1. Conjuntos y funciones
|
|
|
- Trinidad Navarro Luna
- hace 9 años
- Vistas:
Transcripción
1 Centro de Matemática Facultad de Ciencias Universidad de la República Introducción a la Topología Curso 2016 PRACTICO 1: CONJUNTOS Conjuntos y funciones Ejercicio 1. Si I es un conjunto y A α es un conjunto para cada α I, entonces: [ A α ] c = A c α y [ A α ] c = A c α. Ejercicio 2. Sea f : X Y una función, A X, B Y, {A α } una colección de subconjuntos de X y {B α } una colección de subconjuntos de Y. 1. Probar primero que tomar preimágenes preserva las operaciones con conjuntos: f 1 ( B α ) = f 1 (B α ) f 1 ( B α ) = f 1 (B α ) f 1 (B c ) = [f 1 (B)] c. 2. Probar que con las imágenes no es tan así. f( A α ) = f(a α ) f( A α ) f(a α ). Mostrar que la inclusión puede ser estricta e investigar bajo qué hipótesis sobre la f la inclusión es siempre una igualdad. Comparar f(a c ) con [f(a)] c. 3. Probar que f 1 (f(a)) A y que f(f 1 (B)) B. Mostrar que las inclusiones pueden ser estrictas y averiguar cuándo vale la igualdad. Ejercicio 3. Si {A n : n N} es una colección de subconjuntos de X, entonces defina el límite superior: lím sup A n = n 0 k n A k n y el límite inferior: Probar que lím inf n A n = n 0 k n A k 1 Creado a partir de menores modificaciones del material generado por el profesor Alvaro Rovella para el curso
2 1. n A n lím inf A n lím sup A n n A n. 2. Si A n es una sucesión creciente de conjuntos, entonces lím inf A n = lím sup A n = A n. Si es decreciente, entonces lím inf A n = lím sup A n = A n 3. Se tiene x lím sup A n si y sólo si x pertenece a infinitos A n. Además x lím inf A n si y sólo si x pertenece a todos salvo una cantidad finita de los A n. 4. Sea {a n : n 0} una sucesión de números reales. Sea A n = (, a n ). Qué dan el límite superior y el límite inferior de los conjuntos A n? Repetir el ejercicio para A n = (, a n ] y para B n = (a n, + ) 2. Relaciones de equivalencia. Una relación en X es un subconjunto del producto cartesiano X X. Dada una relación R X X escribiremos xry cuando (x, y) R. Una relación de equivalencia en X es una relación R que cumple con las siguientes propiedades: 1. xrx para todo x X (reflexiva) 2. xry implica yrx (simétrica) 3. xry y yrz implica xrz (transitiva) Para notar las relaciones de equivalencia suelen usarse símbolos como,, = o. Ejemplo: Dado un entero no nulo n, definimos en Z la relación n por a n b si y sólo si a b es múltiplo de n. Es sencillo probar que se trata de una relación de equivalencia. La denominamos congruencia módulo n. Definición 1 Consideremos una relación de equivalencia en X. La clase de equivalencia de un elemento x 0 X, se define como el subconjunto de X formado por [x 0 ] := {x X : x x 0 }. Al conjunto formado por las clases de equivalencia {[x] : x X} se denomina espacio, o conjunto cociente. 2
3 Ejercicio 4. Describir Z n, el conjunto cociente de la congruencia módulo n. Ejercicio 5. En R diremos que x y si y sólo si x y Z. Probar que es una relación de equivalencia. Interpretar geométricamente el conjunto cociente. Qué sucede si consideramos la misma relación de equivalencia cambiando R por Z? Ejercicio 6. En R 2 ponemos la siguiente relación: (x 1, x 2 ) (y 1, y 2 ) sii (x 1, x 2 ) (y 1, y 2 ) Z 2. Probar que es una relación de equivalencia y observar que el cociente es el toro. Ejercicio 7* El toro también puede obenerse identificando los lados opuestos de un rectángulo. Encontrar la relación de equivalencia adecuada en el rectángulo de forma tal que el cociente sea el toro. Pensar de qué forma podríamos obtener otras superficies (bitoro, tritoro, etc) como cociente de un polígono por una relación de equivalencia que identifique pares de lados. Ejercicio 8.(Plano proyectivo) En R 2 {0} ponemos la siguiente relación: x y sii existe λ 0 tal que x = λy. Probar que es una relación de equivalencia, y describir geométricamente el conjunto de clases de equivalencia. El conjunto cociente se denomina plano proyectivo real y se nota P(R 2 ), o P 1 R. Si X es un conjunto, P(X) denota el conjunto de todos los subconjuntos de X. Definición 2 Una partición en un conjunto X es una familia de subconjuntos A P(X) que cumple: 1. A A A = X. 2. A B = A, B A. Ejercicio 9 Probar que el conjunto cociente de una relación de equivalencia en X es siempre una partición de X y que para toda partición en X existe una relación de equivalencia cuyo cociente es dicha partición. 3. Relaciones de orden Un orden, también dicho orden parcial, es una relación R en un conjunto X que cumple dos propiedades: 1. xry y yrz implica xrz (transitiva) 3
