Funciones y Cardinalidad

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Funciones y Cardinalidad"

Transcripción

1 Funciones y Cardinalidad Definición 1 Llamaremos función f entre dos conjuntos A y B a una relación que verifica las siguientes propiedades: i) Dom(f) = A ii) Si (a, b), (a, c) f entonces b = c Dicho de otra manera: todo elemento de A está relacionado con algún elemento de B y que este elemento es el único. Ejemplo: La relación definida entre A = {1, 2, 3, 4} y B = {a, b, c} f = {(1, a), (2, c), (3, c), (4, a)} es una función. A a b c B 1

2 Si f es una función de A en B lo expresaremos f: A B a los elementos del conjunto A le llamaremos argumentos o variables. Por otro lado, si (a, b) f lo denotaremos f(a) = b y diremos que b es la imagen de a. Por tanto: f = {(a, f(a)) a A} Si consideramos A = B = R, podemos definir la función f: R R mediante la regla f(x) = x 2 1, quedando perfectamente definida la función. Sin embargo, en ocasiones se habla de la función f: R R, definida f(x) = x. Aunque en el sentido algebraico no es una función, sí lo es si nos restringimos a su dominio. Ejemplo: La relación identidad I en A es una función, la llamaremos función identidad. 2

3 Imagen directa e imagen inversa Toda función f: A B define dos nuevas funciones, una de P(A) en P(B) a la que llamaremos Imagen directa que transforma un subconjunto X A en el subconjunto f(x) = {f(x) x X} Otra de P(B) en P(A) a la que llamaremos Preimagen o Imagen inversa que transforma un subconjunto Y B en el subconjunto f 1 (Y ) = {a f(a) Y }. A B A B X -1 f (Y) Y f(x) Imagen Directa Imagen Inversa Ejemplo: Si f: R {0} R y f(x) = 1 x, entonces f ((0, 1]) = [1, ) f 1 ([ 1, 1]) = (, 1] [1, ) 3

4 Tipos especiales de funciones Definición 2 f: A B se dice que es inyectiva si elementos distintos de A tienen imágenes distintas, es decir a, a A y a a f(a) f(a ) A a b c d B Una definición de inyectividad equivalente a la anterior es: f(a) = f(a ) a = a Ejemplo: La función f: Z {1} Q definida f(n) = n es inyectiva. n 1 Demostración: n = m. Si f(n) = f(m) llegamos a 4

5 Definición 3 f: A B es sobreyectiva si todo elemento de B es imagen de algún elemento de A: Dado b B, existe a A tal que f(a) = b A B C x f f(x) g g(f(x)) g f Ejemplos: Veamos que f: R R definida f(x) = 1 + 2x es sobreyectiva: si y R, existe x tal que f(x) = y, en concreto x = y 1 2. f: R R definida f(x) = x no es sobreyectiva. su gráfica, sería algo 1 + x2 así:

6 Definición 4 Diremos que una función f es biyectiva si es inyectiva y sobreyectiva. A a b c d B No todas las funciones han de ser necesariamente de alguno de estos tipos. Existen funciones que no son ni inyectivas ni sobreyectivas y por lo tanto tampoco biyectivas. Composición de funciones y funciones inversas Si f: A B y g: B C son funciones, sabemos que existe la relación compuesta, será ésta también una función? La composición de funciones se representa como g f indicando que primero se aplica f y luego g (al contrario que la composición de relaciones) 6

7 Teorema 1 Si f: A B y g: B C son funciones, entonces la relación compuesta g f: A C es también una función. A B C x f f(x) g g(f(x)) g f Observemos que la función compuesta toma la expresión: (g f)(a) = g (f(a)) que nos sirve como definición de composición de funciones. Teorema 2 Si f: A B y g: B C son inyectivas (resp. sobreyectivas), entonces g f es inyectiva (resp. sobreyectiva) 7

8 Funciones inversibles Sabemos que, dada una función f: A B, existe la relación inversa f 1 : B A que, no necesariamente, ha de ser función, por tanto: Definición 5 Diremos que una función f: A B es inversible si la relación inversa f 1 : B A es función. Teorema 3 Una función f: A B es inversible si y sólo si es biyectiva. Ejemplo: La función f : R R + definida f(x) = x 2 no es inversible, ya que no es inyectiva. La relación inversa es f 1 (x) = ± x

9 Si f es inversible, entonces f 1 también lo es, puesto que (f 1 ) 1 = f. Teorema 4 Sea f: A B una función inversible, entonces se verifica: a) f f 1 = I B b) f 1 f = I A Teorema 5 Si f: A B es una función inversible y existe g: B A tal que f g = I B o g f = I A, entonces g = f 1 Ejemplo: Usar este hecho para encontrar la inversa de la función f: R R definida f(x) = 2x 1. f(f 1 (x)) = x 2f 1 (x) 1 = x f 1 (x) = 1 + x 2 9

10 Operaciones binarias Definición 6 Llamaremos operación binaria (interna) definida sobre un conjunto A a una función definida A A A. A A A (a, b) a b También se pueden definir operaciones binarias llamadas externas A B B (a, b) a b por ejemplo, el producto de un escalar (número real) por un vector, que da como resultado otro vector. Incluso se pueden definir operaciones sobre los elementos de un conjunto, dando como resultado un e- lemento de otro conjunto distinto (el producto escalar de dos vectores es un ejemplo de ello). Propiedades y elementos notables Propiedad asociativa: para cada a, b, c A se verifica (a b) c = a (b c). Propiedad conmutativa: para cada a, b A se verifica a b = b a. Leyes de cancelación: a la izquierda si a b = a c b = c. Si tenemos una segunda operación : Propiedad distributiva: para cada a, b, c A se verifica a (b c) = (a b) (a c). 10

