Estudio de capacitores Fabián Shalóm Tomás Corti Ramiro Olivera

Documentos relacionados
Trabajo Práctico N o 1

M A Y O A C T U A L I Z A D A

PRACTICA 4: CAPACITORES

UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO

UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO

UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO

Corriente y Circuitos Eléctricos

GUÍA DE EJERCICIOS-6 ELECTRICIDAD-1 CONEXIÓN SERIE PARALELO DE CONDENSADORES

Lentes Delgadas Tomás Corti Ramiro Olivera Fabián Shalóm

CORRIENTE CONTINUA I : RESISTENCIA INTERNA DE UNA FUENTE

LABORATORIO DE ELECTROMAGNETISMO SUPERFICIES EQUIPOTENCIALES

SILABO I. DATOS GENERALES

Todo lo que sube baja... (... y todo lo que se carga se descarga!)

Ley de Ohm y dependencia de la resistencia con las dimensiones del conductor

Carga y descarga de capacitores

UNIVERSIDAD POLITÉCNICA DE EL SALVADOR FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA DE INGENIERÍA ELÉCTRICA LABORATORIO #4

Practica 1 BJT y FET Amplificador de 2 Etapas: Respuesta en Baja y Alta Frecuencia

Corriente continua : Condensadores y circuitos RC

DEPARTAMENTO DE FÍSICA DE LA UNIVERSIDAD DE SONORA ORGANIZACIÓN DE LA MATERIA DE FÍSICA III

FS-200 Física General II UNAH. Universidad Nacional Autónoma de Honduras. Facultad de Ciencias Escuela de Física.

Capítulo xx. Circuito RC. Objetivos. xx.1 Circuito RC. q C

CÁLCULO Y MEDICION DE CAPACITANCIA

QUÉ ES LA TEMPERATURA?

5692 Electrotecnia para Ingeniería I. Horas trabajo adicional estudiante. Totales teoría 16 práctica IEA IM IMA IME IMT CB CB CB

Resistencia eléctrica y resistividad: Experimentos con líneas de tinta de impresora y un resistor de carbón

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS I TÉRMINO FÍSICA C Segunda evaluación SOLUCIÓN

Ejercicios Propuestos Transporte eléctrico.

Primer examen parcial del curso Física II, M

UNIVERSIDAD DE COSTA RICA FACULTAD DE CIENCIAS ESCUELA DE FISICA PROGRAMA JUSTIFICACION DEL CURSO

Práctica de Óptica Geométrica

UNIVERSIDAD DEL CARIBE UNICARIBE. Escuela de Educación. Programa de Asignatura

Técnicas Avanzadas de Control Memoria de ejercicios

Sistemas y Circuitos Eléctricos 1 GSE Juan Carlos García Cazcarra

Ejercicios de ELECTRÓNICA ANALÓGICA

Física III. Carrera: Ingeniería Naval NAT Participantes. Comité de Consolidación de la carrera de Ingeniería Mecánica.

Física III. Carrera: MCT Participantes Representantes de las academias de Ingeniería Mecánica de. Academia de Ingeniería Mecánica.

Experimento 8 EL CIRCUITO RC. Objetivos. Teoría. Figura 1 Un capacitor de placas planas paralelas

Laboratorio de Electricidad PRACTICA - 3 LEY DE OHM. PROPIEDADES DE LOS CIRCUITOS DE RESISTENCIAS SERIE Y PARALELO

Electromagnetismo con laboratorio

De-embedding aplicado a la medición de parámetros S. Lab. Metrología RF & Microondas, INTI

Esta guía es una herramienta que usted debe usar para lograr los siguientes objetivos:

LABORATORIO #6 DEMOSTRACIÓN DEL TOREMA DE BERNOULLI LUIS CARLOS DE LA CRUZ TORRES GILDARDO DIAZ CARLOS ROJAS PRESENTADO EN LA CÁTEDRA:

TRABAJO PRÁCTICO Nº 2 ANÁLISIS DE CIRCUITOS DE CORRIENTE CONTINUA

CARGA Y DESCARGA DE UN CAPACITOR

PRÁCTICAS DE ELECTRICIDAD Y ELECTRÓNICA CON CROCODILE. Lucía Defez Sánchez Profesora de la asignatura tecnología en la ESO

Módulo 1: Electrostática Condensadores. Capacidad.

