Ceros en extensiones.

Documentos relacionados
Los isomorfismos básicos de la teoría de cuerpos algebraicos.

Extensiones normales.

8.1. Extensiones algebraicas. Grado.

La estructura de un cuerpo finito.

Extensiones finitas.

Extensiones algebraicas. Cuerpos de descomposición.

4.1 Anillo de polinomios con coeficientes en un cuerpo

Álgebra básica Soluciones del examen de segunda convocatoria Curso 2016/ de septiembre de 2017

Capítulo 3: El anillo de los números enteros

Capítulo 4: Polinomios

Teoría de Anillos y Campos

Anillos finitos locales

Cuerpos Finitos. XXVII Escuela Venezolana de Matemáticas EMALCA. Edgar Martínez-Moro Sept. 2014

Tema 8.- Anillos y cuerpos

Capítulo 3: El anillo de los números enteros

Tarea 1 de Álgebra Conmutativa (Lista larga)

(n, a)(m, b) = (nm, ma + nb) (a, b) + (c, d) = (a + c, b + d) y (a, b)(c, d) = (ac, bd)

1 Introducción al Álgebra conmutativa

NOTAS DE TRABAJO, 16 EXTENSIONES DE CUERPOS

Estructuras algebraicas Grado en Matemáticas. Curso 2013/2014. Apuntes de teoría. Departamento de Álgebra Universidad de Sevilla

AMPLIACIÓN DE MATEMÁTICAS

Anillos. 3.1 Anillos. a b c d e a a a a a a b a b c d e c a c e b d d a d b e c e a e d c b

0. Enteros. 10. Prueba que el cuadrado de todo número impar deja resto 1 al dividirlo por 8. es un número entero.

6.1. Anillos de polinomios.

Estructuras algebraicas Grado en Matemáticas. Curso 2013/2014. Apuntes de teoría. Departamento de Álgebra Universidad de Sevilla

Homomorfismos de cuerpos. Extensiones normales. Teorema fundamental de la teoría de Galois.

Capítulo 4: Polinomios

Anillo de polinomios con coeficientes en un cuerpo

Ejercicio 70 : En este ejercicio vamos a caracterizar completamente la expresión

Estructuras algebraicas

GUÍA DE EJERCICIOS. Área Matemática - Polinomios

Estructuras Algebraicas

Ampliación Matemática Discreta. Justo Peralta López

Teorema de Wedderburn-Artin. Escuela Precimpa Coclé. Panamá. Dolores Martín Barquero

Teoría de anillos. Dominios, cuerpos y cuerpos de fracciones.

ALGEBRA III Práctica 1

Anillos. a + (b + c) = (a + b) + c. 3) Existe un elemento 0 en R, el cual llamaremos cero, tal que. a + 0 = 0 + a = a para todo a en R.

Anexo: El anillo de polinomios K[x].

2.2. Extensiones de cuerpos

ALGEBRA III Práctica 1

Teoría de Galois y ecuaciones algebraicas

AMPLIACIÓN DE MATEMÁTICAS

Campos finitos y teoría de Galois

Capítulo 4: Polinomios

Teoría de anillos. Dominios, cuerpos y cuerpos de fracciones. Característica de un cuerpo.

Ejercicios de Álgebra Básica. Curso 2016/17

Capítulo 4: Polinomios

Anillos de Galois. XXVII Escuela Venezolana de Matemáticas EMALCA. Edgar Martínez-Moro Sept. 2014

AMPLIACIÓN DE MATEMÁTICAS

Estructuras Algebraicas

LEYES DE COMPOSICIÓN INTERNA Y ELEMENTOS DISTINGUIDOS

El cuerpo de los números complejos como cuerpo de ruptura

Tema 1: Fundamentos.

Álgebra II Primer Cuatrimestre 2007

Tema 1.- Nociones preliminares: grupos, anillos, cuerpos. Divisibilidad

Álgebra Básica 11/01/2017 Grado en Matemáticas. Grupo C. Curso 2016/2017

TEMA 4. Anillos de polinomios.

Semana 14 [1/19] Polinomios. 8 de junio de Polinomios

Números algebraicos. Cuerpos de números. Grado.

Álgebra. Curso

Anillos conmutativos. Capítulo Ideales primos y maximales

58 7. ESPACIOS COCIENTE

Estructuras algebraicas. Departamento de Álgebra. Apuntes de teoría

una aplicación biyectiva h : A A.

