lactosa --!-galactosidasa --> alolactosa. La alolactosa se une al represor, modificando su conformación. Éste pierde su afinidad por el operador. Genética CC Mar 2004/5 D. Posada, Universidad de Vigo 9 Operón triptófano (trp) Organización del operón trp Sistema represible bajo control negativo. Genes estructurales: trpe, trpd, trpc, trpb, trpa. Biosíntesis de triptófano. Gen regulador (trpr): proteína aporrepresora Región líder (trpl): incluye un sitio atenuador (att) Dos mecanismos de regulación: interacción represoroperador. longitud de los tránscritos. Genética CC Mar 2004/5 D. Posada, Universidad de Vigo 10

Operón trp en presencia/asuencia de triptófano trpr => proteína aporrepresora: represor que no se puede unir al operador por sí sola. El tritptófano es el efector: interactúa con el aporrepresor y lo convierte en un represor activo. El represor activo se une operador e impide la transcripción de los genes estructurales. Esta represión puede reducir unas 70 veces la tasa de transcripción de estos genes. Cuando no hay triptófano en el medio los genes trp se expresan al máximo nivel Genética CC Mar 2004/5 D. Posada, Universidad de Vigo 11 Atenuación del operón trp Estructura de la reg ión líder del mrna en el operón trp de E. coli La atenuación controla la proporción de transcritos completos e incompletos que terminan en el atenuador La región líder del mrna contiene 4 regiones complementarias que pueden aparearse y plegarse. Antes del codón de terminación hay dos codones de Trp. Las regiones 1 y 2 de la región líder del mrna se emparejan justo después de ser sintetizadas formando una estructura secundaria que paraliza temporalmente la RNA polimerasa (señal de pausa) y le permite al ribosoma acoplarse al mrna de forma que comienza a traducir justo detrás de la RNA polimerasa Genética CC Mar 2004/5 D. Posada, Universidad de Vigo 12

Atenuación en ausencia de trp Atenuación del operón trp en E. coli: ausencia de Trp Poco Trp => poco trna.trp => el ribosoma se para en los codones de Trp El ribosoma cubre la región 1; no hay señal de pausa 1-2 Se produce el apareamiento 2-3, que es una señal de antiterminación, ya que evita que se forma la señal de terminación (3-4) Los genes estructurales se transcriben Genética CC Mar 2004/5 D. Posada, Universidad de Vigo 13 Atenuación en presencia de trp Atenuación del operón trp en E. coli: presencia de Trp Suficiente Trp => suficiente trna.trp => el ribosoma llega al codón de terminación El ribosoma cubre la región 2; no hay señal de antiterminación 2-3 Se produce el apareamiento 3-4, que es una señal de terminación Los genes estructurales no se transcriben Genética CC Mar 2004/5 D. Posada, Universidad de Vigo 14

Regulación génica en eucariotas La regulación de la expresión génica puede producirse a cortoplazo, como respuesta a cambios en el ambiente, o a largo plazo, durante la diferenciación y el desarrollo En eucariotas la regulación de la expresión génica es complicada Transcripción Procesamiento del mrna Transporte del mrna Traducción Procesamiento de las proteínas Degradación del mrna Genética CC Mar 2004/5 D. Posada, Universidad de Vigo 15 Control de la transcripción: factores de regulación Regulación positiva y negativa de la transcripción Control positivo y negativo. Los factores de regulación cis están físicamente relacionados con la secuencia de DNA que regulan, mientras que los factores trans no están físicamente anclados a su diana. Genética CC Mar 2004/5 D. Posada, Universidad de Vigo 16

Control de la transcripción: promotores e intensificadores Los genes codificantes de eucariotas contienen elementos promotores e intensificadores Algunos elementos de los promotores, como la caja TATA, son necesarios para especificar dónde comienza la transcripción (promotores basales). Otros elementos de los promotores controlan sí la transcripción se produce o no (promotores proximales) Los intensificadores y represores regulan los niveles de expresión Proteínas regulatorias específicas se unen a estas regiones para activar o reprimir, o para intensificar, la transcripción Genética CC Mar 2004/5 D. Posada, Universidad de Vigo 17 Control de la transcripción: factores de transcripción Los factores de transcripción son proteínas se unen a activadores o a elementos proximales de los promotores para regular la transcripción (de forma trans). En general presentan dos dominios, uno de unión al DNA y otro de unión a proteínas (p.e., dedos de zinc), que es el que influencia la transcripción. Genética CC Mar 2004/5 D. Posada, Universidad de Vigo 18