4 2. xry y yrx implica x = y (antisimétrica) Ejemplo: Si Z es un conjunto cualquiera y P(Z) denota al conjunto de los subconjuntos de Z, defina R P(Z) P(Z) como ARB sii A B. Es una relación de orden parcial. Ejemplo: Sea X = {1,..., n} con la relación R = X X. No es de orden. Una relación es de orden total si dados x e y, dos elementos distintos de X, se cumple que xry o yrx. Notar que en el ejemplo anterior (de la inclusión) el orden no es total. En general se usa una notación más sugestiva: se escribe x y. Entonces suele ponerse (X, ) para significar que se ha considerado en X el orden, y se llama al par (X, ) un conjunto ordenado. En los reales R se tienen los órdenes usuales, <,, >. Convénzase que todos son órdenes totales. Otro ejemplo es el orden producto, de dos conjuntos ordenados (X, X ) y (Y, Y ), definido como (x, y) (x, y ) sii x X x y y Y y. Probar que es un orden parcial y observe que aunque ambos sean totales, el orden producto no lo es. Para definir un orden total en el producto de dos conjuntos ordenados, se define el orden lexicográfico o de diccionario: (x, y) (x, y ) si x X x o bien x = x y y Y y. Para ejercicio, hacer un dibujo en R 2 del conjunto de los (x, y) (2, 1), cuando es el orden producto y cuando es el orden lexicográfico (considerando en R el orden >). Si (X, ) es un conjunto ordenado, e Y es subconjunto de X, entonces Y hereda el orden. Eso es una afirmación que hay que probar. Si Y es subconjunto de X decimos que a X es cota de Y si a y para todo y Y ; a es máximo de Y si además a Y. Un elemento a Y es maximal en Y si se cumple que: Para todo y Y tal que y a se tiene y = a. Ver abajo en los ejercicios la diferencia entre máximo, maximal y cota. Un elemento x X tiene sucesor inmediato si el conjunto de los s X \ {x} tales que s > x tiene mínimo (cuya definición dejamos a cargo del lector). Ahora, un conjunto totalmente ordenado (X, ) es un buen orden si se cumple que todo subconjunto tiene mínimo. Por ejemplo (R, ) no es. Pero (N, ) sí lo es. Ejercicio 10. Sea Z + el conjunto de los enteros positivos. Se consideran los siguientes órdenes en el producto Z + Z + : a) (x, y) (x, y ) si y x > y x o bien y x = y x y y > y. b) (x, y) (x, y ) si x + y > x + y o bien x + y = x + y y y > y. 4
5 Probar que son órdenes totales. Qué elementos tienen un sucesor inmediato? Hay elementos máximos? Probar que los órdenes no son equivalentes entre sí, ni al orden lexicográfico. (Dos conjuntos ordenados (X, X ) y (Y, Y ) son equivalentes si existe una biyección h : X Y tal que h(x) Y h(x ) si y sólo si x X x.) Ejercicio 11. Considere X = P(N) con el orden de inclusión, es decir A B si A B. a) Probar que es un orden parcial, que no es total, que existe un elemento mínimo y un elemento máximo. b) Sea Y el subconjunto de X definido por A Y si A tiene menos de 32 elementos. Averiguar si tiene máximo, si tiene elementos maximales y elementos minimales. c) Hallar un subconjunto infinito de X que sea totalmente ordenado. d) Hallar un subconjunto de X que sea acotado pero que no tenga elemento maximal. Ejercicio 12. Sea X = {n N : n 2} con la relación de orden m n si m divide a n. Probar que es efectivamente una relación de orden y hallar elementos maximales y minimales, si es que existen. 4. Ordenes de infinitos. Intuitivamente se define el cardinal de un conjunto como la cantidad de elementos del conjunto. Claro que los conjuntos infinitos en principio no se pueden contar para decir cuál tiene más elementos. Pero la cosa se pone interesante si se define que un conjunto X es equipotente a otro Y si existe una función biyectiva de X en Y. Esta es claramente una relación de equivalencia, sólo un detalle : no existe el conjunto de todos los conjuntos. Así que obviemos este problema suponiendo que tenemos una determinada colección A de conjuntos y observemos que la relación es de equivalencia en A. A cada clase de equivalencia le llamamos número cardinal. Así, el número natural 2 puede ser visto como un número cardinal, es decir, como la clase de todos los subconjuntos de A que cuentan con 2 elementos. También se usa decir que dos conjuntos equipotentes tienen el mismo cardinal. Lo más interesante es que se puede definir un orden entre los números cardinales. Decimos que un cardinal x es mayor o igual que y (que notaremos x y) si existe un conjunto X en la clase x y uno Y en la clase y y una función 5
6 inyectiva de Y a X. Para probar que es una relación de orden usamos sin demostración el siguiente teorema de Bernstein: Si existe una función inyectiva de X a Y y existe una función inyectiva de Y a X, entonces existe una función biyectiva de X a Y, o sea, X e Y son equipotentes. Ejercicio Demostrar que está bien esa definición de orden en el conjunto de los números cardinales, es decir, que no depende de la elección de los representantes de x y de y. 2. Usando el teorema de Bernstein, probar que es una relación de orden. Investigar si esta relación corresponde a un orden total. Pensaremos que A es el conjunto de todos los subconjuntos de N. Ejercicio 14. Probar que un conjunto es infinito sii es equipotente a un subconjunto propio. Un conjunto X se dice numerable si es finito o equipotente a N. Entonces el conjunto de los números pares es numerable, y Z también. Ejercicio 15. Probar que son numerables: N N, los racionales, el conjunto de los números algebraicos (raíces de polinomios de coeficientes enteros), la unión de conjuntos numerables, el conjunto de todos los subconjuntos finitos de N. Ejercicio 16. Probar que el conjunto formado por todas las sucesiones de ceros y unos (denotado 2 N ) no es numerable. Probar que el intervalo (0, 1) es equipotente a 2 N, y deducir que R es equipotente a 2 N, y por o tanto, R no es numerable. Probar que 2 X es equipotente a P(X). Deducir que R es equipotente al conjunto de todos los subconjuntos de N. 5. Producto cartesiano y Axioma de elección. Dado un conjunto de índices I y un conjunto X α para cada α I, se define el producto cartesiano de los conjuntos X α como Π α I X α = {f : I α I X α : f(α) X α α I} 6