11 Algunos elementos del conjuntos A se pueden comportar de forma notable con respecto a la operación Elemento neutro e: a e = e a = a para cada a A. Elemento absorbente z: a z = z a = z para cada a A. Elemento idempotente: a a = a. Elemento inversible: a es inversible si existe a que a a = a a = e. tal Estructuras algebraicas Cuando tenemos uno o más conjuntos con una o varias operaciones binarias, con unas determinadas propiedades y unos determinados elementos notables, estamos ante una estructura algebraica A veces, si el conjunto sobre el que actúa una operación es finito A = {a 1, a 2,..., a n } es posible representar dicha operación mediante una tabla de la forma a 1 a j a n a 1... a i. a i a j. a n. Las estructuras se representan agrupando bajo un paréntesis el conjunto y las operaciones que actúan sobre él, e- jemplo (A, ) o bien (A,, ). 11

12 Morfismos Dadas dos estructuras algebraicas similares (con las mismas propiedades) se llamará homomorfismo a una función entre los conjuntos que respeta la estructura, por ejemplo, si (A, ) y (B, ) son dos estructuras algebraicas un homomorfismo será u- na función f: A B que verifica f(a b) = f(a) f(b) para cada par de elementos a, b A. Cuando los homomorfismos son inyectivos o sobreyectivos reciben nombres especiales, estos son los siguientes: Monomorfismo: si es inyectivo. Epimorfismo: si es sobreyectivo. Isomorfismo: si es biyectivo. Ejemplo: Dados conjuntos {a, b, c} y {1, 2, 3} con operaciones definidas mediante las respectivas tablas a b c a a b c b b b b c c b b se observa que son isomorfas a 2 b 1. c mediante la función 12

13 Cardinalidad Definición 7 Un conjunto A se dice que es equipotente a otro B, si, existe una aplicación biyectiva de A en B. Escribiremos A B. Ejemplo: Dado A = {s, t, m} y B = {,, } se tiene A B. La equipotencia es una relación de equivalencia. Definición 8 Dado A, se llama cardinal de A a la clase de equivalencia [A] respecto de la relación de equipotencia. Lo representamos como A. El único equipotente a vacío es él mismo, y en lugar de escribir cuando hablemos de cardinal pondremos el número natural 0. De la misma forma cuando nos refiramos al cardinal del conjunto { } o de {a} o de { }... o de cualquiera equipotente a ellos, en lugar de poner { } pondremos el natural 1. Si consideramos los subconjuntos de N N n = {1, 2,..., n} Podemos dar nombre propio a cada cardinal o clase distinta: := 0 N 1 := 1 N 2 := 2 N 3 := 3 Por este motivo por el cual se identifica el cardinal de un conjunto como el número de elementos que posee... 13

14 Podemos entonces dar una definición rigurosa de conjunto finito como sigue: Definición 9 Un conjunto A se dice finito si su cardinal es un número natural, es decir, si es equipotente a alguno de los N n. Conjuntos infinitos Obsérvese que el cardinal del N, coincide con el cardinal de números pares 2N. Puede chocar que se produzca la posibilidad de que el cardinal de una parte pueda coincidir con el de la totalidad, pero esto no es contradicción alguna, precisamente esta posibilidad es lo que va a dar un carácter distinto a este conjunto, que como sabemos no es finito: Definición 10 Un conjunto A se dice que es infinito si es equipotente a un subconjunto propio suyo. Es decir existe B A, B A y tal que B = A. Por tanto el conjunto de los naturales es un conjunto infinito. El cardinal N se expresa por ℵ 0 y tiene el nombre de cardinal numerable. Cualquier conjunto con cardinal numerable se dice que es infinito numerable. Definición 11 Un conjunto se dice que es numerable si es finito o infinito numerable. Ejercicio Probar que la unión de dos conjuntos numerables es también numerable. Probar además que la unión numerable de conjuntos numerables es numerable, es decir, si cada A i es numerable, entonces A i es también numerable. i 14

15 Definición 12 Dados A, B se dice que el cardinal de A es estrictamente menor que el cardinal de B ( A < B ) si se cumplen las dos siguientes condiciones: 1) A es equipotente a un subconjunto propio de B. 2) Ningún subconjunto de A es equipotente a B. Decimos que A B como usualmente, si A < B o A = B. Con esta definición, claramente el cardinal 7 es estrictamente menor que el cardinal 11, es más, entre cardinales finitos sobra la condición 2). Sin embargo entre conjuntos infinitos esto no se produce (piénsese en los conjuntos N y 2N) Ejercicio Prueba que es suficiente para ver que A B que existe una función inyectiva f: A B. Como aplicación de esto último tenemos que N Q. Nota: Si A es un subconjunto propio de B siempre se verifica A B puesto que la función identidad sería una función inyectiva. Teorema 6 El conjunto de los números racionales Q es infinito numerable. Este teorema puede chocar un poco con la intuición por el hecho de que pueda tener el mismo cardinal un conjunto como Q que es denso que otro como N que es discreto. Nota: Un conjunto denso significa que entre dos e- lementos cualesquiera del conjunto, siempre existe un elemento distinto entre ellos. Discreto es lo contrario. 15

16 Podía pensarse que todos los conjuntos numéricos son numerables, aunque fuesen conjuntos densos. Esto no es así, veamos el siguiente Teorema 7 El subconjunto de los números reales es infinito no numerable. (0, 1) = {x R : 0 < x < 1} Existen pues más números reales entre 0 y 1 que todos los racionales juntos. Pero lo realmente sorprendente, aunque muy fácil de probar, es el siguiente resultado: El cardinal de (0, 1) es el mismo que el de R, como muestra la función biyectiva siguiente: f: (0, 1) R ; f(x) = 6(x 0.5)3 x(x 1) Según los anteriores resultados, tenemos que N = Z = Q < R. Pero existirán conjuntos con cardinal mayor que el cardinal de R? La respuesta nos la da el siguiente teorema. 16