9 Grupos abelianos libres

Tema 6.- Nociones preliminares: anillos, cuerpos. Anillos de polinomios

Ejercicios de Estructuras Algebraicas 1

Ejercicios de Algebra III. Curso 00-01

IRREDUCIBILIDAD EN K[X 1,..., X n ]

ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Polinomios

Con esta definición de grupo, es directo que el neutro es único, al igual que el inverso de. , donde es conmutativo, se denomina Abeliano.

Introducción a la teoría algebraica de

Problemas resueltos de Teoría de Galois

Introducción a la Teoría de Códigos

Conjuntos, relaciones y funciones Susana Puddu

Capítulo 1. Teoría de anillos Definición de anillo

EL TEOREMA DE SEIFERT-VAN KAMPEN. 1. Preliminares sobre grupos

Un elemento de un monoide se dice que es inversible si tiene elemento inverso.

Semana04[1/17] Funciones. 21 de marzo de Funciones

Tema 2. Grupos. 3. El conjunto de matrices de orden 2 con coeficientes enteros (o reales) con la suma es un grupo conmutativo.

Trabajo Final Estructuras Algebraicas Módulos Proyectivos e Inyectivos

El teorema de Lüroth

Tema 3: Localización. 3.1 Anillos locales. Definición. Ejemplos. Proposición. Demostración. Un anillo A es local si tiene un único ideal maximal.

Álgebra II Primer Cuatrimestre 2007

1. Conjuntos y funciones

Álgebra II Primer Cuatrimestre 2016

Aplicaciones Lineales (Curso )

Algebra III (Grado en Matemáticas)

ESPACIOS VECTORIALES. VARIEDADES LINEALES, APLICACIONES ENTRE ESPACIOS VECTORIALES. TEOREMAS DE ISOMORFIA.

POLINOMIOS. (Versión Preliminar) Un polinomio en la variable x es una expresión de la forma. p(x) = a n x n + a n 1 x n

Aplicaciones Lineales (Curso )

Anillo de Polinomios.

Aplicaciones lineales (Curso )

Tutoría Bailable by Robert & Yuyin Preparación C6 DIM 23 de Junio de 2017

ALGEBRA y ALGEBRA LINEAL. Primer Semestre CAPITULO 6. POLINOMIOS DE UNA VARIABLE.

Tema 1: Conjuntos. Miguel Ángel Olalla Acosta Departamento de Álgebra Universidad de Sevilla. Septiembre de 2017

Tema 1: Conjuntos. Miguel Ángel Olalla Acosta Departamento de Álgebra Universidad de Sevilla. Septiembre de 2018

14/02/2017. TEMA 3: EL CUERPO DE LOS NUMEROS REALES Esp. Prof. Liliana N. Caputo

Transcripción:

1. EXTENSIONES DE CUERPOS. Varios son los objetivos de este tema. El primero de ellos, resultado debido a Kronecker, es probar que todo polinomio con coeficientes en un cuerpo tiene una raíz en un cuerpo que extiende al de partida. El siguiente paso es demostrar la existencia de un polinomio irreducible sobre el cuerpo base (con coeficientes en él) para cada raíz. Por último, describimos las extensiones simples. Ceros en extensiones. En esta primera sección probaremos que todo polinomio no constante tiene un cero. Antes, introduzcamos alguna terminología. 1.1. Definiciones. Un cuerpo E se dice que es una extensión de cuerpos de un cuerpo F si F E, y F es un subanillo de E. F es llamado subcuerpo de E. También se dice simplemente que E es una extensión de F. Este hecho, el ser E una subestructura de F, lo denotaremos por: E F 1.2. Ejemplos. (1) R es una extensión de Q, y C es una extensión de Q y de R. (2) Aunque Q, R y C sean subanillos de H, los cuaterniones de Hamilton, H no es una extensión de tales cuerpos porque no es un cuerpo (no es un anillo conmutativo). Sin embargo, algunos autores no consideran la conmutatividad del producto entre los axiomas de cuerpo; as, cuando el anillo subyacente es conmutativo, dichos autores hablan de cuerpo conmutativo. (3) Sea F un cuerpo arbitrario, y x, y indeterminadas. Consideremos los cuerpos de fracciones de los anillos de polinomios F [x], F [y] y F [x, y] (que son dominios de integridad), denotados por F (x), F (y) y F (x, y), respectivamente. Se tiene entonces que F F [x] F [x, y] y que F F [y] F [x, y]. 1.3. Diagramas. Con objeto de tener una visión de las relaciones existentes entre ciertos cuerpos (cuando las haya), utilizaremos diagrames de retículos, siendo cada cuerpo extensión de los inferiores. Así, los ejemplos (1) y (3) de (1.2) serían representados como sigue: C R Q F (x, y) /\ F (x) F (y) \/ F (x, y) 1