Trabajo Práctico N o 4 Mediciones con Corriente Continua. Antonio, Pablo Oscar Frers, Wenceslao

Figura 1. Tipos de capacitores 1

Funcionamiento del circuito integrado LM 317

TÉCNICO SUPERIOR UNIVERSITARIO EN MANTENIMIENTO ÁREA INDUSTRIAL EN COMPETENCIAS PROFESIONALES ASIGNATURA DE SISTEMAS ELÉCTRICOS

ANEXO 1. CALIBRADO DE LOS SENSORES.

Transistor BJT; Respuesta en Baja y Alta Frecuencia

MICRODISEÑO CURRICULAR Nombre del Programa Académico

Marzo 2012

Práctica No 0: Parte C El Osciloscopio y el Generador de Señales

Laboratorio de Propiedades Termofísicas. Centro Nacional de Metrología

Efecto del dieléctrico en un capacitor

Ley de Ohm: Determinación de la resistencia eléctrica de un resistor óhmico

PROGRAMA INSTRUCCIONAL FÍSICA II

Practicas de Fundamentos de Electrotecnia ITI. Curso 2005/2006

TECNOLOGÍA - 4º ESO PRÁCTICAS DE ELECTRÓNICA

PRÁCTICA 3 LEYES DE KIRCHHOFF E DC. DIVISORES DE VOLTAJE Y CORRIE TE E DC

CAPITULO XII PUENTES DE CORRIENTE ALTERNA

Leonel Lira Cortes Laboratorio de Propiedades Termofísicas. Centro Nacional de Metrología

Electricidad Inducción electromagnética Inducción causada por un campo magnético variable

Temas selectos de Física

PROGRAMA DE TECNOLOGÍA ELECTRICA - UTP LABORATORIO DE CIRCUITOS - PRÁCTICA 10: MEDICION DE POTENCIA

Campo Magnético en un alambre recto.

Laboratorio Amplificador Diferencial Discreto

MEDICIONES ELECTRICAS I

CAPITULO X EL POTENCIOMETRO

LABORATORIO DE MAQUINAS ELECTRICAS. Guía de Practica N 02: MEDICION DE TENSION Y CORRIENTES EN TRANSFORMADORES MONOFASICOS

Electrónica 2. Práctico 3 Alta Frecuencia

CAPACITANCIA Y ARREGLOS DE CAPACITORES. Ejercicios de Capacitancia

CAPÍTULO III EL ACERO ESTRUCTURAL EN EL HORMIGON ARMADO


PRÁCTICA Nº3 REFLEXIÓN Y REFRACCIÓN

EJERCICIOS DE POTENCIAL ELECTRICO

Grado de Óptica y Optometría Asignatura: FÍSICA Curso: Práctica nº 5. MEDIDAS DE RESISTENCIAS, VOLTAJES Y CORRIENTES: MULTÍMETRO

Leyes de Kirchoff El puente de Wheatstone

Circuitería Básica, Leyes de Kirchhoff y Equivalente Thévenin

Péndulo en Plano Inclinado

intensidad de carga. c) v 1 = 10 V, v 2 = 5 V. d) v 1 = 5 V, v 2 = 5 V.

Módulo 1. Sesión 1: Circuitos Eléctricos

LABORATORIO No. 3 MODELAMIENTO Y ANALISIS DINAMICO DE SISTEMAS ELECTRICOS

Examen Final Fisi 3162/3172 Nombre: lunes, 18 de mayo de 2009

Práctica 5: Motores de Inducción

CONTENIDO PROGRAMÁTICO

porque la CALIDAD es nuestro compromiso

Teoría de errores -Hitogramas

Momento de Torsión Magnética

INFORME INTERCOMPARACIÓN PM10

Laboratorio de Electricidad PRACTICA - 2 USO DEL MULTÍMETRO ELECTRÓNICO COMO ÓHMETRO Y COMO AMPERÍMETRO, PARA MEDIR LA CORRIENTE CONTINUA

Estudiar y comparar las características de los instrumentos para la medición de flujo instalados en el laboratorio.

ESCUELA: UNIVERSIDAD DEL ISTMO

MANEJO DE CIRCUITOS ELÉCTRICOS. 1ª unidad. Segundo semestre.

APÉNDICE I. Calibración de la señal cromatográfica como función de la concentración: Sistema Ternario

CARACTERISTICAS DEL JFET.