17 Teorema 8 Dado un conjunto cualquiera A, el conjunto de sus partes P(A) es de cardinal superior a A, es decir A < P(A) Deducimos que no tenemos más que ir formando el conjunto de las partes de un conjunto cualquiera para obtener uno de cardinal superior, es entonces posible obtener una infinidad de cardinales infinitos y ordenarlos: Llamando ℵ 1 al cardinal de R, ℵ 2 al cardinal del conjunto de sus partes, ℵ 3 al de las partes de las partes..., tenemos ℵ 0 < ℵ 1 < ℵ 2 < ℵ 3 < < ℵ k < Estos cardinales se llaman Cardinales transfinitos. Podemos suponer que entre dos cardinales transfinitos consecutivos no existen otros. Éste ha sido el teorema conocido como la generalización de la hipótesis del continuo que trató de probar Cantor. El célebre lógico K. Gödel demuestra en 1938 que esta afirmación no llevaba a contradicción alguna la axiomática de la teoría de conjuntos usual, y se consideró que esa afirmación conocida como teorema de Cantor era cierta. No obstante Cohën (discípulo de Cantor) demostró que la suposición de que el teorema de Cantor es falso, tampoco contradice la teoría. Ésto se expresa diciendo que el teorema de Cantor es independiente de la teoría, es decir no es resultado deducible o demostrable a partir de los axiomas previos. Es un resultado que considerado axiomáticamente es tan cierto como falso, y añadido a los restantes axiomas nos proporcionan a su vez teorías válidas. 17

Estructuras Algebraicas

Estructuras Algebraicas Tema 1 Estructuras Algebraicas Definición 1 Sea A un conjunto no vacío Una operación binaria (u operación interna) en A es una aplicación : A A A Es decir, tenemos una regla que a cada par de elementos

Más detalles

Un elemento de un monoide se dice que es inversible si tiene elemento inverso.

Un elemento de un monoide se dice que es inversible si tiene elemento inverso. Tema 1: Semigrupos 1 Tema 1: Semigrupos 1. Semigrupos: Conceptos fundamentales. Recordemos que un sistema algebraico es un conjunto S con una o varias operaciones sobre él, siendo una operación ó ley de

Más detalles

Terminaremos el capítulo con una breve referencia a la teoría de cardinales.

Terminaremos el capítulo con una breve referencia a la teoría de cardinales. TEMA 5. CARDINALES 241 Tema 5. Cardinales Terminaremos el capítulo con una breve referencia a la teoría de cardinales. Definición A.5.1. Diremos que el conjunto X tiene el mismo cardinal que el conjunto

Más detalles

2. Estructuras Algebraicas

2. Estructuras Algebraicas 2. Estructuras Algebraicas 2.1. Conjuntos Un conjunto es una reunión en un todo de determinados objetos bien definidos y diferentes entre sí. Llamamos elementos a los objetos que lo forman. Requisitos:

Más detalles

Estructuras algebraicas

Estructuras algebraicas Semana 10[1/14] 26 de abril de 2007 Semana 10[2/14] Grupos Un grupo es un caso particular de una estructura algebraica. Veremos que esta noción rescata ampliamente las propiedades de estructuras tales

Más detalles

Con esta definición de grupo, es directo que el neutro es único, al igual que el inverso de. , donde es conmutativo, se denomina Abeliano.

Con esta definición de grupo, es directo que el neutro es único, al igual que el inverso de. , donde es conmutativo, se denomina Abeliano. Teoría de Grupos Definiciones Básicas Definición 5 (Grupo) Sea una estructura algebraica con una ley de composición interna. Decimos que es un grupo si: 1. es asociativa. 2. tiene neutro. 3. toda tiene

Más detalles

Conjuntos Infinitos. Ramón Espinoza Armenta AVC APOYO VIRTUAL PARA EL CONOCIMIENTO

Conjuntos Infinitos. Ramón Espinoza Armenta AVC APOYO VIRTUAL PARA EL CONOCIMIENTO Ramón Espinoza Armenta AVC APOYO VIRTUAL PARA EL CONOCIMIENTO El estudio de los conjuntos infinitos se inicia con Las Paradojas del Infinito, la última obra del matemático checo Bernard Bolzano, publicada

Más detalles

UNIDAD 5 : ESTRUCTURAS ALGEBRAICAS

UNIDAD 5 : ESTRUCTURAS ALGEBRAICAS UNIVERSIDAD DON BOSCO - DEPARTAMENTO DE CIENCIAS BÁSICAS UNIDAD 5 : ESTRUCTURAS ALGEBRAICAS ÁLGEBRA LINEAL - GUIÓN DE CLASE - SEMANA 10 - CICLO 01-2015 Estudiante: Grupo: 1. Aplicaciones 1.1. Aplicaciones.

Más detalles

Conjuntos, relaciones y funciones Susana Puddu

Conjuntos, relaciones y funciones Susana Puddu Susana Puddu 1. Repaso sobre la teoría de conjuntos. Denotaremos por IN al conjunto de los números naturales y por ZZ al de los enteros. Dados dos conjuntos A y B decimos que A está contenido en B o también

Más detalles

Pregunta 1 Es correcta esta definición? Por qué?

Pregunta 1 Es correcta esta definición? Por qué? TEORÍA DE CONJUNTOS. En un libro de COU de 1975 puede leerse la siguiente definición de conjunto: Un conjunto es una colección de objetos, cualquiera que sea su naturaleza. Pregunta 1 Es correcta esta

Más detalles

Estructuras algebraicas. Departamento de Álgebra. Apuntes de teoría

Estructuras algebraicas. Departamento de Álgebra.  Apuntes de teoría ESTRUCTURAS ALGEBRAICAS GRADO EN MATEMÁTICAS. CURSO 2015/2016 Apuntes de teoría Tema 1: Grupos y subgrupos. 1.1. Introducción Definición 1.1. Un grupo es un par (G, ), donde G es un conjunto no vacío,

Más detalles

LEYES DE COMPOSICIÓN INTERNA Y ELEMENTOS DISTINGUIDOS

LEYES DE COMPOSICIÓN INTERNA Y ELEMENTOS DISTINGUIDOS LEYES DE COMPOSICIÓN INTERNA Y ELEMENTOS DISTINGUIDOS Sea una estructura formada por un conjunto A, sobre cuyos elementos se ha definido una operación o ley interna, comúnmente denotada por " * ", que

Más detalles

UNIDAD 5 : ESTRUCTURAS ALGEBRAICAS

UNIDAD 5 : ESTRUCTURAS ALGEBRAICAS UNIVERSIDAD DON BOSCO - DEPARTAMENTO DE CIENCIAS BÁSICAS UNIDAD 5 : ESTRUCTURAS ALGEBRAICAS ÁLGEBRA LINEAL - GUIÓN DE CLASE - SEMANA 10 - CICLO 01-2015 Estudiante: Grupo: 1. Aplicaciones 1.1. Aplicaciones.