2 Álgebra Clásica. Curso 03/04 1.4. Teorema. Sea F un cuerpo, y sea f(x) un polinomio no constante de F [x]. Entonces existe un cuerpo E, extensión de F, donde f tiene un cero, esto es, existe α E tal que f(α) = 0. Sabemos que f(x) se descompone en F [x] en factores irreducibles sobre F. Sea p(x) uno de estos factores. Basta probar que existe una extensión E de F donde p(x) tenga un cero. Como p(x) es irreducible, el ideal < p(x) > es maximal en F [x], y por tanto E := F (x)/ < p(x) > es un cuerpo. La siguiente aplicación: ϕ : F F [x]/ < p(x) > ϕ(a) a es un monomorfismo de anillos. Si identificamos F con su imagen (ϕ(e) = {a a F }) resulta que F puede verse como subcuerpo de E. Falta probar que E contiene un cero de F. Llamemos α = x E y consideremos el homomorfismo evaluación Φ α : F [x] E. Si p(x) = a 0 + a 1 x +... + a n x n, con a 0, a 1,..., a n F. Entonces se tiene: Φ α (p(x)) = a 0 + a 1 x +... a n x n = a 0 + a 1 x +... + a n x n = p(x) = 0, esto es, α es un cero de p(x) en E. 1.5. Observación. El cuerpo E construido en (1.4) se denota por F (α) y sus elementos son de la forma a 0 + a 1 α +... + a n α n, donde n + 1 = deg(p(x)). Esto lo probaremos al final del tema. 1.6. Ejemplos. (1) Podemos tomar en (1.4) F = R y f(x) = x 2 + 1. El cuerpo R[x]/ < x 2 + 1 > es isomorfo a C. (2) Consideremos en (1.4) F = Q y sea f(x) = x 4 5x 2 + 6. En este caso, como f(x) = (x 2 2)(x 2 3), podemos encontrar dos cuerpos extensión de F : Q[x]/< x 2 2 > y Q[x]/ < x 2 3 >. 1.7. Definiciones. Elementos algebraicos y trascendentales. Sean E y F cuerpos, F E. Un elemento α E se dice que es algebraico sobre F si es cero de algún polinomio no nulo de F [x]. En caso contrario se dice que el elemento α es trascendental sobre F. (Trascendental es la traducción literal

Álgebra Clásica. Curso 03/04 3 del inglés transcendental ; la palabra trascendente no aparece en el diccionario de la RAE.) 1.8. Ejemplos. (1) Q C y 2 e i son algebraicos sobre Q ya que son ceros, respectivamente, de: x 2 2 y x 2 + 1. (2) R C e i es algebraico sobre R (por la misma razón que lo es sobre Q). (3) Aunque es bien conocido que π y e son trascendentales sobre Q, no es fácil probarlo. (4) No es difícil probar que 1 + 3 es algebraico sobre Q: Llamemos α = 1 + 3. Entonces α 2 = 1 + 3 y por tanto (α 2 1) 2 3 = 0, esto es, α es raíz de x 4 2x 2 + 1 Q[x]. 1.9. Observación. De la misma manera que no hablamos simplemente de polinomio irreducible sino de polinomio irreducible sobre un cuerpo, no diremos elemento algebraico simplemente, sino elemento algebraico sobre cierto cuerpo. Por ejemplo, si consideramos e C, e es algebraico sobre R, aunque sobre Q es trascendental. Las nociones de elemento algebraico y de elemento trascendental tiene conexión con otras nociones de teoría de números. 1.10. Definiciones. Llamaremos número algebraico a todo elemento de C que sea algebraico sobre Q, y número trascendental a todo elemento de C tracendental sobre Q. Existe una elegante y extensa teoría de números algebraicos. El siguiente teorema da una caracterización muy útil de los elementos algebraicos y trascendentales sobre un cuerpo E de una extensión F. También sirve para ilustrar la importancia del homomorfismo evaluación. 1.11. Teorema. Sean E y F cuerpos, con F E, y α E, y consideremos el homomorfismo evaluación Φ α : F [x] E. Entonces α es trascendental sobre E si y sólo si Φ α es un monomorfismo. Sabemos que α es trascendental sobre F si y sólo si f(α) 0 para todo polinomio no constante f(x) F [x], y esto es cierto, por definición, si y sólo si Φ α (f(x)) 0 para todo polinomio no constante f(x) F [x], equivalentemente, Ker(Φ α ) = 0.

