Recordemos que utilizaremos, como es habitual, la siguiente notación para algunos conjuntos de números que son básicos.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Recordemos que utilizaremos, como es habitual, la siguiente notación para algunos conjuntos de números que son básicos."

Transcripción

1 Capítulo 1 Preliminares Vamos a ver en este primer capítulo de preliminares algunos conceptos, ideas y propiedades que serán muy útiles para el desarrollo de la asignatura. Se trata de resultados sobre conjuntos, aplicaciones, numerabilidad y propiedades de los números reales. 1.1 Conjuntos Supondremos conocidos algunos conceptos básicos sobre conjuntos: unión, intersección, diferencia, etc... No obstante intentaremos fijar algunas ideas recordando varios resultados interesantes. Recordemos que utilizaremos, como es habitual, la siguiente notación para algunos conjuntos de números que son básicos. N será el conjunto de los números naturales o enteros positivos. Z será el conjunto de los números enteros. Q será el conjunto de los números racionales. R será el conjunto de los números reales. C será el conjunto de los números complejos. Definición (Familia de conjuntos). Una familia de conjuntos A será un conjunto cuyos elementos son, a su vez conjuntos. Los representaremos con letras mayúsculas caligráficas y se pueden expresar a través de un conjunto de índices I de la siguiente forma: A = {A i : i I} 1

2 2 CAPÍTULO 1. PRELIMINARES Definición (Unión e intersección de una familia). Dada una familia de conjuntos A = {A i : i I} definimos: Unión de la familia A como el conjunto de todos los elementos que pertenecen a alguno de los conjuntos de A y lo representaremos de las dos maneras siguientes: A = {x : existe A A tal x A} A i = {x : existe i I tal x A i } i I Intersección de la familia A como el conjunto de todos los elementos que pertenecen a todos los conjuntos de A y lo representaremos de las dos maneras siguientes: A = {x : x A para todo A A} A i = {x : x A i para todo i I} i I Proposición (Propiedad distributiva). Sea {A i : i I} una familia de conjuntos y B un conjunto. Entonces: 1. B ( i I A i) = i I (B A i ) 2. B ( i I A i) = i I (B A i ) Demostración. - (1) Si x B ( i I A i), supongamos que x B, entonces x B A i, para todo i I, por tanto x i I (B A i ). Si ahora suponemos que x / B, será x i I A i, luego x A i para todo i I lo que implica que x B A i para todo i I y por tanto está en la intersección i I (B A i ) de todos ellos. Sea x i I (B A i ), entonces x B A i para todo i I; si x B tenemos que x B ( i I A i) y si x / B será x A i para todo i I, por tanto x i I A i lo que lleva a que x B ( i I A i) (2) Se realiza de forma análoga. Definición (Complementario). Dado A E, definimos el complementario de A en X como el conjunto X A = {x X : x / A} de los elementos de X que no son elementos de A. Si el contexto está suficientemente claro designaremos al complementario de A en X como A c = X A.

3 1.2. APLICACIONES 3 Está claro que (A c ) c = A Proposición (Leyes de Morgan). Sea {A i : I I} una familia de subconjuntos A i X, i I. Entonces 1. ( i i A i) c = i i Ac i o bien X ( i i A i) = i i (X A i) 2. ( i i A i) c = i i Ac i o bien X ( i i A i) = i i (X A i) Demostración. Vamos a ver la demostración de la propiedad 1). La 2) se hará de forma análoga. Si x ( i i A i) c, entonces x / A i para todo i I, por tanto x A c i x i i Ac i. para todo i I, luego Si x i i Ac i, x / A i para todo i I, luego x / i i A i, por tanto x ( i i A i) c. Definición (Diferencia de conjuntos). Dados dos conjuntos A y B, definimos la diferencia de A y B como el conjunto A B = {x : x A y x / B} de los elementos de A que no son elementos de B. Proposición Sean A, B X, entonces se verifican: 1. A B = A B c 2. A (A B) = A B 3. A (A B) = A B 4. Para la diferencia de conjuntos se verifican las Leyes de Morgan. ( ) (a)b A i = i I(B ( ) A i ) (b)b A i = i I(B A i ) i I i I 1.2 Aplicaciones Un concepto tan importante y básico como el de conjunto, y que también es conocido, es el de aplicación entre conjuntos. Vamos a repasar algunas ideas y resultados sobre aplicaciones. Definición (Aplicación). Una aplicación entre los conjuntos X e Y es una correspondencia entre ellos tal que, a cada punto de X le hace corresponder uno y sólo un punto de Y. La representaremos de la siguiente manera f : X Y, o bien, X f Y

4 4 CAPÍTULO 1. PRELIMINARES Una aplicación, f : X Y, está dada por un conjunto de pares ordenados, y puede entenderse como un subconjunto del producto cartesiano X Y, de la forma siguiente: Γ(f) = {(x, y) : x X, y = f(x) Y } X Y, que se denomina la gráfica de f o el grafo de f. Este conjunto debe cumplir que para todo elemento x X existe un único elemento y Y tal que (x, y) Γ(f). Este y se llama la imagen de x por f, y se representa por y = f(x). Definición (Imagen e imagen inversa). Si A X, el conjunto imagen de A, es el subconjunto f(a) = {y Y : existe x A, y = f(x)} Y formado por todas las imágenes f(x) tales que x A. Si B Y, la imagen inversa de B es el subconjunto f 1 (B) = {x X : f(x) B} X formado por aquellos elementos tales que su imagen pertenece a B. Si y Y, se usará la notación f 1 (y) = f 1 ({y}), pero obsérvese que es un subconjunto de X y no un punto. Conviene tener en cuenta que el símbolo f 1 (B) es simplemente una notación de un conjunto. No hay que cometer el error de suponer que f 1 indica que la aplicación f tiene una aplicación inversa. Proposición Sea f : X Y una aplicación entre conjuntos y sean los subconjuntos A X y B Y. Entonces 1. A f 1 (f(a)), 2. f(f 1 (B)) B. Demostración. - (1) Si x A, entonces y = f(x) f(a) Y, luego x f 1 (f(a)). (2) Si y f(f 1 )(B)), entonces f(x) = y para algún x f 1 (B), luego f(x) B, pero como la imagen de cada x es única, f(x) = y B. Ejemplo Las inclusiones anteriores no son,en general, igualdades.