Cambios cromosómicos y control transcripcional La regiones cromosómicas que se están transcribiendo presentan una estructura de la cromatina más relajada Las histonas pueden a su vez actuar como represores de la transcripción: los nucleosomas alrededor de elementos de un promotor (por ejemplo, caja TATA) impiden que las proteínas reguladores o los factores de transcripción se unan a estos elementos Es posible que las proteínas activadoras se unan a los intensificadores desplazando las histona y rompiendo los nucleosomas: la caja TATA queda expuesta a las factores de transcripción. Genética CC Mar 2004/5 D. Posada, Universidad de Vigo 19 Metilación y control transcripcional Después de la replicación, algunas citosinas son metiladas por la DNA metilasa para dar lugar a 5-metilcitosina (5 m C). En mamíferos, un 3% de las citosinas están metiladas, y el 90% de las 5 m C se encuentran en la secuencia CG. En Drosophila o Tetrahymena casi no hay 5 m C. Parece ser que existe una correlación negativa entre metilación y transcripción en algunos casos, aunque no se sabe si es causa o efecto. Genética CC Mar 2004/5 D. Posada, Universidad de Vigo 20

Regulación hormonal Las hormonas son moléculas efectoras producidas por una célula, y que causan una respuesta fisiológica en otras células Determinados tipos de células presentan determinados tipos de receptores para determinados tipos de hormonas. Mecanismos de acción de hormonas polipeptídicas y esteroideas Genética CC Mar 2004/5 D. Posada, Universidad de Vigo 21 Proteínas inducidas por hormonas esteroides Genética CC Mar 2004/5 D. Posada, Universidad de Vigo 22

Acción de los esteroides Los genes regulados por esteroides específica presentan una secuencia de DNA común a la que se une el complejo esteroide-receptor, denominadas elementos de respuesta a las hormonas esteroides (HREs) Los HREs se encuentran, a menudo en copias múltiples, en regiones intensificadoras. Dependiendo de la presencia de otras proteínas regulatorias, los HREs pueden activar genes diferentes en distintos tipos de células. Modelo de acción de una hormona glucocorticoide en células de mamíferos. Genética CC Mar 2004/5 D. Posada, Universidad de Vigo 23 Procesamiento del RNA: poliadenilación y splicing alternativo Este tipo de control regula la producción de moléculas de RNA maduras a partir de precursores La poliadenilación alternativa puede resultar en la producción de moléculas de pre-mrna diferentes (p.e., calcitonina) Poliadenilación y splicing alternativos del gen humano de la calcitonina Genética CC Mar 2004/5 D. Posada, Universidad de Vigo 24

Determinación del sexo en Drosophila El corte y empalme alternativo desempeña un pape crucial en la determinación del sexo en Drosophila En Drosophila el sexo está determinado por la proporción cromosoma X : autosoma (A) Si X:A " 1, hembra Si X:A # 0.5,s macho Si 1 > X:A > 0.5, intersex Cascada regulatoria de determinación del sexo en Drosophila. Genética CC Mar 2004/5 D. Posada, Universidad de Vigo 25 Control del transporte del mrna Varios experimentos parecen demostrar que quizás la mitad de los transcritos primarios de genes codificantes nunca llegan a abandonar el núcleo Modelo de retención por el spliceosoma El spliceosoma previene el transporte nuclear, retiene el RNA inmaduro en el núcleo hasta que todos los intrones han sido eliminados El mrna maduro con la caperuza 5 (que parece desempeñar un importante papel) interacciona con los poros nucleares y abandona el núcleo. Genética CC Mar 2004/5 D. Posada, Universidad de Vigo 26