4 Álgebra Clásica. Curso 03/04 1.12. Ejemplo. Consideremos el homomorfismo evaluación Φ i : R[x] C. Observemos que Φ i (x 4 ) = 1 = Φ i (x 8 ), así que Φ i no es inyectivo y, por (1.11), i no es trascendental sobre R, esto es, i es algebraico sobre R. El polinomio irreducible para α sobre F. Sabemos que si un elemento α de un cuerpo E es algebraico sobre un subcuerpo F de E, existe un polinomio no constante f(x) F [x] tal que f(α) = 0. Ahora bien, también α es un cero de cualquier polinomio de la forma f(x)g(x), con g(x) F [x]. Por ejemplo, 2 C es raíz de los polinomios x 2 + 2, x 3 (x 2 + 2),... R[x]. El siguiente teorema prueba que de entre todos los polinomios de los que α es raíz, existe uno que es el que tiene menor grado y es único salvo producto por elementos de F. 1.13. Teorema. Sea E una extensión de un cuerpo F, y sea α E un elemento algebraico sobre F. Entonces existe un polinomio irreducible p(x) F [x] tal que p(α) = 0. Este polinomio tiene grado 1 y es minimal entre todos aquéllos de los que α es raíz. Además, es único salvo una constante de F, y si α es raíz de g(x) F [x], siendo el grado de g(x) 1, se tiene que f(x) divide a g(x). Consideremos el homomorfismo evaluación Φ α : F [x] E. Como Ker(Φ α ) es un ideal de F [x], que es un dominio de ideales principales, existe p(x) F [x], de grado 1, tal que < p(x) >= Ker(Φ α ). De aquí se deduce que si f(x) F [x] es de grado 1 y tiene a α como raíz, p(x) f(x) (ya que f(x) Ker(Φ α ) =< p(x) >), y si deg(p(x)) = deg(f(x)), entonces f(x) = ap(x) para cierto a F. Finalmente, probemos que p(x) es irreducible. Supongamos p(x) = f(x)g(x), con f(x), g(x) F [x], cada uno de ellos de grado estrictamente menor que el grado de p(x). Entonces 0 = Φ α (p(x)) = Φ α (f(x)g(x)) = Φ α (f(x))φ α (g(x)) = f(α)g(α) F. Como F no tiene divisores de cero, f(α) = 0 o g(α) = 0, lo que significa que o bien p(x) f(x) o bien p(x) g(x), lo que no es posible teniendo en cuenta los grados de los tres polinomios. 1.14. Definición. Un polinomio diremos que es mónico si el coeficiente del término de mayor grado es 1. 1.15. Definiciones.

Álgebra Clásica. Curso 03/04 5 Observemos que el polinomio p(x) de (1.13) puede ser tomado mónico. En este caso es único (no hay ningún otro mónico en estas condiciones); se denomina polinomio irreducible para α sobre F, y se representa por irr(α, F ). El grado de irr(α, F ) es el grado de α sobre F, y se denota por deg(α, F ). 1.16. Observación. El polinomio irreducible depende del cuerpo sobre el que se considere. Por ejemplo, irr( 5, Q) = x 2 5, mientras que irr( 5, R) = x 5, así que siempre hablaremos del polinomio irreducible sobre. Extensiones simples. Sea E una extensión de un cuerpo F, y sea α E. Sabemos que α puede ser algebraico o trascendental sobre F. En el primer caso, y tal y como se prueba en (1.13), si consideramos Φ α : F [x] E, 0 Ker(Φ α ) =< irr(α, F ) > y F [x]/ < irr(α, F ) > es un cuerpo que extiende a F, isomorfo a Φ α (F [x]), subcuerpo de E, por el Primer Teorema de Isomorfía. Este subcuerpo es, ciertamente, el menor subcuerpo de E que contiene a F y a α, y será denotado por F (α), como ya apuntamos en (1.5). En el caso en que α sea trascendental sobre F, Φ α : F [x] E es inyectiva y, por tanto, Φ α (F [x]) es isomorfo, por el Primer Teorema de Isomorfía, a Φ α (F [x]), que es un subanillo de E. Como F [x] no es cuerpo, aunque sí dominio de integridad, F (α) := Φ α (F [x]) tiene esta misma condición. Todo dominio de integridad tiene un cuerpo de fracciones, que es el menor cuerpo que contiene al dominio de integridad. En este caso llamaremos F (α) al cuerpo de fracciones de F (α). Resulta que F (α) es un subcuerpo de E que contiene a F y a α. Los elementos no nulos de F (α) pueden verse como cociente de elementos no nulos de la forma a 0 + a 1 α +... + a n α n, así que F (α) y F (x) son isomorfos (y, por tanto, esencialemente lo mismo), lo que nos indica que el hecho de ser α trascendental sobre F significa que α se comporta como una indeterminada sobre F. 1.16. Ejemplo. Como e es un número trascendental, el cuerpo Q(e) es isomorfo a Q(x). 1.17. Definición. Una extensión E de un cuerpo F se dice que es una extensión simple de F si existe α E tal que E = F (α). 1.18. Ejemplo. C es una extensión simple de R pues C=R(i), como veremos.