PRACTICA LEY DE OHM CIRCUITOS EN SERIE, PARALELO Y MIXTO

FISICA DE LOS PROCESOS BIOLOGICOS

Transcripción:

Trabajo Práctico N o 4 Estudio de capacitores Fabián Shalóm (fabianshalom@hotmail.com) Tomás Corti (tomascorti@fibertel.com.ar) Ramiro Olivera (ramaolivera@hotmail.com) Mayo de 2004 Cátedra de Física II - Escuela de Ciencia y Tecnología Universidad Nacional de San Martín Objetivo El objetivo de este trabajo es estudiar el comportamiento de los capacitores en circuitos RC de cargas y descargas, ademas el estudio físico de un capacitor de placas paralelas. Materiales y Métodos Baterias (ɛ = 5V ) Resistencias Capacitor de placas paralelas de 20cm x 20cm Sistema de adquisición de datos MPLI conectado con una PC Pulsador Placas de vidrio de diversos espesores Placas de acrílico de diversos espesores Tester Espaciadores plásticos aislantes Calibre Desarrollo Primera Parte En la primer parte del trabajo experimental se procedió al armado del circuito RC descripto en la Figura 1. A partir del circuito realizado se aplico tensión continua y se procedió a medir la tensión en los bornes del capacitor a través del sistema MPLI. Según Halliday et. al (1994)[1], mientras un capacitor se está cargando, la tensión varía en función del tiempo según la ecuación 1. V c = V bat (1 e t/τ ) (1) 1

Figura 1: Esquema del circuito utilizado para la primer parte del trabajo de laboratorio. Figura 2: Esquema del segundo circuito utilizado para la primer parte del trabajo de laboratorio. donde τ es el producto entre la resistencia y la capacitancia del circuito. Luego se procedió al armado del nuevo circuito experimental, descripto en la Figura 2, en el cual se procedió a medir τ a partir de la descarga del capacitor. En la descarga de un capacitor, la tensión varía según la ecuación 2. V c = V bat (e t/τ ) (2) Se procedió a calcular el valor de τ a partir de los dos circuitos experimentales y a comparar las magnitudes alcanzadas. Segunda Parte En la segunda parte del trabajo experiemental primero se procedió a medir el valor de la constante ɛ 0. Luego con este valor se procedió a calcular la constante dieléctrica para diversos materiales como vidrio y acrílico. Se colocó un capacitor de placas paralelas de area A = 20cm 20cm, cuya capacitancia se midió utilizando un tester. Entre las placas del capacitor se colocaron diversos materiales (aire, vidrio y acrílico) y a su vez diversos espesores de los mismos. En el capacitor con aire entre la placas se procedió a graficar la capacitancia en función del cociente entre el área del capacitor y la distancia entre placas, a fin de que la pendiente de la recta sea igual a la constante ɛ 0. Luego en el caso del vidrio y del acrílico se procedió a graficar la capacitancia en función del cociente entre el producto entre la constante ɛ 0 y el área y la distancia entre placas (ɛ 0 A/d). 2

Figura 3: Esquema del dispositivo utilizado a fin de calcular la capacitancia entre las placas del capacitor de placas paralelas. Resultados Primera Parte Figura 4: Relación entre el potencial medido a partir del MPLI en función del tiempo durante la carga del capacitor. A partir de la carga del capacitor, se procedió a calcular el valor de τ a partir de la ecuación 1. La resistencia utilizada tenía un R = 470 ± 25KΩ y la capacitancia medida a partir del capacitor utilizado fue de C = 0,41µF. Por lo tanto el valor nominal de τ es igual al producto entre la resistencia y la capacitancia. τ = RC (3) = 470KΩ0,41µF (4) = 0,193s (5) 3