7 Por ejemplo, si X es un conjunto y I = {1,..., n} entonces el producto Π 1 k n X no es otra cosa que el conjunto de las n-uplas ordenadas de elementos de X, o sea, es lo que habitualmente se llama X n. En general, si todos los X α son iguales a un conjunto X entonces escribimos X I como abreviación para Π α I X. Note que X I es el conjunto de todas las funciones de I en X. Ejercicio 17. Determinar cuáles de los siguientes conjuntos son numerables: (a) Z [0,1], (b) [0, 1] Z, (c) Z Z, (d) El conjunto de funciones de Z en R que valen 0 salvo para finitos n Z. (e) El conjunto de funciones de Z en Z que valen 0 salvo para finitos n Z. Ejercicio 18. Hallar una sucesión de conjuntos infinitos X n tales que el cardinal de X n+1 es mayor que el de X n. Después hallar un conjunto Z que tenga mayor cardinal que todos los X n. El Axioma de elección dice que cualquiera que sea el conjunto I, si para cada α I se cumple que X α es no vacío, entonces Π α I X α es distinto del vacío. En otras palabras, si todo X α es no vacío, entonces existe un objeto (una función) que consiste en elegir un elemento de cada conjunto. Así dicho parece que no debiera ser un axioma. La teoría de conjuntos es un área intrincada de la matemática. Lema de Zorn. Sea (X, ) un conjunto parcialmente ordenado. Si todo subconjunto totalmente ordenado tiene cota superior, entonces existe un elemento maximal en X. El Axioma de elección se usa en la demostración del Lema de Zorn, son de hecho equivalentes. La demostración de estos hechos es algo complicada y no la haremos en este curso, (ver ejercicio abajo donde se prueba que el Lema de Zorn implica el Axioma de elección). Por otro lado, el Axioma de elección es también equivalente al principio de buena ordenación, que dice que todo conjunto puede ser bien ordenado, es decir, si X es un conjunto, existe en X un buen orden. Es posible por lo tanto, hallar un orden en R que es un buen orden. Se tiene entonces que todo subconjunto tiene un mínimo, por lo tanto, R tendrá un mínimo x 0, luego R \ {x 0 } tendrá un mínimo x 1 y así sucesivamente hasta agotar los reales. Ejercicio 19. Usar el Axioma de elección para demostrar que si f : X Y es una función sobreyectiva, entonces existe una inversa por derecha de f, 7
8 es decir, una función g : Y X tal que f g = id X. Probar que si f : X Y es inyectiva, entonces f tiene una inversa por izquierda; se precisa el Axioma de elección? Ejercicio 20. Probar el Axioma de elección usando el Lema de Zorn. Idea: Se quiere probar que existe una función φ de I en α I X α tal que φ(α) X α para todo α I. Sea F el conjunto de las funciones f definidas en algún subconjunto D f de I tales que f(α) X α para todo α D f. Probar que este conjunto es no vacío. Luego se ordena F de la siguiente manera: decimos que f g si D f D g y f(α) = g(α) para todo α D g (es decir, f g si f es una extensión de g). Probar que eso da un orden parcial en F y que todo subconjunto linealmente ordenado tiene una cota. Usando Zorn deducir que hay un elemento maximal y concluir. Ejercicio 21. Probar el principio de Inducción transfinita: Teorema: Sea (X, >) un conjunto bien ordenado, y P una propiedad aplicable a los elementos de X. Hipótesis. 1) El mínimo elemento de X verifica la propiedad P. 2) Si y X y todo elemento x tal que y > x verifica la propiedad P, entonces también y verifica P. Tesis: Todo elemento de X verifica la propiedad P. 8
1. Conjuntos y funciones
PRACTICO 1: CONJUNTOS. 1. Conjuntos y funciones Es útil saber de memoria las siguientes propiedades de conjuntos y funciones. Tanto como saber las tablas. Ejercicio 1. Si I es un conjunto y A α es un conjunto
INTRODUCCIÓN A LA TOPOLOGÍA. Centro de Matemática Facultad de Ciencias Universidad de la República
INTRODUCCIÓN A LA TOPOLOGÍA Guía teórico-práctica Centro de Matemática Facultad de Ciencias Universidad de la República 14 de julio de 2016 Estas notas son una guía del curso Introducción a la Topología
Operaciones extendidas de conjuntos
234 A. GENERALIDADES DE TEORÍA DE CONJUNTOS Tema 3. Operaciones extendidas de conjuntos En este tema extenderemos las operaciones de conjuntos anteriormente definidas a familias arbitrarias de conjuntos.
Capítulo 4: Conjuntos
Capítulo 4: Conjuntos Miguel Ángel Olalla Acosta [email protected] Departamento de Álgebra Universidad de Sevilla Septiembre de 2014 Olalla (Universidad de Sevilla) Capítulo 4: Conjuntos Septiembre de
Práctica 2 -Cardinalidad- A. Propiedades básicas de los Conjuntos
Cálculo Avanzado Segundo Cuatrimestre de 2012 Práctica 2 -Cardinalidad- A. Propiedades básicas de los Conjuntos Ejercicio 1. Demostrar las siguientes igualdades de conjuntos: i) B i I A i = i I(B A i ).