Control de la traducción Las moléculas de mrna son sometidas a un control traduccional a través de la selección de mrnas por parte de los ribosomas Los mrna citoplasmáticos podrían asociarse con proteínas que los protegen de la degradación y previenen su traducción. La cola poli(a) podría estar implicada en este tipo de control: los mrna inactivos almacenados suelen tener colas poli(a) más cortas que los mrnas activos. Genética CC Mar 2004/5 D. Posada, Universidad de Vigo 27 Control de la degradación del mrna Estabilidad de mrnas en respuesta la presencia de moléculas efectoras Los trna y rrna son bastante estables. Los mrnas pueden durar de minutos a meses, como respuesta a diversas señales de regulación. Mecanismo importante, aunque desconocido. Genética CC Mar 2004/5 D. Posada, Universidad de Vigo 28

Control de la degradación de proteínas La vida media de las proteínas es un control post-traduccional de la expresión génica. En eucariotas la proteolisis parece requerir el factor proteico ubiquitina, que se une a las proteínas marcándolas para su degradación. La regla del N-terminal predice que la vida media de una proteína depende del aminoácido N-terminal. Genética CC Mar 2004/5 D. Posada, Universidad de Vigo 29 Genética del desarrollo Los eucariotas complejos presentan muchos tipos de células, tejidos y órganos con funciones especializadas, pero con un único genoma. El desarrollo es el proceso de crecimiento regulado que resulta de las interacciones del genoma con el citoplasma y el ambiente celular externo, y que involucra una secuencia programada de eventos fenotípicos a nivel celular, de forma típicamente irreversible. La diferenciación implica la formación de diferentes tipos de células, tejidos y órganos a través del proceso de regulación específica de la expresión génica; las células diferenciadas presentan propiedades estructurales y funcionales características. Los procesos de desarrollo y diferenciación son el resultado de un patrón programado de activación e inactivación génica. Genética CC Mar 2004/5 D. Posada, Universidad de Vigo 30

Actividad genómica en eucariotas Organismo Tamaño estimado (millón de bases) Número estimado de genes Densidad (1 gen cada x bases) Número de cromosomas Homo sapiens 2900 ~30000 100000 46 Rattus norvegicus 2750 ~30000 100000 42 Mus musculus 2500 ~30000 100000 40 Drosophila melanogaster 180 13600 9000 8 Arabidopsis thaliana 125 25500 4000 5 Caenorhabditis elegans 97 19100 5000 6 Saccharomyces cerevisiae 12 6300 2000 16 Escherichia coli 4.7 3200 1400 1 H. influenzae 1.8 1700 1000 1 Un 20-40% del DNA de eucariotas multicelulares es altamente repetitivo; el resto es moderadamente repetitivo o de copia única. Se cree que tan sólo un 1.5% del genoma humano es codificante/ En erizos de mar, en cualquier momento un máximo del 6% de las secuencias únicas se está transcribiendo. La función del DNA que no se transcribe es eucariotas multicelulares podría ser DNA basura acumulado durante la evolución, o podría desempeñar funciones regulatorias todavía por determinar. Genética CC Mar 2004/5 D. Posada, Universidad de Vigo 31 Constancia del genoma durante el desarollo La clonación de la oveja Dolly demostró que las célula somáticas poseen toda la información genética necesaria para producir un desarrollo completo desde el comienzo. El núcleo celular es totipotente Clonación de la oveja Dolly Genética CC Mar 2004/5 D. Posada, Universidad de Vigo 32

Actividad genética diferencial entre tejidos y durante el desarrollo Síntesis de globina durante el desarrollo humano En humanos, se producen diferentes tipos de hemoglobinas a lo largo del desarrollo: hemoglobina embrionaria (2$ + 2% ) en el saco vitelino. hemoglobina fetal (2& + 2') en hígado y al bazo. hemoglobina adulta (2& + 2!; 1/40 son 2& + 2() en la médula espinal. Los genes de las globinas se sitúan en los cromosomas en orden cronológico. Genes humanos de la globina Genética CC Mar 2004/5 D. Posada, Universidad de Vigo 33 Inmunogenes Molécula de inmunoglobulina G (IgG) Cuándo un antígeno las activa, los linfocitos B se producen anticuerpos, que consisten proteínas especializadas denominadas inmunoglobulinas. 2 cadenas pesadas (H) idénticas y 2 cadenas ligeras (L) idénticas. Regiones variables (V H y V L ) y regiones conservadas (C H y C L ). Los mamíferos (IgA, IgD, IgE, IgG e IgM) presentan 10 6-10 8 anticuerpos distintos, originados por recombinación somática. Genética CC Mar 2004/5 D. Posada, Universidad de Vigo 34