5 1.2. APLICACIONES 5 (1) Consideremos la parábola f : R R, f(x) = x 2. f(f 1 (([1, 2])) = [ 2, 1] [1, 2]. (2) Consideremos el seno de x, f : R R, f(x) = sen x. f(f 1 ([ 2, 2])) = [ 1, 1]. Las imágenes y las imágenes inversas respecto de la unión y de la intersección de familias de conjuntos tienen las siguientes propiedades. Proposición Sean f : X Y una aplicación entre conjuntos y las familias de subconjuntos {A i X : i I} y {B j Y : j J}. Entonces 1. f( i I A i) = i I f(a i), 2. f( i I A i) i I f(a i), 3. f 1 ( j J B j) = j J f 1 (B j ), 4. f 1 ( j J B j) = j J f 1 (B j. 5. f(a B) f(a) f(b) Ejemplo Este ejemplo muestra que las inclusiones (1) y (5) de la proposición anterior no son, en general, igualdades. Consideremos los conjuntos A = [1, 2] [1, 2] y B = [1, 2] [3, 4] de R 2 y la proyección π 1 : R 2 R, definida como π 1 (x, y) = x. Entonces tenemos que Por otra parte π 1 (A) π 1 (B) = [1, 2] [1, 2] = [1, 2], pero π 1 (A B) = π 1 ( ) = π 1 (A B) = π 1 (A) = [1, 2], pero π 1 (A) π 1 (B) = [1, 2] [1, 2] = Hay relaciones entre las imágenes inversas de los complementarios y el complementario de las imágenes inversas. Así se tiene: Proposición Sea f : X Y una aplicación entre conjuntos y sea B Y. Entonces f 1 (Y B) = X f 1 (B).

6 6 CAPÍTULO 1. PRELIMINARES Ejemplo No se verifica ninguna relación entre las imágenes y los complementarios. Si consideramos f : R R, definida como f(x) sen x, tenemos que f([0, π] c ) = [ 1, 1] y, sin embargo [f([0, π])] c = [0, 1] c = (, 0) (1, + ) Un tipo especial de aplicaciones que se utilizarán con frecuencia son las sucesiones. Una sucesión en X es una aplicación φ : N X. Es costumbre representar la sucesión como {x n } n=1 donde x n = φ(n). Es conveniente distinguir una sucesión de su conjunto imagen. Una sucesión siempre tiene infinitos términos, pero su conjunto imagen no tiene por qué ser infinito. Por ejemplo, la sucesión {1, 0, 1, 0,...} tiene como conjunto imagen el {0, 1}. La última definición de este apartado es la de subsucesión de una sucesión {x n } n=1. Dada una aplicación estrictamente creciente α : N N donde α(k) = n k, se define la subsucesión asociada como la composición φ α : N X es decir, es la sucesión {x nk } n= Numerabilidad En esta sección, y salvo que se diga lo contrario, X va a representar un conjunto no vacío. Definición (Conjunto finito). Diremos que X es un conjunto finito si existe un número natural n 0 y una aplicación biyectiva φ : {1, 2,..., n} X Definición (Conjunto infinito numerable). Diremos que X es un conjunto infinito numerable si existe una aplicación biyectiva φ : N X. Definición (Conjunto numerable). Diremos que X es un conjunto numerable si es, o bien finito, o bien infinito numerable. Si X no es numerable, se dice que es infinito no numerable. Proposición Todo subconjunto A N de los números naturales es numerable. Demostración. Si A N es finito el resultado es evidente. Supongamos que A N no es finito. Definimos entonces la aplicación φ : N A de la siguiente manera, φ(0) es el menor elemento de A; φ(1) será el menor elemento de A tal que φ(1) φ(0), así sucesivamente φ(p) será el menor elemento de A tal que φ(p) φ(0) φ(1) = φ(p 1).

7 1.3. NUMERABILIDAD 7 Si existe p tal que ya no podemos hacer lo anterior, es decir φ(p) φ(0)... φ(p 1) es que A ya no tiene más elementos y, por tanto es finito, con lo cual hemos acabado. En caso contrario podremos continuar y para cada p N existe φ(p) A, φ(p) φ(i) para i < p. Evidentemente φ es biyectiva y φ(p) p. En ocasiones, en lugar de buscar una aplicación biyectiva para comprobar la numerabilidad, conviene hacer uso de la siguiente caracterización, que resulta evidente después de la proposición anterior. Proposición Un conjunto X es numerable si y sólo si existe una aplicación suprayectiva φ : N X. Esta propiedad puede interpretarse así: un conjunto X es numerable si existe una sucesión tal que su conjunto imagen es todo X. A continuación estudiaremos algunas propiedades básicas de la numerabilidad y veremos algunos de los ejemplos más importantes de conjuntos numerables. Proposición Si X es numerable y S es un subconjunto de X, entonces S es numerable. Demostración. Por el hecho de ser X numerable, existe una aplicación suprayectiva φ : N X. Se define la aplicación ψ : X S como la identidad sobre los elementos de S y que lleva los que no pertenecen a S a un punto fijo de S. Evidentemente ψ es suprayectiva, por tanto la composición, ψ φ : N S es una aplicación suprayectiva y S es numerable. Ejemplo El conjunto N N es numerable; y como consecuencia también lo es N. n.. N. Demostración. Podemos colocar el conjunto N N de la siguiente forma: (0, 0) (0, 1) (0, 2) (0, 3)... (1, 0) (1, 1) (1, 2) (1, 3)... (2, 0) (2, 1) (2, 2) (2, 3) Si los recorremos en diagonal de arriba a abajo y de izquierda a derecha, como se indica en el esquema anterior está claro que N N se puede escribir como una sucesión de elementos. No obstante, si queremos hacer explícita la aplicación suprayectiva, podemos escribirla de la siguiente forma. φ : N N N, φ(n) = (k, m k), donde m es el único número natural tal que m(m + 1) 2 < n + 1 (m + 1)(m + 2) m(m + 1), y k = n 2 2

8 8 CAPÍTULO 1. PRELIMINARES Proposición Sea I un conjunto numerable de índices, y para cada i I, sea S i un conjunto numerable. Entonces, S = i I S i es numerable.(la unión numerable de conjuntos numerables es un conjunto numerable). Demostración. Por el hecho de ser S i numerable, para cada i existe una aplicación suprayectiva ψ i : N S i. Entonces, la aplicación: ψ : I N S dada por ψ(i, n) = ψ i (n) también es suprayectiva. Por el hecho de ser I numerable, existe otra aplicación suprayectiva θ : N I. Sea φ : N N N la aplicación suprayectiva definida en el ejemplo anterior. Entonces la composición N φ N N (θ,id) I N ψ S es una aplicación suprayectiva, y por tanto S es numerable. Ejemplo El conjunto Z de los números enteros es numerable. La numerabilidad también se conserva por productos finitos: Proposición Sea una colección de conjuntos numerables S i para i = 1, 2,..., n. Entonces S = S 1 S 2... S n es numerable. Ejemplo El conjunto de los números racionales, Q, es numerable. Proposición El intervalo [0, 1] R no es numerable; en consecuencia R tampoco lo es. Demostración. Supongamos que sí es numerable, es decir [0, 1] = {x 1, x 2, x 3,... } se trata de una sucesión. Podemos expresar cada elemento del intervalo en forma decimal, con un número infinito cifras decimales distintas de 0, de la siguiente forma: x 1 = 0, a 11 a 12 a a 1n... x 2 = 0, a 21 a 22 a a 2n x n = 0, a n1 a n2 a n3... a nn