Conjuntos. Relaciones. Aplicaciones
Conjuntos. Relaciones. Aplicaciones Conjuntos 1. Considera el subconjunto A de números naturales formado por los múltiplos de 4 y el conjunto B N de los números que terminan en 4. Comprueba que A B y B
Tema 1: Conjuntos. Miguel Ángel Olalla Acosta Departamento de Álgebra Universidad de Sevilla. Septiembre de 2017
Tema 1: Conjuntos Miguel Ángel Olalla Acosta [email protected] Departamento de Álgebra Universidad de Sevilla Septiembre de 2017 Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2017 1
Tema 1: Conjuntos. Miguel Ángel Olalla Acosta Departamento de Álgebra Universidad de Sevilla. Septiembre de 2016
Tema 1: Conjuntos Miguel Ángel Olalla Acosta [email protected] Departamento de Álgebra Universidad de Sevilla Septiembre de 2016 Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2016 1
PRELIMINARES. En este capítulo vamos a dar, sin ser muy estrictos, algunas nociones necesarias para la compresión de la asignatura.
1 PRELIMINARES 1. CONJUNTOS En este capítulo vamos a dar, sin ser muy estrictos, algunas nociones necesarias para la compresión de la asignatura. 1.1 Def:. Se define un conjunto como una colección de objetos.
TEMA 1. Teoría de Conjuntos. Ejercicio 1.1. Decidir si A = B, A B ó A B en los siguientes casos:
TEMA 1 Teoría de Conjuntos Ejercicio 1.1. Decidir si A = B, A B ó A B en los siguientes casos: i) A = { }, B = {{ }} ii) A = {, { }}, B = {, {, { }}} iii) A = {{ }, {, { }}}, B = {{ }} Ejercicio 1.2. Dar
Práctica 2: Cardinalidad. Propiedades básicas de los conjuntos
Cálculo Avanzado Segundo Cuatrimestre de 2014 Práctica 2: Cardinalidad Propiedades básicas de los conjuntos Ejercicio 1. Demostrar las siguientes igualdades de conjuntos: i) B i I A i = i I(B A i ). ii)
y exámenes. Temas 3 y 4
U N I V E R S I D A D D E M U R C I A Ejercicios DEPARTAMENTO DE MATEMÁTICAS CONJUNTOS Y NÚMEROS 2016/2017. de talleres y exámenes. Temas 3 y 4 Se recuerda que la resolución de algunos de estos ejercicios
Terminaremos el capítulo con una breve referencia a la teoría de cardinales.
TEMA 5. CARDINALES 241 Tema 5. Cardinales Terminaremos el capítulo con una breve referencia a la teoría de cardinales. Definición A.5.1. Diremos que el conjunto X tiene el mismo cardinal que el conjunto
y exámenes. Temas 3 y 4
U N I V E R S I D A D D E M U R C I A Ejercicios DEPARTAMENTO DE MATEMÁTICAS CONJUNTOS Y NÚMEROS 2017/2018. de talleres y exámenes. Temas 3 y 4 Se recuerda que la resolución de algunos de estos ejercicios
Conjuntos, Aplicaciones y Relaciones
Conjuntos, Aplicaciones y Relaciones Curso 2017-2018 1. Conjuntos Un conjunto será una colección de objetos; a cada uno de estos objetos lo llamaremos elemento del conjunto. Si x es un elemento del conjunto
Conjuntos, relaciones y funciones Susana Puddu
Susana Puddu 1. Repaso sobre la teoría de conjuntos. Denotaremos por IN al conjunto de los números naturales y por ZZ al de los enteros. Dados dos conjuntos A y B decimos que A está contenido en B o también
ÁLGEBRA I. Curso Grado en Matemáticas
ÁLGEBRA I. Curso 2012-13 Grado en Matemáticas Relación 1: Lógica Proposicional y Teoría de Conjuntos 1. Establecer las siguientes tautologías: (a) A A A (b) A A A (c) A B B A (d) A B B A (e) (A B) C A
Relaciones Binarias. Matemática Discreta. Agustín G. Bonifacio UNSL. Relaciones Binarias
UNSL Relaciones Binarias Relaciones Binarias (Sección 3.1 del libro) Definición Una relación (binaria) R de un conjunto X a un conjunto Y es un subconjunto del producto cartesiano X Y. Si (x,y) R, escribimos
Tema 1: Fundamentos.
Tema 1: Fundamentos. 1. Nociones básicas de la Teoría de Conjuntos. Definición. Un conjunto es una colección de objetos. A los objetos de un conjunto se les llama elementos del conjunto. Se denominará
Parte 2: Definición y ejemplos de topologías.
Parte 2: Definición y ejemplos de topologías. 22 de marzo de 2014 1. Definiciones y propiedades básicas. Definición 1 Sea X un conjunto. Una familia T de subconjuntos de X es una topología de X si se cumplen:
Ejercicios de Álgebra Básica. Curso 2017/18
Ejercicios de Álgebra Básica. Curso 2017/18 Tema 1: Conjuntos Conjuntos. Operaciones básicas Ejercicio 1. Describir las relaciones de inclusión o pertenencia entre los siguientes conjuntos: A =, B = {
TEMA 1: NÚMEROS NATURALES. SISTEMA DE NUMERACIÓN
1 TEMA 1: NÚMEROS NATURALES. SISTEMA DE NUMERACIÓN 1. INTRODUCCIÓN Los números naturales aparecen debido a la necesidad que tiene el hombre para contar. Para poder construir este conjunto N, podemos seguir
Introducción a la topología
Introducción a la topología Beatriz Abadie CENTRO DE MATEMÁTICAS FACULTAD DE CIENCIAS UNIVERSIDAD DE LA REPÚBLICA Agosto de 2013 i Índice general Capítulo 1. Elementos de la teoría de conjuntos 1 1.1.