Más detalles

Álgebra y estructuras finitas/discretas (Grupos A)

Álgebra y estructuras finitas/discretas (Grupos A) Álgebra y estructuras finitas/discretas (Grupos A) Curso 2007-2008 Soluciones a algunos de los ejercicios propuestos en el Tema 2 Antes de ver la solución de un ejercicio, repase la teoría correspondiente

Más detalles

Definición 1 Un semigrupo es un conjunto E provisto de una operación binaria asociativa sobre E, se denota por (E, ).

Definición 1 Un semigrupo es un conjunto E provisto de una operación binaria asociativa sobre E, se denota por (E, ). ALGEBRA La primera parte del presente libro está dedicada a las estructuras algebraicas. En esta parte vamos a iniciar agregándole a los conjuntos operaciones. Cuando las operaciones tienen determinadas

Más detalles

Anillos y Cuerpos. a(b + c) = ab + ac (a + b)c = ac + bc

Anillos y Cuerpos. a(b + c) = ab + ac (a + b)c = ac + bc Anillos y Cuerpos Anillos Sea un conjunto R con dos operaciones internas que llamaremos suma (+) y producto ( ). Diremos que (R, +, ) es un anillo si verifica: (R, +) es un grupo abeliano. (R, ) es un

Más detalles

Conjuntos, Aplicaciones y Relaciones

Conjuntos, Aplicaciones y Relaciones Conjuntos, Aplicaciones y Relaciones Curso 2017-2018 1. Conjuntos Un conjunto será una colección de objetos; a cada uno de estos objetos lo llamaremos elemento del conjunto. Si x es un elemento del conjunto

Más detalles

Centro Asociado Palma de Mallorca. Tutor: Antonio Rivero Cuesta

Centro Asociado Palma de Mallorca. Tutor: Antonio Rivero Cuesta Centro Asociado Palma de Mallorca Lógica y Estructuras Discretas Tutor: Antonio Rivero Cuesta Tema 3 Conjuntos, Relaciones y Funciones Conjuntos y Operaciones Los conjuntos se representan con letras mayúsculas,

Más detalles

Aplicaciones Lineales

Aplicaciones Lineales Capítulo 5 Aplicaciones Lineales 51 Definición y Propiedades Sean V y W dos espacios vectoriales sobre el mismo cuerpo K Definición 511 Se dice que una aplicación f : V W es una aplicación lineal o un

Más detalles

Tema 2. Grupos. 3. El conjunto de matrices de orden 2 con coeficientes enteros (o reales) con la suma es un grupo conmutativo.

Tema 2. Grupos. 3. El conjunto de matrices de orden 2 con coeficientes enteros (o reales) con la suma es un grupo conmutativo. Tema 2. Grupos. 1 Grupos Definición 1 Un grupo es una estructura algebraica (G, ) tal que la operación binaria verifica: 1. * es asociativa 2. * tiene elemento neutro 3. todo elemento de G tiene simétrico.

Más detalles

Pauta 11 : Conjuntos Infinitos

Pauta 11 : Conjuntos Infinitos MA1101-5 Introducción al Álgebra Profesor: Mauricio Telias Auxiliar: Arturo Merino P1. [Varios de numerabilidad] a) Considere el conjunto Pauta 11 : Conjuntos Infinitos 2 de junio del 2017 C = {..., 16,

Más detalles

Preliminares. 1. Notación simbólica. Conjuntos. También se da en el curso de Conjuntos y Numeros.

Preliminares. 1. Notación simbólica. Conjuntos. También se da en el curso de Conjuntos y Numeros. CAPíTULO 1 Preliminares 1. Notación simbólica. Conjuntos. También se da en el curso de Conjuntos y Numeros. El método matemático es axiomático y deductivo: a partir de unos principios aceptados inicialmente

Más detalles

Semana04[1/17] Funciones. 21 de marzo de Funciones

Semana04[1/17] Funciones. 21 de marzo de Funciones Semana04[1/17] 21 de marzo de 2007 Composición de funciones Semana04[2/17] Pensemos que tenemos tres conjuntos no vacíos A, B, C, y dos funciones, f : A B y g : B C, como en el siguiente diagrama: Figura:

Más detalles

Tema 1: Conjuntos. Miguel Ángel Olalla Acosta Departamento de Álgebra Universidad de Sevilla. Septiembre de 2017

Tema 1: Conjuntos. Miguel Ángel Olalla Acosta Departamento de Álgebra Universidad de Sevilla. Septiembre de 2017 Tema 1: Conjuntos Miguel Ángel Olalla Acosta [email protected] Departamento de Álgebra Universidad de Sevilla Septiembre de 2017 Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2017 1

Más detalles

Práctica 2: Cardinalidad. Propiedades básicas de los conjuntos

Práctica 2: Cardinalidad. Propiedades básicas de los conjuntos Cálculo Avanzado Segundo Cuatrimestre de 2014 Práctica 2: Cardinalidad Propiedades básicas de los conjuntos Ejercicio 1. Demostrar las siguientes igualdades de conjuntos: i) B i I A i = i I(B A i ). ii)

Más detalles

Conjuntos. Relaciones. Aplicaciones

Conjuntos. Relaciones. Aplicaciones Conjuntos. Relaciones. Aplicaciones Conjuntos 1. Considera el subconjunto A de números naturales formado por los múltiplos de 4 y el conjunto B N de los números que terminan en 4. Comprueba que A B y B

Más detalles

Semana 09[1/14] Cardinalidad. 25 de abril de Cardinalidad

Semana 09[1/14] Cardinalidad. 25 de abril de Cardinalidad Semana 09[1/14] 25 de abril de 2007 Semana 09[2/14] Conjunto no numerables Vimos cuáles son los conjuntos numerables, una serie de propiedades acerca de ellos, y conocimos varios conjuntos numerables,