9 1.3. NUMERABILIDAD 9 donde cada a ij {0, 1,... 9}. Para que el número de cifras decimales sea distinto de 0 en todos, si tenemos un número que tiene un número finito de decimales no nulos, tomamos su otra forma de expresión: 1 = 0, 5 = 0, Consideremos el número real del intervalo [0, 1], x = 0, b 1 b 2 b 3... b n... de la siguiente forma: b 1 a 11 y b = 0; b 2 a 22 y b 2 0 y así sucesivamente. Está claro que y x i para todo i, por tanto x / [0, 1], lo cual es imposible. Como consecuencia, todo conjunto que contiene al intervalo (0, 1) no es numerable. En particular, R no es numerable. Una propiedad importante de los números reales, relacionada con el orden, es la propiedad arquimediana. esta propiedad se puede formular de varias maneras, damos aquí dos de ellas: Proposición (Propiedad Arquimediana). Para cualquier número real positivo ε > 0 existe un número natural n N tal que nε = ε ε > 1. Proposición (Propiedad Arquimediana). Para cualquier par de números reales tales que x < y, se puede encontrar siempre un número racional q Q verificando x < q < y.

Recordemos que utilizaremos, como es habitual, la siguiente notación para algunos conjuntos de números que son básicos.

Recordemos que utilizaremos, como es habitual, la siguiente notación para algunos conjuntos de números que son básicos. Capítulo 1 Preliminares Vamos a ver en este primer capítulo de preliminares algunos conceptos, ideas y propiedades que serán muy útiles para el desarrollo de la asignatura. Se trata de resultados sobre

Más detalles

Conjuntos, aplicaciones y

Conjuntos, aplicaciones y 0 Conjuntos, aplicaciones y números En este capítulo presentamos los conceptos fundamentales sobre la teoría de conjuntos que nos serán muy útiles en el desarrollo de la asignatura. En primer lugar recordamos

Más detalles

P(f) : P(B) P(A) (A.2)

P(f) : P(B) P(A) (A.2) TEMA 2. APLICACIONES 227 Tema 2. Aplicaciones Definición A.2.1. Una correspondencia entre dos conjuntos A y B es un subconjunto del producto cartesiano A B. Una aplicación f entre dos conjuntos A y B es

Más detalles

Pregunta 1 Es correcta esta definición? Por qué?

Pregunta 1 Es correcta esta definición? Por qué? TEORÍA DE CONJUNTOS. En un libro de COU de 1975 puede leerse la siguiente definición de conjunto: Un conjunto es una colección de objetos, cualquiera que sea su naturaleza. Pregunta 1 Es correcta esta

Más detalles

Preliminares. 1. Notación simbólica. Conjuntos. También se da en el curso de Conjuntos y Numeros.

Preliminares. 1. Notación simbólica. Conjuntos. También se da en el curso de Conjuntos y Numeros. CAPíTULO 1 Preliminares 1. Notación simbólica. Conjuntos. También se da en el curso de Conjuntos y Numeros. El método matemático es axiomático y deductivo: a partir de unos principios aceptados inicialmente

Más detalles

Terminaremos el capítulo con una breve referencia a la teoría de cardinales.

Terminaremos el capítulo con una breve referencia a la teoría de cardinales. TEMA 5. CARDINALES 241 Tema 5. Cardinales Terminaremos el capítulo con una breve referencia a la teoría de cardinales. Definición A.5.1. Diremos que el conjunto X tiene el mismo cardinal que el conjunto

Más detalles

Tema 1: Conjuntos. Miguel Ángel Olalla Acosta Departamento de Álgebra Universidad de Sevilla. Septiembre de 2017

Tema 1: Conjuntos. Miguel Ángel Olalla Acosta Departamento de Álgebra Universidad de Sevilla. Septiembre de 2017 Tema 1: Conjuntos Miguel Ángel Olalla Acosta miguelolalla@us.es Departamento de Álgebra Universidad de Sevilla Septiembre de 2017 Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2017 1

Más detalles

Tema 1: Conjuntos. Miguel Ángel Olalla Acosta Departamento de Álgebra Universidad de Sevilla. Septiembre de 2018

Tema 1: Conjuntos. Miguel Ángel Olalla Acosta Departamento de Álgebra Universidad de Sevilla. Septiembre de 2018 Tema 1: Conjuntos Miguel Ángel Olalla Acosta miguelolalla@us.es Departamento de Álgebra Universidad de Sevilla Septiembre de 2018 Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2018 1

Más detalles

1. Sucesiones. Sucesiones. Compacidad. {( 1) n, n N} = { 1, 1, 1, 1, 1, 1,... } es una sucesión de elementos del conjunto { 1, 1}, y la familia

1. Sucesiones. Sucesiones. Compacidad. {( 1) n, n N} = { 1, 1, 1, 1, 1, 1,... } es una sucesión de elementos del conjunto { 1, 1}, y la familia 1.. De una manera informal, una sucesión es una familia de elementos de un conjunto, ordenada según el índice de los números naturales. Los elementos pueden estar repetidos o no. Por ejemplo la familia

Más detalles

Tema 1: Fundamentos.

Tema 1: Fundamentos. Tema 1: Fundamentos. 1. Nociones básicas de la Teoría de Conjuntos. Definición. Un conjunto es una colección de objetos. A los objetos de un conjunto se les llama elementos del conjunto. Se denominará

Más detalles

Tema 1: Conjuntos. Miguel Ángel Olalla Acosta Departamento de Álgebra Universidad de Sevilla. Septiembre de 2016

Tema 1: Conjuntos. Miguel Ángel Olalla Acosta Departamento de Álgebra Universidad de Sevilla. Septiembre de 2016 Tema 1: Conjuntos Miguel Ángel Olalla Acosta miguelolalla@us.es Departamento de Álgebra Universidad de Sevilla Septiembre de 2016 Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2016 1

Más detalles

Conjuntos Finitos e Infinitos

Conjuntos Finitos e Infinitos Araceli Guzmán y Guillermo Garro Facultad de Ciencias UNAM Semestre 2018-1 doyouwantmektalwar.wordpress.com Conjuntos Finitos El segmento inicial de tamaño n, donde n 0, es el conjunto 1 n = {1,..., n}

Más detalles

Conjuntos Los conjuntos se emplean en muchas áreas de las matemáticas, de modo que es importante una comprensión de los conjuntos y de su notación.