2. Estructuras Algebraicas
2. Estructuras Algebraicas 2.1. Conjuntos Un conjunto es una reunión en un todo de determinados objetos bien definidos y diferentes entre sí. Llamamos elementos a los objetos que lo forman. Requisitos:
Formulaciones equivalentes del Axioma de Elección
Formulaciones equivalentes del Axioma de Elección MARU SARAZOLA Resumen En este documento presentamos algunas formulaciones equivalentes del axioma de elección. En la primera sección, se presenta el enunciado
Ejercicios de Álgebra Básica. Curso 2014/15
Ejercicios de Álgebra Básica. Curso 2014/15 Tema 1: Conjuntos Conjuntos. Operaciones básicas Ejercicio 1. Describir las relaciones de inclusión o pertenencia entre los siguientes conjuntos: A =, B = {
1. Sucesiones y redes.
1. Sucesiones y redes. PRACTICO 7. REDES. Se ha visto que el concepto de sucesión no permite caracterizar algunas nociones topológicas, salvo en espacios métricos. Esto empieza con algunas definiciones
Contenido. BLOQUE I: PRELIMINARES Tema 2 ALGUNAS NOCIONES DE TEORÍA DE CONJUNTOS, RELACIONES Y FUNCIONES Lógica Grado en Ingeniería Informática
Contenido BLOQUE I: PRELIMINARES Tema 2 ALGUNAS NOCIONES DE TEORÍA DE CONJUNTOS, RELACIONES Y FUNCIONES Lógica Grado en Ingeniería Informática Alessandra Gallinari URJC Nociones de teoría de conjuntos
Estructuras algebraicas. Departamento de Álgebra. Apuntes de teoría
ESTRUCTURAS ALGEBRAICAS GRADO EN MATEMÁTICAS. CURSO 2015/2016 Apuntes de teoría Tema 1: Grupos y subgrupos. 1.1. Introducción Definición 1.1. Un grupo es un par (G, ), donde G es un conjunto no vacío,
Topologías. Segundo cuatrimestre Práctica Encuentre todas las topologías sobre conjuntos de a lo sumo cuatro elementos.
Topología Segundo cuatrimestre - 2011 Práctica 1 Topologías Ejemplos de topologías 1. Encuentre todas las topologías sobre conjuntos de a lo sumo cuatro elementos. 2. Sea X un conjunto. (a) Sea τ = {U
1. Espacios topológicos compactos.
PRACTICO 6. COMPACIDAD. 1. Espacios topológicos compactos. Definición 1 Un cubrimiento de un conjunto X es una familia de subconjuntos de X cuya unión da X. Un cubrimiento de un espacio es abierto si cada
Relaciones Binarias. Matemática Discreta. Agustín G. Bonifacio UNSL. Relaciones Binarias
UNSL Relaciones Binarias Relaciones Binarias (Sección 3.1 del libro) Definición Una relación (binaria) R de un conjunto X a un conjunto Y es un subconjunto del producto cartesiano X Y. Si (x,y) R, escribimos
Matemáticas Discretas Relaciones y funciones
Coordinación de Ciencias Computacionales - INAOE Matemáticas Discretas y funciones Cursos Propedéuticos 2010 Ciencias Computacionales INAOE y funciones Propiedades de relaciones Clases de equivalencia
Álgebra Lineal y Estructuras Matemáticas. J. C. Rosales y P. A. García Sánchez. Departamento de Álgebra, Universidad de Granada
Álgebra Lineal y Estructuras Matemáticas J. C. Rosales y P. A. García Sánchez Departamento de Álgebra, Universidad de Granada Capítulo 1 Conjuntos, relaciones y aplicaciones 1. Conjuntos La idea de conjunto
1. La topología inducida.
PRACTICO 4. ESPACIOS METRICOS. 1. La topología inducida. Sea (M, d) un espacio métrico. La bola abierta de centro x y radio r es el conjunto B(x; r) = {y M : d(x, y) < r}. La bola cerrada de centro x y
Análisis Matemático I: Numeros Reales y Complejos
Contents : Numeros Reales y Complejos Universidad de Murcia Curso 2008-2009 Contents 1 Definición axiomática de R Objetivos Definición axiomática de R Objetivos 1 Definir (y entender) R introducido axiomáticamente.
Conjuntos finitos y conjuntos numerables
Tema 3 Conjuntos finitos y conjuntos numerables En este tema vamos a usar los números naturales para contar los elementos de un conjunto, o dicho con mayor precisión, para definir los conjuntos finitos
Capítulo 2. Conjuntos Finitos Funciones
Capítulo 2 Conjuntos Finitos 2.1. Funciones Definición 2.1. Considere dos conjuntos A y B y suponga que a cada elemento x A es asociado un elemento de B, denotado por f(x). En este caso decimos que f es
Conjuntos finitos y conjuntos numerables
Tema 3 Conjuntos finitos y conjuntos numerables En este tema vamos a usar los números naturales para contar los elementos de un conjunto, o dicho con mayor precisión, para definir los conjuntos finitos
Funciones y Cardinalidad
Funciones y Cardinalidad Definición 1 Llamaremos función f entre dos conjuntos A y B a una relación que verifica las siguientes propiedades: i) Dom(f) = A ii) Si (a, b), (a, c) f entonces b = c Dicho de
Ejercicio Demuestra que T R es efectivamente una topología.
88 7. CONSTRUCCIÓN DE TOPOLOGÍAS Tema 3. Topologías finales: cociente Una situación análoga a la del Tema 1 se plantea cuando ciertas operaciones de conjuntos (como el cociente por una relación de equivalencia)
Álgebra Lineal. Tema 4. Espacios vectoriales de dimensión infinita
Álgebra Lineal Tema 4. Espacios vectoriales de dimensión infinita Grado en Ingeniería Informática Doble Grado en Ingeniería Informática y Administración de Empresas AUTORES: J. S ALAS, A. T ORRENTE Y E.J.S.