Más detalles

Tema 1: Conjuntos. Miguel Ángel Olalla Acosta Departamento de Álgebra Universidad de Sevilla. Septiembre de 2018

Tema 1: Conjuntos. Miguel Ángel Olalla Acosta Departamento de Álgebra Universidad de Sevilla. Septiembre de 2018 Tema 1: Conjuntos Miguel Ángel Olalla Acosta [email protected] Departamento de Álgebra Universidad de Sevilla Septiembre de 2018 Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2018 1

Más detalles

Ejercicios de Álgebra Básica. Curso 2014/15

Ejercicios de Álgebra Básica. Curso 2014/15 Ejercicios de Álgebra Básica. Curso 2014/15 Tema 1: Conjuntos Conjuntos. Operaciones básicas Ejercicio 1. Describir las relaciones de inclusión o pertenencia entre los siguientes conjuntos: A =, B = {

Más detalles

Teoría de anillos. Dominios, cuerpos y cuerpos de fracciones.

Teoría de anillos. Dominios, cuerpos y cuerpos de fracciones. Tema 5.-. Teoría de anillos. Dominios, cuerpos y cuerpos de fracciones. 5.1. Anillos y cuerpos Definición 5.1.1. Un anillo es una terna (A, +, ) formada por un conjunto A y dos operaciones binarias +,

Más detalles

Tema 1: Conjuntos. Miguel Ángel Olalla Acosta Departamento de Álgebra Universidad de Sevilla. Septiembre de 2016

Tema 1: Conjuntos. Miguel Ángel Olalla Acosta Departamento de Álgebra Universidad de Sevilla. Septiembre de 2016 Tema 1: Conjuntos Miguel Ángel Olalla Acosta [email protected] Departamento de Álgebra Universidad de Sevilla Septiembre de 2016 Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2016 1

Más detalles

Práctica 2 -Cardinalidad- A. Propiedades básicas de los Conjuntos

Práctica 2 -Cardinalidad- A. Propiedades básicas de los Conjuntos Cálculo Avanzado Segundo Cuatrimestre de 2012 Práctica 2 -Cardinalidad- A. Propiedades básicas de los Conjuntos Ejercicio 1. Demostrar las siguientes igualdades de conjuntos: i) B i I A i = i I(B A i ).

Más detalles

1. Conjuntos y funciones

1. Conjuntos y funciones PRACTICO 1: CONJUNTOS. 1. Conjuntos y funciones Es útil saber de memoria las siguientes propiedades de conjuntos y funciones. Tanto como saber las tablas. Ejercicio 1. Si I es un conjunto y A α es un conjunto

Más detalles

P(f) : P(B) P(A) (A.2)

P(f) : P(B) P(A) (A.2) TEMA 2. APLICACIONES 227 Tema 2. Aplicaciones Definición A.2.1. Una correspondencia entre dos conjuntos A y B es un subconjunto del producto cartesiano A B. Una aplicación f entre dos conjuntos A y B es

Más detalles

Espacios topológicos y espacios métricos

Espacios topológicos y espacios métricos CAPíTULO 2 Espacios topológicos y espacios métricos Tema 1. Definición y primeros ejemplos Como queda anunciado al final del capítulo anterior ampliaremos la definición de abierto de un conjunto utilizando

Más detalles

Conjuntos, relaciones de equivalencia y aplicaciones

Conjuntos, relaciones de equivalencia y aplicaciones CAPíTULO 1 Conjuntos, relaciones de equivalencia y aplicaciones 1. Conjuntos La idea de conjunto es una de las más significativas en Matemáticas. La mayor parte de los conceptos matemáticos están construidos

Más detalles

Ejercicios de Álgebra Básica. Curso 2017/18

Ejercicios de Álgebra Básica. Curso 2017/18 Ejercicios de Álgebra Básica. Curso 2017/18 Tema 1: Conjuntos Conjuntos. Operaciones básicas Ejercicio 1. Describir las relaciones de inclusión o pertenencia entre los siguientes conjuntos: A =, B = {

Más detalles

Conjuntos finitos y conjuntos numerables

Conjuntos finitos y conjuntos numerables Tema 3 Conjuntos finitos y conjuntos numerables En este tema vamos a usar los números naturales para contar los elementos de un conjunto, o dicho con mayor precisión, para definir los conjuntos finitos

Más detalles

Tema 2: Introducción a la teoría de grupos

Tema 2: Introducción a la teoría de grupos Tema 2: Introducción a la teoría de grupos Miguel Ángel Olalla Acosta [email protected] Departamento de Álgebra Universidad de Sevilla Octubre de 2018 Olalla (Universidad de Sevilla) Tema 2: Introducción

Más detalles

Estructuras Discretas. Conjuntos. Conjuntos & Funciones. Especificación de Conjuntos.

Estructuras Discretas. Conjuntos. Conjuntos & Funciones. Especificación de Conjuntos. Estructuras Discretas Conjuntos Conjuntos & Funciones Claudio Lobos [email protected] niversidad Técnica Federico Santa María Estructuras Discretas INF 152 Definición: conjunto n conjunto es una colección

Más detalles

MÉTODOS MATEMÁTICOS DE LA FÍSICA I

MÉTODOS MATEMÁTICOS DE LA FÍSICA I MÉTODOS MATEMÁTICOS DE LA FÍSICA I Ignacio Sánchez Rodríguez Curso 2006-07 TEMA PRELIMINAR ÍNDICE 1. Lenguaje matemático 2 2. Conjuntos 6 3. Aplicaciones 10 4. Relaciones 12 5. Estructuras algebraicas

Más detalles

1. Conjuntos y funciones

1. Conjuntos y funciones Centro de Matemática Facultad de Ciencias Universidad de la República Introducción a la Topología Curso 2016 PRACTICO 1: CONJUNTOS. 1 1. Conjuntos y funciones Ejercicio 1. Si I es un conjunto y A α es

Más detalles

Estructuras Algebraicas

Estructuras Algebraicas Estructuras Algebraicas Luis Manuel Hernández Ramos 12 24 de mayo de 2007 1 Centro de Calculo Científico y Tecnológico, Facultad de Ciencias, Universidad Central de Venezuela, Caracas. 2 e-mail: [email protected]

Más detalles

Tema 1: Fundamentos.