Conjuntos Los conjuntos se emplean en muchas áreas de las matemáticas, de modo que es importante una comprensión de los conjuntos y de su notación. NÚMEROS REALES Conjuntos Los conjuntos se emplean en muchas áreas de las matemáticas, de modo que es importante una comprensión de los conjuntos y de su notación. Un conjunto es una colección bien definida

Más detalles

Espacios conexos. Capítulo Conexidad

Espacios conexos. Capítulo Conexidad Capítulo 5 Espacios conexos 1. Conexidad En este capítulo exploraremos el concepto de conexidad en un espacio métrico, y estudiaremos algunas de sus aplicaciones. Definición 5.1. Decimos que el espacio

Más detalles

Capítulo 4: Conjuntos

Capítulo 4: Conjuntos Capítulo 4: Conjuntos Miguel Ángel Olalla Acosta miguelolalla@us.es Departamento de Álgebra Universidad de Sevilla Septiembre de 2014 Olalla (Universidad de Sevilla) Capítulo 4: Conjuntos Septiembre de

Más detalles

Práctica 2: Cardinalidad. Propiedades básicas de los conjuntos

Práctica 2: Cardinalidad. Propiedades básicas de los conjuntos Cálculo Avanzado Segundo Cuatrimestre de 2014 Práctica 2: Cardinalidad Propiedades básicas de los conjuntos Ejercicio 1. Demostrar las siguientes igualdades de conjuntos: i) B i I A i = i I(B A i ). ii)

Más detalles

PRELIMINARES. En este capítulo vamos a dar, sin ser muy estrictos, algunas nociones necesarias para la compresión de la asignatura.

PRELIMINARES. En este capítulo vamos a dar, sin ser muy estrictos, algunas nociones necesarias para la compresión de la asignatura. 1 PRELIMINARES 1. CONJUNTOS En este capítulo vamos a dar, sin ser muy estrictos, algunas nociones necesarias para la compresión de la asignatura. 1.1 Def:. Se define un conjunto como una colección de objetos.

Más detalles

CONJUNTOS. Por ejemplo, el E del ejemplo 2 se escribe.

CONJUNTOS. Por ejemplo, el E del ejemplo 2 se escribe. CONJUNTOS La teoría de conjuntos nos permite describir de forma precisa conjuntos de números, de personas, de objetos, etc que comparten una propiedad común. Esto puede ser de gran utilidad al establecer

Más detalles

Un elemento de un monoide se dice que es inversible si tiene elemento inverso.

Un elemento de un monoide se dice que es inversible si tiene elemento inverso. Tema 1: Semigrupos 1 Tema 1: Semigrupos 1. Semigrupos: Conceptos fundamentales. Recordemos que un sistema algebraico es un conjunto S con una o varias operaciones sobre él, siendo una operación ó ley de

Más detalles

Conjuntos, Aplicaciones y Relaciones

Conjuntos, Aplicaciones y Relaciones Conjuntos, Aplicaciones y Relaciones Curso 2017-2018 1. Conjuntos Un conjunto será una colección de objetos; a cada uno de estos objetos lo llamaremos elemento del conjunto. Si x es un elemento del conjunto

Más detalles

Ejercicios del tema 5

Ejercicios del tema 5 U N I V E R S I D A D D E M U R C I A Ejercicios del tema 5 DEPARTAMENTO DE MATEMÁTICAS CONJUNTOS Y NÚMEROS 2016/2017. Nota: En algunos de los siguientes ejercicios, se pide probar una serie de propiedades

Más detalles

Modelos de Computación y Complejidad PRELIMINARES

Modelos de Computación y Complejidad PRELIMINARES Modelos de Computación y Complejidad Grado en Ingeniería Informática. Tecnologías Informáticas PRELIMINARES Mario de J. Pérez Jiménez Dpto. Ciencias de la Computación e Inteligencia Artificial E.T.S. Ingeniería

Más detalles

CONJUNTOS Y NÚMEROS. HOJA 2

CONJUNTOS Y NÚMEROS. HOJA 2 CONJUNTOS Y NÚMEROS. HOJA 2 Conjuntos 1) Vamos a demostrar que, dado un conjunto B de n búhos, todos los búhos de B son del mismo color. Lo haremos por inducción sobre n. a) Si n = 1 sólo hay un búho,

Más detalles

Continuidad. 5.1 Continuidad en un punto

Continuidad. 5.1 Continuidad en un punto Capítulo 5 Continuidad 5.1 Continuidad en un punto Definición 5.1.1 (Aplicación continua en un punto). Sean (X, τ) e (Y, τ ) dos espacios topológicos, y sea f : X Y una aplicación entre ellos. Diremos

Más detalles

1. Conjuntos y funciones

1. Conjuntos y funciones Centro de Matemática Facultad de Ciencias Universidad de la República Introducción a la Topología Curso 2016 PRACTICO 1: CONJUNTOS. 1 1. Conjuntos y funciones Ejercicio 1. Si I es un conjunto y A α es

Más detalles

Espacios completos. 8.1 Sucesiones de Cauchy

Espacios completos. 8.1 Sucesiones de Cauchy Capítulo 8 Espacios completos 8.1 Sucesiones de Cauchy Definición 8.1.1 (Sucesión de Cauchy). Diremos que una sucesión (x n ) n=1 en un espacio métrico (X, d) es de Cauchy si para todo ε > 0 existe un

Más detalles

Espacios topológicos. 3.1 Espacio topológico

Espacios topológicos. 3.1 Espacio topológico Capítulo 3 Espacios topológicos 3.1 Espacio topológico Definición 3.1.1. Un espacio topológico es un par (X, τ), donde X es un conjunto, y τ es una familia de subconjuntos de X que verifica las siguientes

Más detalles

Conjuntos. Relaciones. Aplicaciones

Conjuntos. Relaciones. Aplicaciones Conjuntos. Relaciones. Aplicaciones Conjuntos 1. Considera el subconjunto A de números naturales formado por los múltiplos de 4 y el conjunto B N de los números que terminan en 4. Comprueba que A B y B

Más detalles

1. Propiedades básicas de las medidas

1. Propiedades básicas de las medidas AMARUN www.amarun.net Comisión de Pedagogía - Diego Chamorro Teoría de la medida (Nivel 2). Lección n 2: σ-álgebras y medidas EPN, verano 2009 1. Propiedades básicas de las medidas Marco de trabajo: la

Más detalles

TEMA 3 Elementos de la teoría de los conjuntos. *

TEMA 3 Elementos de la teoría de los conjuntos. * TEM 3 Elementos de la teoría de los conjuntos. * Conjuntos. Un conjunto es cualquier colección, bien definida, de objetos llamadas elementos o miembros del conjunto. Una manera de describir un conjunto

Más detalles

Práctica 2 -Cardinalidad- A. Propiedades básicas de los Conjuntos

Práctica 2 -Cardinalidad- A. Propiedades básicas de los Conjuntos Cálculo Avanzado Segundo Cuatrimestre de 2012 Práctica 2 -Cardinalidad- A. Propiedades básicas de los Conjuntos Ejercicio 1. Demostrar las siguientes igualdades de conjuntos: i) B i I A i = i I(B A i ).