Algebra I (Doble Grado Matemáticas-Informática)
Algebra I (Doble Grado Matemáticas-Informática) Relación 1 Curso 2017-2018 Conjuntos y aplicaciones. Ejercicio 1. Construir todas las aplicaciones del conjunto X = {a, b, c} en el conjunto Y = {1, 2} y
Relaciones. Estructuras Discretas. Relaciones. Relaciones en un Conjunto. Propiedades de Relaciones en A Reflexividad
Estructuras Discretas Relaciones Definición: relación Relaciones Claudio Lobos, Jocelyn Simmonds clobos,[email protected] Universidad Técnica Federico Santa María Estructuras Discretas INF 152 Sean
Estructuras Algebraicas
Tema 1 Estructuras Algebraicas Definición 1 Sea A un conjunto no vacío Una operación binaria (u operación interna) en A es una aplicación : A A A Es decir, tenemos una regla que a cada par de elementos
Práctica 2 - Hay diferentes infinitos?- A. Propiedades básicas de los Conjuntos
Cálculo Avanzado Primer Cuatrimestre de 2011 Práctica 2 - Hay diferentes infinitos?- Llamaremos número cardinal de M al concepto general que, por medio de nuestra activa capacidad de pensar, surge del
Una manera de describir un conjunto es por extensión y consiste en enumerar sus elementos entre llaves
CONJUNTOS: DEFINICIÓN Y CARDINAL DE UN CONJUNTO : Un conjunto es una colección bien definida de objetos en la que el orden es irrelevante. Dichos objetos pueden ser reales o conceptuales y se llaman elementos
Pregunta 1 Es correcta esta definición? Por qué?
TEORÍA DE CONJUNTOS. En un libro de COU de 1975 puede leerse la siguiente definición de conjunto: Un conjunto es una colección de objetos, cualquiera que sea su naturaleza. Pregunta 1 Es correcta esta
1. Números reales. Análisis de Variable Real
1. Números reales Análisis de Variable Real 2014 2015 Índice 1. Sistemas numéricos 2 1.1. Números naturales. Principio de Inducción... 2 1.2. Números enteros... 4 1.3. Números racionales... 6 2. Los números
Recordemos que utilizaremos, como es habitual, la siguiente notación para algunos conjuntos de números que son básicos.
Capítulo 1 Preliminares Vamos a ver en este primer capítulo de preliminares algunos conceptos, ideas y propiedades que serán muy útiles para el desarrollo de la asignatura. Se trata de resultados sobre
Estructuras Discretas. Conjuntos. Conjuntos & Funciones. Especificación de Conjuntos.
Estructuras Discretas Conjuntos Conjuntos & Funciones Claudio Lobos [email protected] niversidad Técnica Federico Santa María Estructuras Discretas INF 152 Definición: conjunto n conjunto es una colección
Conjuntos, aplicaciones y
0 Conjuntos, aplicaciones y números En este capítulo presentamos los conceptos fundamentales sobre la teoría de conjuntos que nos serán muy útiles en el desarrollo de la asignatura. En primer lugar recordamos
Matemáticas Discretas
Coordinación de Ciencias Computacionales - INAOE Matemáticas Discretas Cursos Propedéuticos 2011 Ciencias Computacionales INAOE Dr. Enrique Muñoz de Cote [email protected] http://ccc.inaoep.mx/~jemc Oficina
Definiciones Una relación R en un conjunto A es una relación de orden si verifica las propiedades reflexiva, antisimétrica y transitiva.
RELACIONES DE ORDEN Definiciones Una relación R en un conjunto A es una relación de orden si verifica las propiedades reflexiva, antisimétrica y transitiva. Un conjunto parcialmente ordenado ( A, R ) es
Capítulo 1: Fundamentos: Lógica y Demostraciones Clase 3: Relaciones, Funciones, y Notación Asintótica
Capítulo 1: Fundamentos: Lógica y Demostraciones Clase 3: Relaciones, Funciones, y Notación Asintótica Matemática Discreta - CC3101 Profesor: Pablo Barceló P. Barceló Matemática Discreta - Cap. 1: Fundamentos:
1 Continuidad uniforme
Centro de Matemática Facultad de Ciencias Universidad de la República Introducción a la Topología Curso 2016 NOTAS 6: ESPACIOS MÉTRICOS II: COMPLETITUD 1 Continuidad uniforme Denición. Sean (M, d 1 ) y
Apuntes de Matemática Discreta 8. Relaciones de Equivalencia
Apuntes de Matemática Discreta 8. Relaciones de Equivalencia Francisco José González Gutiérrez Cádiz, Octubre de 2004 Universidad de Cádiz Departamento de Matemáticas ii Lección 8 Relaciones de Equivalencia
Relaciones de orden. Álgebras de Boole
Relaciones de orden. Álgebras de Boole MATEMÁTICA DISCRETA I F. Informática. UPM MATEMÁTICA DISCRETA I () Relaciones de orden. Álgebras de Boole F. Informática. UPM 1 / 52 Conjuntos y relaciones entre
Cardinalidad IIC1253. IIC1253 Cardinalidad 1 / 23
Cardinalidad IIC1253 IIC1253 Cardinalidad 1 / 23 Conjuntos con la misma cardinalidad Definición Decimos que dos conjuntos A y B son equinumerosos, denotado como A B, si existe una biyección f : A B. IIC1253
2. Los números naturales, enteros y racionales 1
- Fernando Sánchez - - Cálculo I 2Los números naturales, enteros y racionales Números naturales 24 09 2015 Se llaman números naturales a los elementos del conjunto N = {1, 2, 3,...}. En este conjunto hay
Cardinalidad IIC1253. IIC1253 Cardinalidad 1 / 23
Cardinalidad IIC1253 IIC1253 Cardinalidad 1 / 23 Conjuntos con la misma cardinalidad Definición Decimos que dos conjuntos A y B son equinumerosos, denotado como A B, si existe una biyección f : A B. Ejemplo
Introducción a los números reales
Grado en Matemáticas Curso 2010-2011 Índice Conjuntos numéricos 1 Conjuntos numéricos Tienen nombre Y cuatro operaciones básicas 2 Teoremas y demostraciones Métodos de demostración 3 4 Objetivos Objetivos
Funciones de Variable Real
Tema 1 Funciones de Variable Real 1.1. La Recta Real Los números reales se pueden ordenar como los puntos de una recta. Los enteros positivos {1, 2, 3, 4,...} que surgen al contar, se llaman números naturales
ALGEBRA y ALGEBRA LINEAL. Primer Semestre CAPITULO I LOGICA Y CONJUNTOS.