Tema 1: Fundamentos. Tema 1: Fundamentos. 1. Nociones básicas de la Teoría de Conjuntos. Definición. Un conjunto es una colección de objetos. A los objetos de un conjunto se les llama elementos del conjunto. Se denominará

Más detalles

TEMA 2. TEORÍA DE CONJUNTOS

TEMA 2. TEORÍA DE CONJUNTOS TEMA 2. TEORÍA DE CONJUNTOS 1. Introducciónalalógica de proposiciones 1.1 Definición. Una proposición es una oración declarativa de la cual se puede decir sin ambigüedad si es verdadera o falsa. 1.2 Definición.

Más detalles

Práctica 2: Cardinalidad

Práctica 2: Cardinalidad Cálculo Avanzado Segundo Cuatrimestre de 2005 Práctica 2: Cardinalidad Llamaremos número cardinal de M al concepto general que, por medio de nuestra activa capacidad de pensar, surge del conjunto M cuando

Más detalles

Definiciones Un conjunto es una colección de objetos distintos. Notaremos. A = {a, b, c, d, } por extensión

Definiciones Un conjunto es una colección de objetos distintos. Notaremos. A = {a, b, c, d, } por extensión CONJUNTOS Definiciones Un conjunto es una colección de objetos distintos. Notaremos A = {a, b, c, d, } por extensión A = {x / x tiene la propiedad P} por comprensión El cardinal de un conjunto es el número

Más detalles

PRELIMINARES. En este capítulo vamos a dar, sin ser muy estrictos, algunas nociones necesarias para la compresión de la asignatura.

PRELIMINARES. En este capítulo vamos a dar, sin ser muy estrictos, algunas nociones necesarias para la compresión de la asignatura. 1 PRELIMINARES 1. CONJUNTOS En este capítulo vamos a dar, sin ser muy estrictos, algunas nociones necesarias para la compresión de la asignatura. 1.1 Def:. Se define un conjunto como una colección de objetos.

Más detalles

TEMA 1: NÚMEROS NATURALES. SISTEMA DE NUMERACIÓN

TEMA 1: NÚMEROS NATURALES. SISTEMA DE NUMERACIÓN 1 TEMA 1: NÚMEROS NATURALES. SISTEMA DE NUMERACIÓN 1. INTRODUCCIÓN Los números naturales aparecen debido a la necesidad que tiene el hombre para contar. Para poder construir este conjunto N, podemos seguir

Más detalles

TEMA 4. APLICACIONES LINEALES

TEMA 4. APLICACIONES LINEALES TEMA 4. APLICACIONES LINEALES 1.- Definición y propiedades. 2.- Aplicaciones lineales inyectivas y Suprayectivas. 3.- Núcleo, imagen, matriz asociada y rango de una aplicación lineal. 4.- Operaciones con

Más detalles

Conjuntos finitos y conjuntos numerables

Conjuntos finitos y conjuntos numerables Tema 3 Conjuntos finitos y conjuntos numerables En este tema vamos a usar los números naturales para contar los elementos de un conjunto, o dicho con mayor precisión, para definir los conjuntos finitos

Más detalles

Álgebra Lineal y Estructuras Matemáticas. J. C. Rosales y P. A. García Sánchez. Departamento de Álgebra, Universidad de Granada

Álgebra Lineal y Estructuras Matemáticas. J. C. Rosales y P. A. García Sánchez. Departamento de Álgebra, Universidad de Granada Álgebra Lineal y Estructuras Matemáticas J. C. Rosales y P. A. García Sánchez Departamento de Álgebra, Universidad de Granada Capítulo 1 Conjuntos, relaciones y aplicaciones 1. Conjuntos La idea de conjunto

Más detalles

14/02/2017. TEMA 3: EL CUERPO DE LOS NUMEROS REALES Esp. Prof. Liliana N. Caputo

14/02/2017. TEMA 3: EL CUERPO DE LOS NUMEROS REALES Esp. Prof. Liliana N. Caputo TEMA 3: EL CUERPO DE LOS NUMEROS REALES Esp. Prof. Liliana N. Caputo Así como al estudiar conjuntos hablamos de la existencia de términos primitivos (que no se definen), para definir algunos conjuntos,

Más detalles

Tema 1.- Nociones preliminares: grupos, anillos, cuerpos. Divisibilidad

Tema 1.- Nociones preliminares: grupos, anillos, cuerpos. Divisibilidad Tema 1.- Nociones preliminares: grupos, anillos, cuerpos. Divisibilidad 1.1 Grupos Al haber alterado el orden de los temas, este apartado ya se ha visto en el tema 9 1.2 Anillos y cuerpos Definición 1.2.1.

Más detalles

Conjuntos, aplicaciones y

Conjuntos, aplicaciones y 0 Conjuntos, aplicaciones y números En este capítulo presentamos los conceptos fundamentales sobre la teoría de conjuntos que nos serán muy útiles en el desarrollo de la asignatura. En primer lugar recordamos

Más detalles

Reconocer y utilizar las propiedades sencillas de la topología métrica.

Reconocer y utilizar las propiedades sencillas de la topología métrica. 3 Funciones continuas De entre todas las aplicaciones que pueden definirse entre dos espacios métrico, las aplicaciones continuas ocupan un papel preponderante. Su estudio es fundamental no sólo en topología,

Más detalles

Introducción a la Matemática Discreta

Introducción a la Matemática Discreta Introducción a la Matemática Discreta Teoría de Conjuntos Luisa María Camacho Camacho Introd. a la Matemática Discreta 1 / 20 Introducción a la Matemática Discreta Temario Tema 1. Teoría de Conjuntos.