Más detalles

DEFINICIÓN: Se define el conjunto vacio como el complementario de en, don de es un conjunto. Se representa por :

DEFINICIÓN: Se define el conjunto vacio como el complementario de en, don de es un conjunto. Se representa por : CONJUNTOS Y APLICACIONES CONCEPTOS BÁSICOS: DEFINICIÓN: Conjunto es una colección de objetos a los que llamo elementos. n dos conjuntos, entonces se dice que es un subconjunto de, se escribe, si para todo

Más detalles

Estructuras Algebraicas

Estructuras Algebraicas Tema 1 Estructuras Algebraicas Definición 1 Sea A un conjunto no vacío Una operación binaria (u operación interna) en A es una aplicación : A A A Es decir, tenemos una regla que a cada par de elementos

Más detalles

Conjuntos finitos y conjuntos numerables

Conjuntos finitos y conjuntos numerables Tema 3 Conjuntos finitos y conjuntos numerables En este tema vamos a usar los números naturales para contar los elementos de un conjunto, o dicho con mayor precisión, para definir los conjuntos finitos

Más detalles

1. Conjuntos y funciones

1. Conjuntos y funciones PRACTICO 1: CONJUNTOS. 1. Conjuntos y funciones Es útil saber de memoria las siguientes propiedades de conjuntos y funciones. Tanto como saber las tablas. Ejercicio 1. Si I es un conjunto y A α es un conjunto

Más detalles

Homomorfismos de cuerpos. Extensiones normales. Teorema fundamental de la teoría de Galois.

Homomorfismos de cuerpos. Extensiones normales. Teorema fundamental de la teoría de Galois. 1 Tema 9.-. Homomorfismos de cuerpos. Extensiones normales. Teorema fundamental de la teoría de Galois. 9.1. Caracteres de un grupo. A la hora de resolver una ecuación f(x) = 0 con f(x) k[x], tomamos un

Más detalles

Subconjuntos notables de un Espacio Topológico

Subconjuntos notables de un Espacio Topológico 34 Capítulo 4 Subconjuntos notables de un Espacio Topológico 4.1 Adherencia Definición 4.1.1 (Punto adherente). Sea (X, τ) un espacio topológico, y sea S un subconjunto de X. Diremos que x X es un punto

Más detalles

+ : X V X. (+) P : V X u P + u. (P + u) + v = P + (u + v). Nota La propiedad 1) de la definición anterior implica, en primer lugar, que

+ : X V X. (+) P : V X u P + u. (P + u) + v = P + (u + v). Nota La propiedad 1) de la definición anterior implica, en primer lugar, que Capítulo 1 El espacio afín 11 Introducción Dependencia lineal afín La Geometría afín sobre un cuerpo k tiene como objetos básicos los siguientes: un conjunto no vacío X, cuyos elementos serán llamados

Más detalles

Conjuntos, relaciones y funciones Susana Puddu

Conjuntos, relaciones y funciones Susana Puddu Susana Puddu 1. Repaso sobre la teoría de conjuntos. Denotaremos por IN al conjunto de los números naturales y por ZZ al de los enteros. Dados dos conjuntos A y B decimos que A está contenido en B o también

Más detalles

Contenido. BLOQUE I: PRELIMINARES Tema 2 ALGUNAS NOCIONES DE TEORÍA DE CONJUNTOS, RELACIONES Y FUNCIONES Lógica Grado en Ingeniería Informática

Contenido. BLOQUE I: PRELIMINARES Tema 2 ALGUNAS NOCIONES DE TEORÍA DE CONJUNTOS, RELACIONES Y FUNCIONES Lógica Grado en Ingeniería Informática Contenido BLOQUE I: PRELIMINARES Tema 2 ALGUNAS NOCIONES DE TEORÍA DE CONJUNTOS, RELACIONES Y FUNCIONES Lógica Grado en Ingeniería Informática Alessandra Gallinari URJC Nociones de teoría de conjuntos

Más detalles

Espacios compactos. 7.1 Espacios compactos

Espacios compactos. 7.1 Espacios compactos 58 Capítulo 7 Espacios compactos 7.1 Espacios compactos Definición 7.1.1 (Recubrimiento). Sea X un conjunto y sea S X. Un recubrimiento de S es una familia A = {A i } i I de subconjuntos de X tales que

Más detalles

CARACTERIZACIONES DE LA COMPLETITUD DE R

CARACTERIZACIONES DE LA COMPLETITUD DE R CARACTERIZACIONES DE LA COMPLETITUD DE R 1 Definición 1. Diremos que un cuerpo ordenado K es arquimediano si lím n n que decir que N, visto como subconjunto de K, no está acotado en K. = 0 en K. Esto es

Más detalles

Funciones reales de variable real

Funciones reales de variable real Capítulo 2 Funciones reales de variable real 2.. Definición. Dominio, imagen y gráfica. Informalmente, una función entre dos conjuntos A y B es una regla que a ciertos elementos del conjunto A les asigna

Más detalles

Operaciones extendidas de conjuntos

Operaciones extendidas de conjuntos 234 A. GENERALIDADES DE TEORÍA DE CONJUNTOS Tema 3. Operaciones extendidas de conjuntos En este tema extenderemos las operaciones de conjuntos anteriormente definidas a familias arbitrarias de conjuntos.

Más detalles

Ejemplo No. 2 Empleando esta notación, los conjuntos del ejemplo anterior se pueden escribir como:

Ejemplo No. 2 Empleando esta notación, los conjuntos del ejemplo anterior se pueden escribir como: UNIDAD 1: CONJUNTOS NUMÉRICOS En esta unidad se ofrece una información general sobre los diferentes conjuntos de números que se utilizaran en el desarrollo de este curso. Comencemos con un breve repaso

Más detalles

Introducción a la topología

Introducción a la topología Introducción a la topología Beatriz Abadie CENTRO DE MATEMÁTICAS FACULTAD DE CIENCIAS UNIVERSIDAD DE LA REPÚBLICA Agosto de 2013 i Índice general Capítulo 1. Elementos de la teoría de conjuntos 1 1.1.