ALGEBRA y ALGEBRA LINEAL 520142 Primer Semestre CAPITULO I LOGICA Y CONJUNTOS. DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas Universidad de Concepción 1 La lógica es
Tema 2: Teorema de estructura de los grupos abelianos finitamente generados.
ESTRUCTURAS ALGEBRAICAS GRADO EN MATEMÁTICAS. CURSO 215/216 Tema 2: Teorema de estructura de los grupos abelianos finitamente generados. 1.1. Grupo abeliano libre. Bases. Definición 1.1. El grupo Z n con
Cardinalidad. Teorema 0.3 Todo conjunto infinito contiene un subconjunto infinito numerable.
Cardinalidad Dados dos conjuntos A y B, decimos que A es equivalente a B, o que A y B tienen la misma potencia, y lo notamos A B, si existe una biyección de A en B Es fácil probar que es una relación de
Teorema de Lagrange. En esta sección demostramos algunos hechos básicos sobre grupos, que se pueden deducir de la definición
Teorema de Lagrange Capítulo 3 3.1 Introducción En este capítulo estudiaremos uno de los teoremas más importantes de toda la teoría de grupos como lo es el Teorema de Lagrange. Daremos en primer lugar
Capítulo 1: Números Reales
Cálculo I Capítulo 1: Números Reales 1 Definición de R Axiomas de cuerpo conmutativo Axiomas de orden Valor absoluto 2 Subconjuntos destacados de R Números naturales Números enteros Números racionales
Curso de conjuntos y números. Versión corregida de los Apuntes. Juan Jacobo Simón Pinero
Curso de conjuntos y números. Versión corregida de los Apuntes Juan Jacobo Simón Pinero Curso 2012/2013 Índice general I Conjuntos 3 1. Conjuntos y elementos 4 1.1. Sobre el concepto de conjunto y elemento..............
TEMA 2. TEORÍA DE CONJUNTOS
TEMA 2. TEORÍA DE CONJUNTOS 1. Introducciónalalógica de proposiciones 1.1 Definición. Una proposición es una oración declarativa de la cual se puede decir sin ambigüedad si es verdadera o falsa. 1.2 Definición.
Cálculo diferencial e integral I. Eleonora Catsigeras
Cálculo diferencial e integral I Eleonora Catsigeras Universidad de la República Montevideo, Uruguay 01 de setiembre de 2011. CLASE 14 complementaria. Sobre sucesiones y conjuntos en la recta real. Sucesiones
58 7. ESPACIOS COCIENTE
CAPíULO 7 Espacios cociente En esta sección estudiamos el cociente de un espacio vectorial por un subespacio W. Este cociente se define como el conjunto cociente de por una relación de equivalencia conveniente.
Ejercicio 70 : En este ejercicio vamos a caracterizar completamente la expresión
EJERCICIOS ESTRUCTURAS ALGEBRAICAS (2004-2005) 1 Ejercicio 70 : En este ejercicio vamos a caracterizar completamente la expresión f = a 1 f 1 +... + a s f s + r que se obtiene al aplicar el algoritmo de
Introducción a la Matemática Discreta
Introducción a la Matemática Discreta Teoría de Conjuntos Luisa María Camacho Camacho Introd. a la Matemática Discreta 1 / 20 Introducción a la Matemática Discreta Temario Tema 1. Teoría de Conjuntos.