Más detalles

Tema 8.- Anillos y cuerpos

Tema 8.- Anillos y cuerpos Tema 8.- Anillos y cuerpos Definición.- Un anillo es una terna (A, +, ) formada por un conjunto A y dos operaciones internas y binarias +, verificando: 1. El par (A, +) es un grupo abeliano, cuyo elemento

Más detalles

Grupos libres. Presentaciones.

Grupos libres. Presentaciones. S _ Tema 12.- Grupos libres. Presentaciones. 12.1 Grupos libres. En el grupo Z de los enteros vimos una propiedad (cf. ejemplos.5), que lo caracteriza como grupo libre. Lo enunciamos al modo de una Propiedad

Más detalles

Imagenes inversas de funciones. x f 1 (A) f(x) A

Imagenes inversas de funciones. x f 1 (A) f(x) A Imagenes inversas de funciones Denición. Sean f : X Y y A una parte del codominio Y. Imagen inversa ó preimagen del subconjunto A Y, es el conjunto de los elementos del dominio cuyas imagenes pertenecen

Más detalles

ÁLGEBRA (Ciencias) año 2014 PRÁCTICA N 4. ELEMENTOS DE TEORÍA DE CONJUNTOS: nociones básicas

ÁLGEBRA (Ciencias) año 2014 PRÁCTICA N 4. ELEMENTOS DE TEORÍA DE CONJUNTOS: nociones básicas ÁLGEBRA (Ciencias) año 2014 PRÁCTICA N 4 ELEMENTOS DE TEORÍA DE CONJUNTOS: nociones básicas 1. Decir, justificando adecuadamente, si las siguientes afirmaciones son verdaderas o falsas: (a) { } (b) { }

Más detalles

TEMA II TEORÍA INTUITIVA DE CONJUNTOS

TEMA II TEORÍA INTUITIVA DE CONJUNTOS TEMA II TEORÍA INTUITIVA DE CONJUNTOS Policarpo Abascal Fuentes TEMA II Teoría intuitiva de conjuntos p. 1/4 TEMA II 2. TEORÍA INTUITIVA DE CONJUNTOS 2.1 CONJUNTOS 2.1.1 Operaciones con conjuntos 2.2 RELACIONES

Más detalles

CONCEPTOS BÁSICOS DE LA TEORÍA DE CONJUNTOS. ESTRUCTURAS ALGEBRAICAS.

CONCEPTOS BÁSICOS DE LA TEORÍA DE CONJUNTOS. ESTRUCTURAS ALGEBRAICAS. TEMA 11 ÍNDICE CONCEPTOS BÁSICOS DE LA TEORÍA DE CONJUNTOS. ESTRUCTURAS ALGEBRAICAS. 1. INTRODUCCIÓN 2. CONJUNTOS 3. SUBCONJUNTOS 4. OPERACIONES 4.1 UNIÓN 4.2 INTERSECCIÓN 4.3 COMPLEMENTO 4.4 DIFERENCIA

Más detalles

Capítulo 4: Conjuntos

Capítulo 4: Conjuntos Capítulo 4: Conjuntos Miguel Ángel Olalla Acosta [email protected] Departamento de Álgebra Universidad de Sevilla Septiembre de 2014 Olalla (Universidad de Sevilla) Capítulo 4: Conjuntos Septiembre de

Más detalles

9 Grupos abelianos libres

9 Grupos abelianos libres 42 TEORIA DE GRUPOS 9 Grupos abelianos libres En Álgebra Lineal es clásica la estructura de espacio vectorial V sobre un cuerpo K. Esta sección trata de estudiar el caso análogo de un grupo abeliano sobre

Más detalles

Cardinalidad. Pablo Verdes. 9 de marzo de 2016 LCC. Pablo Verdes (LCC) Cardinalidad 9 de marzo de / 18

Cardinalidad. Pablo Verdes. 9 de marzo de 2016 LCC. Pablo Verdes (LCC) Cardinalidad 9 de marzo de / 18 Cardinalidad Pablo Verdes LCC 9 de marzo de 2016 Pablo Verdes (LCC) Cardinalidad 9 de marzo de 2016 1 / 18 Por qué estudiamos cardinalidad? Recordemos nuestro objetivo: modelar el proceso de cálculo. Cuál

Más detalles

LEYES, ESTRUCTURAS BÁSICAS Y COCIENTES CONJUNTOS Y GRUPOS

LEYES, ESTRUCTURAS BÁSICAS Y COCIENTES CONJUNTOS Y GRUPOS Todos los derechos de propiedad intelectual de esta obra pertenecen en exclusiva a la Universidad Europea de Madrid, S.L.U. Queda terminantemente prohibida la reproducción, puesta a disposición del público

Más detalles

Fundamentos de Lógica y Teoría de Conjuntos

Fundamentos de Lógica y Teoría de Conjuntos Índice general 1. Lógica y Teoría de conjuntos 3 1.1. Introducción a la Lógica............................ 3 1.1.1. Repaso histórico (Ref. Grimaldi pág. 187).............. 3 1.1.2. Conceptos básicos (Ref.

Más detalles

Tema 1: El cuerpo de los números reales

Tema 1: El cuerpo de los números reales Una definición axiomática debe ser: tal que: Tema 1: El cuerpo de los números reales - Ningún axioma se debe deducir o demostrar de otro anterior - Han de ser los mínimos para demostrar una teoría Axiomas

Más detalles

Estructuras algebraicas

Estructuras algebraicas Semana 11[1/22] 4 de mayo de 2007 Anillos y cuerpos Semana 11[2/22] Anillos Comenzamos ahora el estudio de estructuras algebraicas que tengan definidas dos operaciones, y las clasificaremos en anillos

Más detalles

MatemáticaDiscreta&Lógica 1. Funciones. Aylen Ricca. Tecnólogo en Informática San José

MatemáticaDiscreta&Lógica 1. Funciones. Aylen Ricca. Tecnólogo en Informática San José MatemáticaDiscreta&Lógica 1 Funciones Aylen Ricca Tecnólogo en Informática San José 2014 http://www.fing.edu.uy/tecnoinf/sanjose/index.html FUNCIÓN.::. Definición. Sean A y B conjuntos no vacíos, una funciónf

Más detalles

y exámenes. Temas 3 y 4

y exámenes. Temas 3 y 4 U N I V E R S I D A D D E M U R C I A Ejercicios DEPARTAMENTO DE MATEMÁTICAS CONJUNTOS Y NÚMEROS 2016/2017. de talleres y exámenes. Temas 3 y 4 Se recuerda que la resolución de algunos de estos ejercicios

Más detalles

Teoría de Geometría Afín y Proyectiva (G.A.P.) L A TEX

Teoría de Geometría Afín y Proyectiva (G.A.P.) L A TEX Teoría de Geometría Afín y Proyectiva (G.A.P.) L A TEX Juan Miguel Ribera Puchades 2 de julio de 2007 1 Índice 1. Introducción 4 2. Tema 1: Espacio Afín 5 2.1. Definición, ejemplos y notación.................