Figura 5: Relación entre el potencial medido a partir del MPLI en función del tiempo durante la descarga del capacitor. Aire Vidrio Acrílico Dist.[mm] Capac.[pF] Dist.[mm] Capac.[pF] Dist.[mm] Capac.[pF] 1.90 186 3.75 402 1.90 383 2.35 150 2.77 490 2.35 329 2.90 127 6.52 290 2.90 291 3.70 105 5.54 320 3.70 249 4.50 87 9.29 224 4.50 216 7.50 260 Tabla 1: Resultados obtenidos para los diferentes dieléctricos utilizados. Según las mediciones realizadas a aparitr del sistema MPLI, la linea de tendencia que se ajusta a la carga del capacitor es de la forma: V c = 5V (e t/4,45 ) (Ver Figura 4). Considerando que k = 4,45 = 1/RC entonces la magnitud de RC alcanzada es de RC = 0,220s. A partir de la descarga del capacitor se ajustó una linea de tendencia cuya relación es V c = 5V (1 e t/4,40s ) (Ver Figura 5). Por lo tanto el valor de la constante τ, la cual equivale al producto entre la resistencia la capacitancia es igual a τ = 0,227s. Segunda Parte A partir de las mediciones realizadas con el capacitor cuyo dieléctrico era de aire (k e = 1,00059) se procedió a confeccionar la Figura 6. Para la realización de la misma se consideró que la constante dieléctrica del aire es igual a cero (k e(aire) 0). El valor de la constante ɛ 0 alcanzado fue de ɛ 0 = 9,1 ± 0,2pF/mm. Los resultados obtenidos con los diferentes dieléctricos se presentan en la Tabla 1. A partir de los datos obtenidos con las mediciones utilizando un capacitor con un dieléctrico de vidrio entre sus placas se confeccionó la Figura 7, utilizando los datos que se presentan en la tabla 1. En la mencionada Figura se representa la relación que existe entre la capacitancia medida a partir del tester y el cociente del producto de la constante ɛ 0 y el área sobre la distancia entre las palcas. A partir de este 4

220 Capacitor con dieléctrico de aire 200 Capacitancia (pf) 180 160 140 120 100 80 60 Y = B * X B=9,1±0,2 40 20 0 0 2 4 6 8 10 12 14 16 18 20 22 24 26 Area/distancia (mm) Figura 6: Relación entre la capacitancia y el cociente entre el area y la distancia. gráfico, la pendiente es igual a la constante dieléctrica (k e ) del material entre las placas, en este caso el vidrio. Por lo tanto el k e del vidrio es igual a k e = 4,4 ± 0,3. La última actividad de laboratorio realizada fue igual que la que anterior, la medición de la constante dieléctrica del vidrio, pero en este caso se utilizó acrílico. Se realizaron las mediciones correspondientes, las cuales se presentan en la Tabla 1 y a partir de las mismas se confeccionó la Figura 8. A partir de los datos de la mencionada Figura, se puede extraer el valor de la constante dieléctrica del acrílico el cual es igual a k e = 2,2 ± 0,1. 5

Capacitancia [pf] 650 600 550 500 450 400 350 300 250 200 150 100 50 Capacitor con dieléctrico de vidrio Y = k * X k=4.4±0,3 0 0 20 40 60 80 100 120 140 160 E 0 A/d [pf] Figura 7: Relación entre la capacitancia y el cociente entre el producto de ɛ o y el area y la distancia utilizando vidrio como dieléctrico. Conclusiones Las magnitudes medidas para la constante τ del circuito se condicen con el valor nominal calculado a partir del producto entre la resistencia y la capacitancia nominales. Los valores alcanzados para τ fueron de τ = 0,220s a partir de la carga del capacitor y de τ = 0,227s a partir de la descarga del capacitor, mientras que el valor nominal es de τ = 0,193s. A partir de la utilización de un capacitor con aire entre sus placas se álcanzó un valor de ɛ 0 = 9,91 ± 0,2pF/mm, el cual se corresponde con el valor nominal cuya magnitud es de ɛ 0 = 8,85pF/mm. El valor de la constante dieléctrica calculada para el vidrio fue de k e = 4,4 ± 0,3. Esta magnitud se corresponde con el valor nominal, el cual según FIS (2003)[2] es igual a k e = 4,5. Los cálculos realizados a partir de las mediciones arrojaron un valor para la constante dieléctrica del acrílico de k e = 2,2 ± 0,1. Referencias [1] Halliday, Resnik y Krane (1994) Física para estudiantes de Ciencia y Tecnología - 4 ta Ed. - Vol. 1 - México. [2] FIS (2003) Electricidad y Magnetismo - http : //falicov.fis.puc.cl/ rramirez/e m /em6.pdf 6

400 Capacitor con dieléctrico de vidrio 350 Capacitancia (pf) 300 250 200 150 100 Y = k * X k=2.2±0,1 50 0 0 20 40 60 80 100 120 140 160 180 200 E 0 A/d [pf] Figura 8: Relación entre la capacitancia y el cociente entre el producto de ɛ o y el area y la distancia medidos utilizando acrílico como dieléctrico. 7