Inducción Matemática Conjuntos Funciones. Matemática Discreta. Agustín G. Bonifacio UNSL. Repaso de Inducción, Conjuntos y Funciones
UNSL Repaso de Inducción, y Inducción Matemática (Sección 1.7 del libro) Supongamos que queremos demostrar enunciados del siguiente tipo: P(n) : La suma de los primeros n números naturales es n(n+1)
Sucesiones. Una sucesión de números reales es una tira, o una lista, de nḿeros reales que generalmente denotamos como
Universidad de la República Facultad de Ingeniería IMERL Sucesiones Curso Cálculo 1 2008 Una sucesión de números reales es una tira, o una lista, de nḿeros reales que generalmente denotamos como a 1, a
0. Conjuntos y relaciones
0 En este capítulo presentamos las nociones elementales que utilizaremos a lo largo del libro 1 Conjuntos La noción básica con la que vamos a trabajar es la de conjunto A nuestros fines, un conjunto es
Los Números Enteros. 1.1 Introducción. 1.2 Definiciones Básicas. Capítulo
Los Números Enteros Capítulo 1 1.1 Introducción En este capítulo nos dedicaremos al estudio de los números enteros los cuales son el punto de partida de toda la teoría de números. Estudiaremos una serie
Ejercicios de Teoría de conjuntos
Ejercicios de Teoría de conjuntos José A. Alonso Jiménez Mario J. Pérez Jiménez Sevilla, Octubre de 1992 Dpto. de Ciencias de la Computación e Inteligencia Artificial Universidad de Sevilla 1 Contenido
Ordenación parcial Conjunto parcialmente ordenado Diagrama de Hasse
Ordenación parcial Un orden parcial es una relación binaria R sobre un conjunto X, que cumple las propiedades: Reflexiva: R es reflexiva sii para todo a A ara Antisimétrica: R es antisimétrica sii para
CURSOS DE MATEMÁTICAS
CURSOS DE MATEMÁTICAS Relaciones de equivalencia FERNANDO REVILLA http://www.fernandorevilla.es Jefe del Departamento de Matemáticas del IES Santa Teresa de Madrid y profesor de Métodos Matemáticos de
ESCUELA TÉCNICA SUPERIOR DE NÁUTICA Y MÁQUINAS NAVALES / NAUTIKAKO ETA ITSASONTZI MAKINETAKO GOI ESKOLA TEKNIKOA NOCIONES PRELIMINARES DE MATEMÁTICAS
ESCUELA TÉCNICA SUPERIOR DE NÁUTICA Y MÁQUINAS NAVALES / NAUTIKAKO ETA ITSASONTZI MAKINETAKO GOI ESKOLA TEKNIKOA NOCIONES PRELIMINARES DE MATEMÁTICAS A. 1 Conjuntos. A. TEORÍA DE CONJUNTOS. Un conjunto
Teorema de Hahn-Banach
Capítulo 3 Teorema de Hahn-Banach 3.1. Introducción Una vez introducidos los espacios vectoriales más importantes donde se tiene una estructura métrica a saber, los espacios de Hilbert y los espacios de
Curso de conjuntos y números. Notas sobre el Lema de Zorn y la aritmética de cardinales arbitrarios
Curso de conjuntos y números. Notas sobre el Lema de Zorn y la aritmética de cardinales arbitrarios Juan Jacobo Simón Pinero Curso 2017/2018 1. Introducción y preliminares Como hemos visto, la Teoría de
EL TEOREMA DE SEIFERT-VAN KAMPEN. 1. Preliminares sobre grupos
EL TEOREMA DE SEIFERT-VAN KAMPEN 1. Preliminares sobre grupos Sea G un grupo. Denotaremos de forma multiplicativa la operación en G. Así, el producto de x, y G es x y, y el inverso de x G es x 1. Para
Conjuntos. 17 {perro, gato, 17, x 2 }
Conjuntos Qué es un conjunto? Informalmente, es una agrupación de cosas, o una descripción que dice qué elementos están y qué elementos no están. Para describir un conjunto usamos llavecitas y enumeramos
MatemáticaDiscreta&Lógica 1. Conjuntos. Aylen Ricca. Tecnólogo en Informática San José 2014
MatemáticaDiscreta&Lógica 1 Conjuntos Aylen Ricca Tecnólogo en Informática San José 2014 http://www.fing.edu.uy/tecnoinf/sanjose/index.html CONJUNTOS.::. Definición. Según el diccionario de la Real Academia
Ejercicios de Teoría de conjuntos
Dpto. de Álgebra, Computación, Geometría y Topología Universidad de Sevilla Ejercicios de Teoría de conjuntos José A. Alonso Jiménez ([email protected]) Sevilla, 1991 Contenido 1 La teoría de conjunto de Zermelo
Conjuntos, relaciones de equivalencia y aplicaciones
CAPíTULO 1 Conjuntos, relaciones de equivalencia y aplicaciones 1. Conjuntos La idea de conjunto es una de las más significativas en Matemáticas. La mayor parte de los conceptos matemáticos están construidos
Ejercicios de Teoría de conjuntos
Ejercicios de Teoría de conjuntos José A. Alonso Jiménez Mario J. Pérez Jiménez Sevilla, Octubre de 1993 Dpto. de Ciencias de la Computación e Inteligencia Artificial Universidad de Sevilla 1 TEORÍA DE
Semana04[1/17] Funciones. 21 de marzo de Funciones
Semana04[1/17] 21 de marzo de 2007 Composición de funciones Semana04[2/17] Pensemos que tenemos tres conjuntos no vacíos A, B, C, y dos funciones, f : A B y g : B C, como en el siguiente diagrama: Figura:
Introducción a los números reales
Grado en Matemáticas Curso 2009-2010 Índice Conjuntos numéricos 1 Conjuntos numéricos Tienen nombre Y cuatro operaciones básicas 2 Teoremas y demostraciones Métodos de demostración 3 El axioma fundamental
1. Problemas de inducción.
Proyecto I: Más sobre números reales Objetivos: Profundizar el estudio de los números reales. 1. Problemas de inducción. Ejercicio 1.1 Sea n. Definiremos los coeficientes binomiales ( n ) mediante la expresión
Espacios Vectoriales
Espacios Vectoriales Espacios Vectoriales Verónica Briceño V. noviembre 2013 Verónica Briceño V. () Espacios Vectoriales noviembre 2013 1 / 47 En esta Presentación... En esta Presentación veremos: Espacios
ÁLGEBRA Algunas soluciones a la Práctica 1
ÁLGEBRA Algunas soluciones a la Práctica 1 Correspondencias y aplicaciones (Curso 2004 2005) 1. Dadas las siguientes correspondencias, determinar sus conjuntos origen, imagen, decidir si no son aplicaciones
Teoría de la Dimensión
Capítulo II Teoría de la Dimensión En este capítulo introduciremos una de las propiedades más importantes que tienen los espacios vectoriales: la dimensión. Dos son los modos posibles de llegar a la noción