Más detalles

Teorema de Lagrange. En esta sección demostramos algunos hechos básicos sobre grupos, que se pueden deducir de la definición

Teorema de Lagrange. En esta sección demostramos algunos hechos básicos sobre grupos, que se pueden deducir de la definición Teorema de Lagrange Capítulo 3 3.1 Introducción En este capítulo estudiaremos uno de los teoremas más importantes de toda la teoría de grupos como lo es el Teorema de Lagrange. Daremos en primer lugar

Más detalles

REPASO DE FUNCIONES FUNCIONES REALES DE VARIABLE REAL

REPASO DE FUNCIONES FUNCIONES REALES DE VARIABLE REAL REPASO DE FUNCIONES FUNCIONES REALES DE VARIABLE REAL CORRESPONDENCIA. Se llama CORRESPONDENCIA entre dos conjuntos A y B a toda ley que asocia elementos del conjunto A con elementos del conjunto B. Se

Más detalles

Definición : Es una colección de objetos bien definidos y diferenciables entre si que se llaman elementos.

Definición : Es una colección de objetos bien definidos y diferenciables entre si que se llaman elementos. 1 CONJUNTOS Y APLICACIONES Conjunto : Es una colección de objetos bien definidos y diferenciables entre si que se llaman elementos. Representación Suelen emplearse letras mayusculas para los conjuntos

Más detalles

2. El Teorema del Valor Medio

2. El Teorema del Valor Medio 2.24 45 2. El Teorema del Valor Medio Comenzaremos esta sección recordando dos versiones del teorema del valor medido para funciones de 1-variable y por tanto ya conocidas: 2.22 Sea f : [a, b] R R una

Más detalles

TEMA 1: NÚMEROS NATURALES. SISTEMA DE NUMERACIÓN

TEMA 1: NÚMEROS NATURALES. SISTEMA DE NUMERACIÓN 1 TEMA 1: NÚMEROS NATURALES. SISTEMA DE NUMERACIÓN 1. INTRODUCCIÓN Los números naturales aparecen debido a la necesidad que tiene el hombre para contar. Para poder construir este conjunto N, podemos seguir

Más detalles

Comisión de Pedagogía - Diego Chamorro Análisis Funcional (Nivel 2).

Comisión de Pedagogía - Diego Chamorro Análisis Funcional (Nivel 2). AMARUN www.amarun.org Comisión de Pedagogía - Diego Chamorro Análisis Funcional (Nivel 2). Lección n 3: Lema de Baire y Teorema clásicos del Análisis Funcional EPN, verano 2012 Definición 1 (Espacio de

Más detalles

Espacios conexos. 6.1 Conexos

Espacios conexos. 6.1 Conexos Capítulo 6 Espacios conexos 6.1 Conexos Definición 6.1.1 (Conjuntos separados). Dado un espacio topológico (X, τ) y dos subconjuntos A, B X, diremos que A y B están separados si A B = A B = Es evidente

Más detalles

+ : X V X. (+) P : V X u P + u. (P + u) + v = P + (u + v). Nota La propiedad 1) de la definición anterior implica, en primer lugar, que

+ : X V X. (+) P : V X u P + u. (P + u) + v = P + (u + v). Nota La propiedad 1) de la definición anterior implica, en primer lugar, que Capítulo 1 El espacio afín 11 Introducción Dependencia lineal afín La Geometría afín sobre un cuerpo k tiene como objetos básicos los siguientes: un conjunto no vacío X, cuyos elementos serán llamados

Más detalles

Integración de Funciones Reales

Integración de Funciones Reales Capítulo 20 Integración de Funciones Reales Nos proponemos estudiar en este capítulo las propiedades fundamentales del operador integral. n particular, extenderemos aquí al caso de funciones medibles con

Más detalles

ÁLGEBRA (Ciencias) año 2014 PRÁCTICA N 4. ELEMENTOS DE TEORÍA DE CONJUNTOS: nociones básicas

ÁLGEBRA (Ciencias) año 2014 PRÁCTICA N 4. ELEMENTOS DE TEORÍA DE CONJUNTOS: nociones básicas ÁLGEBRA (Ciencias) año 2014 PRÁCTICA N 4 ELEMENTOS DE TEORÍA DE CONJUNTOS: nociones básicas 1. Decir, justificando adecuadamente, si las siguientes afirmaciones son verdaderas o falsas: (a) { } (b) { }

Más detalles

El subconjunto en el que se define la función se llama dominio o campo existencia de la función. Se designa por D.

El subconjunto en el que se define la función se llama dominio o campo existencia de la función. Se designa por D. Concepto de función Función real de variable real es toda correspondencia f que asocia a cada elemento de un determinado subconjunto de números reales, llamado dominio, otro número real (uno y sólo uno).

Más detalles

Espacios métricos completos

Espacios métricos completos 5 Espacios métricos completos Comenzamos introduciendo las sucesiones de Cauchy, que relacionamos con las sucesiones convergentes. En el caso de que coincidan, se trata de un espacio métrico completo.

Más detalles

Inducción Matemática Conjuntos Funciones. Matemática Discreta. Agustín G. Bonifacio UNSL. Repaso de Inducción, Conjuntos y Funciones

Inducción Matemática Conjuntos Funciones. Matemática Discreta. Agustín G. Bonifacio UNSL. Repaso de Inducción, Conjuntos y Funciones UNSL Repaso de Inducción, y Inducción Matemática (Sección 1.7 del libro) Supongamos que queremos demostrar enunciados del siguiente tipo: P(n) : La suma de los primeros n números naturales es n(n+1)

Más detalles

sup si A no es acotado.

sup si A no es acotado. Capítulo 6 Espacios completos 1. El teorema de Cantor En este capítulo estudiaremos más a fondo los espacios métricos completos. Lo primero que haremos es establecer la equivalencia entre completitud y

Más detalles

Una manera de describir un conjunto es por extensión y consiste en enumerar sus elementos entre llaves

Una manera de describir un conjunto es por extensión y consiste en enumerar sus elementos entre llaves CONJUNTOS: DEFINICIÓN Y CARDINAL DE UN CONJUNTO : Un conjunto es una colección bien definida de objetos en la que el orden es irrelevante. Dichos objetos pueden ser reales o conceptuales y se llaman elementos

Más detalles

Reconocer y utilizar las propiedades sencillas de la topología métrica.