Más detalles

Anillos. a + (b + c) = (a + b) + c. 3) Existe un elemento 0 en R, el cual llamaremos cero, tal que. a + 0 = 0 + a = a para todo a en R.

Anillos. a + (b + c) = (a + b) + c. 3) Existe un elemento 0 en R, el cual llamaremos cero, tal que. a + 0 = 0 + a = a para todo a en R. Capítulo 7 Anillos 7.1 Definiciones Básicas El concepto de Anillo se obtiene como una generalización de los números enteros, en donde están definidas un par de operaciones, la suma y el producto, relacionadas

Más detalles

Tema 1: Nociones básicas del Álgebra Lineal.

Tema 1: Nociones básicas del Álgebra Lineal. Nociones básicas del Álgebra Lineal 1 Tema 1: Nociones básicas del Álgebra Lineal 1 Conceptos fundamentales sobre espacios vectoriales y bases Definición Sea (K + ) un cuerpo y (V +) un grupo abeliano

Más detalles

ÁLGEBRA LINEAL I Algunas soluciones a la Práctica 1

ÁLGEBRA LINEAL I Algunas soluciones a la Práctica 1 ÁLGEBRA LINEAL I Algunas soluciones a la Práctica 1 Conjuntos y aplicaciones (Curso 2016 2017) 1. Dados los siguientes conjuntos: A = {2, 3, 5, 7, 11} B = {x Z x 4} C = {x Z x < 5} D = {x N x es impar}

Más detalles

1. Números reales. Análisis de Variable Real

1. Números reales. Análisis de Variable Real 1. Números reales Análisis de Variable Real 2014 2015 Índice 1. Sistemas numéricos 2 1.1. Números naturales. Principio de Inducción... 2 1.2. Números enteros... 4 1.3. Números racionales... 6 2. Los números

Más detalles

EL TEOREMA DE SEIFERT-VAN KAMPEN. 1. Preliminares sobre grupos

EL TEOREMA DE SEIFERT-VAN KAMPEN. 1. Preliminares sobre grupos EL TEOREMA DE SEIFERT-VAN KAMPEN 1. Preliminares sobre grupos Sea G un grupo. Denotaremos de forma multiplicativa la operación en G. Así, el producto de x, y G es x y, y el inverso de x G es x 1. Para

Más detalles

TEORÍA DE GRUPOS (Parte 1)

TEORÍA DE GRUPOS (Parte 1) TEORÍA DE GRUPOS (Parte 1 OPERACIONES BINARIAS Sea A un conjunto. Una relación de A A en A es una operación inaria (o ley de composición interna si es una función. La imagen del elemento (a, A A mediante

Más detalles

ÁLGEBRA LINEAL I Algunas soluciones a la Práctica 1

ÁLGEBRA LINEAL I Algunas soluciones a la Práctica 1 ÁLGEBRA LINEAL I Algunas soluciones a la Práctica 1 Conjuntos y aplicaciones (Curso 2010 2011) 1. Dados los siguientes conjuntos: A = {2, 3, 5, 7, 11} B = {x Z x > 4} C = {x Z x 2 < 20} D = {x N x es primo}

Más detalles

Capítulo 3: El anillo de los números enteros

Capítulo 3: El anillo de los números enteros Capítulo 3: El anillo de los números enteros Miguel Ángel Olalla Acosta [email protected] Departamento de Álgebra Universidad de Sevilla Noviembre de 2016 Olalla (Universidad de Sevilla) El anillo de

Más detalles

Inyectivas, Suprayectivas, Biyectivas, Inversas. Relaciones Funcionales. f : A B se lee f es una función con dominio A y codominio B

Inyectivas, Suprayectivas, Biyectivas, Inversas. Relaciones Funcionales. f : A B se lee f es una función con dominio A y codominio B Relaciones Funcionales Sean A, B dos conjuntos no vacíos, que llamaremos dominio y contradominio respectivamente. Entenderemos por función de A en B toda regla que hace corresponder a cada elemento del

Más detalles

Teoría de anillos. Dominios, cuerpos y cuerpos de fracciones. Característica de un cuerpo.

Teoría de anillos. Dominios, cuerpos y cuerpos de fracciones. Característica de un cuerpo. 1 Tema 5.-. Teoría de anillos. Dominios, cuerpos y cuerpos de fracciones. Característica de un cuerpo. 5.1. Anillos y cuerpos Definición 5.1.1. Un anillo es una terna (A, +, ) formada por un conjunto A

Más detalles

TEMA 3 Elementos de la teoría de los conjuntos. *

TEMA 3 Elementos de la teoría de los conjuntos. * TEM 3 Elementos de la teoría de los conjuntos. * Conjuntos. Un conjunto es cualquier colección, bien definida, de objetos llamadas elementos o miembros del conjunto. Una manera de describir un conjunto

Más detalles

Cardinalidad. Teorema 0.3 Todo conjunto infinito contiene un subconjunto infinito numerable.

Cardinalidad. Teorema 0.3 Todo conjunto infinito contiene un subconjunto infinito numerable. Cardinalidad Dados dos conjuntos A y B, decimos que A es equivalente a B, o que A y B tienen la misma potencia, y lo notamos A B, si existe una biyección de A en B Es fácil probar que es una relación de

Más detalles