Recombinación de la cadena ligera Producción de la cadena lig era * en ratón por recombinación de los segmentos génicos V, J, y C durante el desarrollo. El reordenamiento que se muestra es uno de muchos posibles. En la línea germinal de ratón hay una serie de segmentos génicos que codifican partes de la cadena ligera: 350 L-V * (L es una secuencia líder), 4 segmentos J * de unión y 1 segmento C * Durante el desarrollo de la célula B, por recombinación un segmento particular L-V * se asocia con un segmento particular J * y con el segmento C * Así, se pueden producir 350 ) 4 ) 1 = 1400 cadenas ligeras * diferentes. Genética CC Mar 2004/5 D. Posada, Universidad de Vigo 35 Recombinación de la cadena pesada Producción de g enes de la cadena pesada en ratón por recombinación de los segmentos g énicos V, D, J, y C durante el desarrollo para dar lugar a IgG. Dependiendo del segmento C H usado, el anticuerpo resultante es Ig M, Ig D, Ig E o Ig A. El reordenamiento que se muestra es uno de muchos posibles. En la línea germinal de ratón hay una serie de segmentos génicos que codifican partes de la cadena pesada: 500 L-V H, 12 segmentos D, 4 segmentos J H de unión y 5 segmentos C H para las IgM, IgD, IgG, IgE e IgA. Durante el desarrollo de la célula B, por recombinación un segmento particular L-V H se asocia con un segmento particular D, con otro J H y con un segmento C H que especifica el tipo de Ig. De esta forma, se pueden producir 500 ) 12 ) 4 = 24000 cadenas pesadas diferentes, y por lo tanto 24000 ) 1400 (cadenas ligeras *) = 33600000 moléculas de anticuerpo. Genética CC Mar 2004/5 D. Posada, Universidad de Vigo 36

Genética del desarrollo en Drosophila Gradientes en los ejes posterioranterior y dorsal-ventral en el huevo. Subsiguiente determinación de regiones en el embrión que se corresponden directamente con segmentos del cuerpo del adulto. En Drosophila hay tres clases principales de genes del desarrollo genes de efectos maternos: especifican los gradientes en el huevo genes de segmentación: determinan los segmentos del embrión y del adulto genes homeóticos: especifican la identidad de los segmentos. Genética CC Mar 2004/5 D. Posada, Universidad de Vigo 37 Genes de efectos maternos y de segmentación Los genes de efectos maternos bicoid, nanos y torso regulan la formación de las estructuras anterior, posterior y terminal, respectivamente. La proteína BICOID se acumula en la parte anterior del huevo y la NANOS en la posterior. La proteína TORSO se distribuye homogéneamente, pero sólo será activada en las partes terminales. Los genes de segmentación se dividen en tres clases: Los genes gap dividen embrión en grandes regiones. A continuación los genes de la regla de pares dividen el embrión en un número de regiones, cada una de las cuales contiene un par de parasegmentos. Finalmente los genes de polaridad del segmento se expresan para determinar las regiones que se corresponderán con los segmentos en el embrión y en el adulto. Genética CC Mar 2004/5 D. Posada, Universidad de Vigo 38

Genes homeóticos (Hox) Complejo bithorax Determinan la identidad de cada segmento con respecto la parte corporal a la que darán lugar en el adulto. Los mutantes homeóticos provocan que un segmento se desarrolle en una parte corporal diferente de la normalmente especificada. Comparten secuencias similares de unos 180 pb que se denominan homebox, que dan lugar a homeodominios proteicos capaces de unirse al DNA. Estas secuencias suelen estar muy conservadas también han sido observadas en otros organismos. Los genes homeóticos aparecen en todos los fila animales, a excepción de esponjas y cnidarios. Genética CC Mar 2004/5 D. Posada, Universidad de Vigo 39 Mutaciones homeóticas Mutaciones antennapedia Mutaciones bithorax El complejo Antennapedia agrupa varios genes que determinan la identidad anterior de la mosca. A menudo las mutaciones en estos genes son letales. El complejo Bithorax agrupa varios genes que determinan la identidad posterior de la mosca. A menudo las mutaciones en estos genes son letales. Genética CC Mar 2004/5 D. Posada, Universidad de Vigo 40