Reconocer y utilizar las propiedades sencillas de la topología métrica. 3 Funciones continuas De entre todas las aplicaciones que pueden definirse entre dos espacios métrico, las aplicaciones continuas ocupan un papel preponderante. Su estudio es fundamental no sólo en topología,

Más detalles

TOPOLOGÍA SOLUCIONES A LAS RELACIONES DE PROBLEMAS

TOPOLOGÍA SOLUCIONES A LAS RELACIONES DE PROBLEMAS TOPOLOGÍA SOLUCIONES A LAS RELACIONES DE PROBLEMAS Ejercicio 3.1.- Relación 3. Continuidad Sea G un abierto arbitrario de la recta euclídea. La continuidad de la aplicación X A equivale a ver que H = X

Más detalles

Notas de Álgebra Básica I

Notas de Álgebra Básica I Notas de Álgebra Básica I Carlos Ruiz de Velasco y Bellas Departamento de Matemáticas, Estadística y Computación Facultad de Ciencias Universidad de Cantabria 22 de septiembre de 2008 2 Índice general

Más detalles

TEMA 5: NÚMEROS RACIONALES ÍNDICE:

TEMA 5: NÚMEROS RACIONALES ÍNDICE: TEMA 5: NÚMEROS RACIONALES ÍNDICE: 1 INTRODUCCIÓN 2 EL CONJUNTO DE LOS NÚMEROS RACIONALES 3 REPRESENTACIÓN GEOMÉTRICA DE LOS NÚMEROS RACIONALES 4 SUMA DE NÚMEROS RACIONALES 5 MULTIPLICACIÓN DE NÚMEROS

Más detalles

Capítulo 2. Funciones

Capítulo 2. Funciones Capítulo 2. Funciones Objetivo: El alumno analizará las características principales de las funciones reales de variable real y formulará modelos matemáticos. Contenido: 2.1 Definición de función real de

Más detalles

Tema 1 EL TEOREMA DE PEANO. 1 Compacidad en C(I; R N ): el Teorema de Ascoli-

Tema 1 EL TEOREMA DE PEANO. 1 Compacidad en C(I; R N ): el Teorema de Ascoli- Tema 1 EL TEOREMA DE PEANO En este tema vamos a probar que bajo la hipótesis de ser f continua en un entorno del punto (, y 0 ), se puede garantizar la existencia, aunque no necesariamente la unicidad,

Más detalles

y exámenes. Temas 3 y 4

y exámenes. Temas 3 y 4 U N I V E R S I D A D D E M U R C I A Ejercicios DEPARTAMENTO DE MATEMÁTICAS CONJUNTOS Y NÚMEROS 2016/2017. de talleres y exámenes. Temas 3 y 4 Se recuerda que la resolución de algunos de estos ejercicios

Más detalles

SESIÓN N 07 III UNIDAD RELACIONES Y FUNCIONES

SESIÓN N 07 III UNIDAD RELACIONES Y FUNCIONES SESIÓN N 07 III UNIDAD RELACIONES Y FUNCIONES RELACIONES BINARIAS PAR ORDENADO Es un arreglo de dos elementos que tienen un orden determinado donde a es llamada al primera componente y b es llamada la

Más detalles

Capítulo 2 Conjuntos. 2.1 Introducción. 2.2 Determinación de conjuntos. Definición:

Capítulo 2 Conjuntos. 2.1 Introducción. 2.2 Determinación de conjuntos. Definición: Capítulo 2 Conjuntos 2.1 Introducción El concepto de conjunto, de singular importancia en la ciencia matemática y objeto de estudio de una de sus disciplinas más recientes, está presente, aunque en forma

Más detalles

Transformaciones lineales

Transformaciones lineales CAPíTULO 4 Transformaciones lineales En este capítulo estudiamos las primeras propiedades de las transformaciones lineales entre espacios vectoriales. 1. Construcciones de transformaciones lineales Lema

Más detalles

1. Funciones Medibles

1. Funciones Medibles 1. Medibles Medibles simples... Hasta ahora hemos estudiado la medida de Lebesgue definida sobre los conjuntos de R n y sus propiedades. Vamos a aplicar ahora esta teoría al estudio de las funciones escalares

Más detalles

Sistemas de Ecuaciones Lineales y Matrices

Sistemas de Ecuaciones Lineales y Matrices Capítulo 4 Sistemas de Ecuaciones Lineales y Matrices El problema central del Álgebra Lineal es la resolución de ecuaciones lineales simultáneas Una ecuación lineal con n-incógnitas x 1, x 2,, x n es una

Más detalles

Funciones continuas. Definición y propiedades

Funciones continuas. Definición y propiedades Funciones continuas. Definición y propiedades Para la lectura de este artículo es recomendable haber leído con anterioridad otros tres artículos relacionados con las sucesiones de números reales y las

Más detalles

Es trivial generalizar la definición al caso de varios conjuntos: A B C, etc.

Es trivial generalizar la definición al caso de varios conjuntos: A B C, etc. Tema 1 Espacios Vectoriales 1.1 Introducción Estas notas están elaboradas pensando simplemente en facilitar al estudiante una guía para el estudio de la asignatura, y en consecuencia se caracterizan por

Más detalles

CONJUNTOS. Los conjuntos son conceptos primitivos que representan una totalidad, una reunión de cosas.

CONJUNTOS. Los conjuntos son conceptos primitivos que representan una totalidad, una reunión de cosas. CONJUNTOS CPR. JORGE JUAN Xuvia-Narón Los conjuntos son conceptos primitivos que representan una totalidad, una reunión de cosas. Un conjunto está formado por una serie de elementos susceptibles de poseer

Más detalles

Γ(X, y, z) con α(1) = β(0), entonces definimos la suma de caminos

Γ(X, y, z) con α(1) = β(0), entonces definimos la suma de caminos 120 10. ESPACIOS CONEXOS Tema 3. Conexión por caminos Definiciones 10.3.1. Sea X un espacio topológico. Un camino en X es una aplicación continua α : [0, 1] X (donde [0, 1] se considera como subespacio

Más detalles

Espacios vectoriales reales.

Espacios vectoriales reales. Tema 3 Espacios vectoriales reales. 3.1 Espacios vectoriales. Definición 3.1 Un espacio vectorial real V es un conjunto de elementos denominados vectores, junto con dos operaciones, una que recibe el nombre

Más detalles

9 Grupos abelianos libres

9 Grupos abelianos libres 42 TEORIA DE GRUPOS 9 Grupos abelianos libres En Álgebra Lineal es clásica la estructura de espacio vectorial V sobre un cuerpo K. Esta sección trata de estudiar el caso análogo de un grupo abeliano sobre

Más detalles

Anillos. a + (b + c) = (a + b) + c. 3) Existe un elemento 0 en R, el cual llamaremos cero, tal que. a + 0 = 0 + a = a para todo a en R.

Anillos. a + (b + c) = (a + b) + c. 3) Existe un elemento 0 en R, el cual llamaremos cero, tal que. a + 0 = 0 + a = a para todo a en R. Capítulo 7 Anillos 7.1 Definiciones Básicas El concepto de Anillo se obtiene como una generalización de los números enteros, en donde están definidas un par de operaciones, la suma y el producto, relacionadas

Más detalles

Es trivial generalizar la definición al caso de varios conjuntos: A B C, etc.