6 Álgebra Clásica. Curso 03/04 Demostremos lo que anunciábamos en (1.5). 1.18. Teorema. Sea E una extensión simple de un cuerpo F, E = F (α) para cierto α E, y supongamos que α es algebraico sobre F. Entonces, todo elemento u de F (α) puede escribirse como: u = a 0 + a 1 α +... + a n x n, donde a 0, a 1,..., a n F son únicos, y n + 1 es el grado de irr(α, F ). En particular, F (α) es un F -espacio vectorial de dimensión n + 1, y {1, α,..., α n } es una base. Consideremos el homomorfismo de evaluación Φ α : F [x] E. F (α) = Im(Φ α ), y que ϕ : F [x]/ker(φ α ) Im(Φ α ) f(x) f(α) Sabemos que es un isomorfismo entre F [x]/ker(φ α ) = F [x]/< irr(α, F ) > e Im(Φ α ) (por el Primer Teorema de Isomorfía). Sea u F (α). Como ϕ es sobreyectiva, existe f(x) F [x] tal que u = ϕ(f(x)). Por el algoritmo de la división existen g(x), r(x) F [x] tales que f(x) = g(x)irr(α, F ) + r(x), con deg(r(x)) < deg(irr(α, F )); escribamos r(x) = a 0 + a 1 x +... a n x n, con a 0, a 1,..., a n F. Tenemos que u = ϕ(g(x)irr(α, F ) + r(x)) = ϕ(r(x)) = r(α) = a 0 + a 1 α +... a n α n. Además, los coeficientes a 0, a 1,..., a n son únicos porque son los coeficientes del resto de dividir f(x) por irr(α, F ): Si u = b 0 + b 1 α +... b n α n, con b 0, b 1,..., b n F, definamos s(x) = b 0 + b 1 x +... b n x n. Entonces u = s(α) = ϕ(s(x)) = ϕ(r(x)), y por la inyectividad de ϕ, s(x) = r(x), esto es, s(x) r(x) < irr(α, F ) >, lo que significa que irr(α, F ) divide a s(x) r(x). Si tenemos en cuenta que el grado de irr(α, F ) es n + 1, mientras que el de s(x) r(x) es a lo sumo n, necesariamente s(x) r(x) = 0, lo que concluye la demostración. 1.19. Ejemplo. Consideremos el polinomio f(x) = x 2 + x + 1 Z 2 [x]. Como ningún elemento de Z 2 es raíz de f(x), éste es irreducible sobre Z 2. Por (1.4), existe un cuerpo E, extensión de Z 2, que contiene un cero, llamémosle α, de f(x). Por (1.18), Z 2 (α) = {a 0 + a 1 α, con a 0, a 1 Z 2 } = {0, α, 1, 1 + α}. Esto nos da un cuerpo finito de cuatro elementos. Para calcular la tabla de la multiplicación en Z 2 (α), basta tener en cuenta que 0 = f(α) = α 2 + α + 1. Finalmente, probemos lo que dijimos en (1.6) (1). 1.20. Ejemplo. El cuerpo R[x]/ < x 2 + 1 > es isomorfo a C.

Álgebra Clásica. Curso 03/04 7 Sabemos, por ser x 2 + 1 irreducible sobre R, que R[x]/ < x 2 + 1 > es un cuerpo extensión de R. Llamemos α = x. Si aplicamos (1.18) tenemos que R(α) = {a 0 + a 1 α, con a 0, a 1 R}. La suma en R(α) viene dada por: (a 0 + a 1 α) + (b 0 + b 1 α) = (a 0 + b 0 ) + (a 1 + b 1 )α, y el producto por: (a 0 + a 1 α)(b 0 + b 1 α) = a 0 b 0 + a 0 b 1 α + a 1 b 0 α + a 1 b 1 α 2 = (teniendo en cuenta que α 2 + 1 = 0 y reordenando) = (a 0 b 0 a 1 b 1 ) + (a 0 b 1 + a 1 b 0 )α. Esto prueba que es un isomorfismo de cuerpos. ϕ : R(α) C a 0 + a 1 α a 0 + a 1 i