Es trivial generalizar la definición al caso de varios conjuntos: A B C, etc. Tema 1 Espacios Vectoriales 1.1 Repaso de Estructuras Algebraicas 1. Producto cartesiano de conjuntos. Dados los conjuntos A y B, se llama producto cartesiano de A y B, y se denota por A B al conjunto

Más detalles

mi la sol fa si Un conjunto está bien definido si se puede establecer sin dudar si un elemento pertenece o no al conjunto.

mi la sol fa si Un conjunto está bien definido si se puede establecer sin dudar si un elemento pertenece o no al conjunto. CONJUNTOS LENGUJE SIMÓLICO Cada día, en nuestra conversación, por la televisión, en la lectura de por ejemplo un diario, o en el trabajo está presente la idea de conjunto. En matemática utilizaremos la

Más detalles

EL CUERPO ORDENADO REALES

EL CUERPO ORDENADO REALES CAPÍTULO I. EL CUERPO ORDENADO DE LOS NÚMEROS REALES SECCIONES A. Elementos notables en R. B. Congruencias. Conjuntos numerables. C. Método de inducción completa. D. Desigualdades y valor absoluto. E.

Más detalles

Introducción. El uso de los símbolos en matemáticas.

Introducción. El uso de los símbolos en matemáticas. Introducción El uso de los símbolos en matemáticas. En el estudio de las matemáticas lo primero que necesitamos es conocer su lenguaje y, en particular, sus símbolos. Algunos símbolos, que reciben el nombre

Más detalles

sup si A no es acotado.

sup si A no es acotado. Capítulo 5 Teoría de Baire 1. El teorema de Cantor En este capítulo estudiaremos más a fondo los espacios métricos completos. Lo primero que haremos es establecer la equivalencia entre completitud y la

Más detalles

ESCUELA TÉCNICA SUPERIOR DE NÁUTICA Y MÁQUINAS NAVALES / NAUTIKAKO ETA ITSASONTZI MAKINETAKO GOI ESKOLA TEKNIKOA NOCIONES PRELIMINARES DE MATEMÁTICAS

ESCUELA TÉCNICA SUPERIOR DE NÁUTICA Y MÁQUINAS NAVALES / NAUTIKAKO ETA ITSASONTZI MAKINETAKO GOI ESKOLA TEKNIKOA NOCIONES PRELIMINARES DE MATEMÁTICAS ESCUELA TÉCNICA SUPERIOR DE NÁUTICA Y MÁQUINAS NAVALES / NAUTIKAKO ETA ITSASONTZI MAKINETAKO GOI ESKOLA TEKNIKOA NOCIONES PRELIMINARES DE MATEMÁTICAS A. 1 Conjuntos. A. TEORÍA DE CONJUNTOS. Un conjunto

Más detalles

Continuidad Funciones reales de variable real. Tema 12

Continuidad Funciones reales de variable real. Tema 12 Tema 12 Continuidad El Análisis Real es la parte del Análisis Matemático que se ocupa de las funciones de una o varias variables reales. Iniciamos aquí el estudio del caso más sencillo: funciones reales

Más detalles

Derivada de la función compuesta. Regla de la cadena

Derivada de la función compuesta. Regla de la cadena Derivada de la función compuesta. Regla de la cadena Cuando en las matemáticas de bachillerato se introduce el concepto de derivada, su significado y su interpretación geométrica, se pasa al cálculo de

Más detalles

Medidas. Problemas para examen. Estos problemas están redactados por Egor Maximenko y Breitner Arley Ocampo Gómez.

Medidas. Problemas para examen. Estos problemas están redactados por Egor Maximenko y Breitner Arley Ocampo Gómez. Medidas Problemas para examen Estos problemas están redactados por Egor Maximenko y Breitner Arley Ocampo Gómez. Sigma-álgebras 1. Propiedades elementales de σ-álgebras. Demuestre que una σ-álgebra es

Más detalles

A. Propiedades básicas de los Conjuntos

A. Propiedades básicas de los Conjuntos Cálculo Avanzado Primer Cuatrimestre de 2005 Práctica 2 - Hay diferentes infinitos?- Llamaremos número cardinal de M al concepto general que, por medio de nuestra activa capacidad de pensar, surge del

Más detalles

TEORÍA DE CÁLCULO I. Para Grados en Ingeniería. Capítulo 1: Funciones de una variable real. Domingo Pestana Galván José Manuel Rodríguez García

TEORÍA DE CÁLCULO I. Para Grados en Ingeniería. Capítulo 1: Funciones de una variable real. Domingo Pestana Galván José Manuel Rodríguez García TEORÍA DE CÁLCULO I Para Grados en Ingeniería Capítulo 1: Funciones de una variable real Domingo Pestana Galván José Manuel Rodríguez García Figuras realizadas con Arturo de Pablo Martínez 1 CAPÍTULO 1.

Más detalles

Parte 2: Definición y ejemplos de topologías.

Parte 2: Definición y ejemplos de topologías. Parte 2: Definición y ejemplos de topologías. 22 de marzo de 2014 1. Definiciones y propiedades básicas. Definición 1 Sea X un conjunto. Una familia T de subconjuntos de X es una topología de X si se cumplen:

Más detalles

1.1. Los números reales

1.1. Los números reales 1.1. Los números reales El conjunto de los números reales está compuesto por todos los números racionales (Q) y todos los irracionales (I). Sin olvidar que los números racionales incluyen a los naturales

Más detalles

Los Números Reales. Capítulo Introducción.

Los Números Reales. Capítulo Introducción. Capítulo 1 Los Números Reales 11 Introducción En este primer capítulo del libro introducimos el sistema de los Números Reales, que es la base sobre la cual se desarrolla el Análisis Matemático Los matemáticos

Más detalles

Movimientos. Teorema de Cartan-Dieudonné. Semejanzas.

Movimientos. Teorema de Cartan-Dieudonné. Semejanzas. Capítulo 5 Movimientos. Teorema de Cartan-Dieudonné. Semejanzas. 5.1 Isometrías y movimientos Partimos de un espacio euclídeo (X, V, +) y recordemos que una isometría de V es un elemento ϕ Gl(V ) que conserva

Más detalles

TEMA 2. TEORÍA DE CONJUNTOS

TEMA 2. TEORÍA DE CONJUNTOS TEMA 2. TEORÍA DE CONJUNTOS 1. Introducciónalalógica de proposiciones 1.1 Definición. Una proposición es una oración declarativa de la cual se puede decir sin ambigüedad si es verdadera o falsa. 1.2 Definición.

Más detalles

Espacios topológicos y espacios métricos

Espacios topológicos y espacios métricos CAPíTULO 2 Espacios topológicos y espacios métricos Tema 1. Definición y primeros ejemplos Como queda anunciado al final del capítulo anterior ampliaremos la definición de abierto de un conjunto utilizando

Más detalles