PROBLEMAS RESUELTOS. b) La ecuación que representa el M.V.A.S. de la partícula de abscisa x = 0

Documentos relacionados
Física Examen final 15/04/11 OPCIÓN A

a) Defina las superficies equipotenciales en un campo de fuerzas conservativo.

P. A. U. FÍSICA Madrid Septiembre 2005

Perí odo orbital de la tierra = 365'25 dí as

PROBLEMAS COMPLEMENTARIOS

Física 2º Bachillerato Curso Cuestión ( 2 puntos) Madrid 1996

Relación Problemas Tema 7: Electromagnetismo

Departamento de Física y Química

Peso = m.g, Fuerza recuperadora = k x. m g = k x x /g = m / k = 0'05 / 9'81 = 0'005 s 2

g planeta = g tierra / 2 = 4 9 m/s 2 v planeta = 11 2 / 2 = 5 6 km/s

PRUEBAS EBAU FÍSICA. Juan P. Campillo Nicolás 12 de julio de 2017

SOLUCIÓN DE LA PRUEBA DE ACCESO

5. En una región del espacio existe un campo magnético uniforme cuyo módulo varía con el tiempo de acuerdo

Bárbara Cánovas Conesa

PRUEBAS EBAU FÍSICA. Juan P. Campillo Nicolás 13 de agosto de 2017

Junio Pregunta 3B.- Una espira circular de 10 cm de radio, situada inicialmente en el plano r r

Olimpiadas de Física Córdoba 2010

OPCIÓN A. Como es campo gravitatorio es conservativo, la energía mecánica se conserva y será la misma la de la superficie que la del infinito

FÍSICA. 2º BACHILLERATO. BLOQUE III: ELECTROMAGNETISMO Examen 1

Ronda. Relación de Problemas de Selectividad: Interacción electromagnética Año 2008


CAMPO MAGNÉTICO. SOL: a) F=1,28*10-19 N; b) F=1,28*10-19 N; c) F=0N.

TEMA: CAMPO MAGNÉTICO

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO.

a) La pulsación o frecuencia angular, será: K = mω 2 = 0,2(8π) 2 = 126,3 N m b) Conocida la constante, se obtiene la amplitud: 2Em 2 KA2 A = 50 = 1

Districte universitari de Catalunya

PRUEBAS EBAU FÍSICA. Juan P. Campillo Nicolás 13 de julio de 2017

CAMPO ELECTROMAGNÉTICO

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO.

UNIVERSIDAD COMPLUTENSE DE MADRID

PRUEBA DE ACCESO A LA UNIVERSIDAD PARA MAYORES DE 25 AÑOS PRUEBA ESPECÍFICA

PROBLEMAS INTERACCIÓN ELECTROMAGNÉTICA


Departamento de Física y Química

CASTILLA-LA MANCHA / SEPTIEMBRE 02. LOGSE / FÍSICA / EXAMEN COMPLETO

PROBLEMAS Física 2º Bachillerato ELECTROMAGNETISMO.

Física 2016 (septiembre)

La energía cinética, en función del tiempo, está dada por: E c (t) = 4 cos 2 (2t). Dado que la

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO.

Ejercicios Selectividad 2º Trimestre.

CASTILLA LA MANCHA / JUNIO 01. LOGSE / FÍSICA / EXAMEN COMPLETO

Magnetismo e inducción electromagnética. Ejercicios PAEG

Capítulo 1 SEMINARIO CAMPO MAGNÉTICO

Si la frecuencia se reduce a la mitad el perí odo se duplica, pues el perí odo es la inversa de la frecuencia: F = F / 2

=. En un instante dado, la partícula A se mueve con velocidad ( )

PROBLEMAS ELECTROMAGNETISMO

b) Debe desarrollar las cuestiones y problemas de una de las dos opciones c) Puede utilizar calculadora no programable

masa es aproximadamente cuatro veces la del protón y cuya carga es dos veces la del mismo? e = 1, C ; m p = 1, kg

Solución: a) Las fuerzas gravitatorias son centrales, por tanto, el momento angular es constante: sen 90 º. v p

Departamento de Física y Química. PAU Física, junio 2012 OPCIÓN A

PAU CASTILLA Y LEON JUNIO Y SEPTIEMBRE CAMPO MAGNETICO. INDUCCIÓN MAGNETICA José Mª Martín Hernández

EXAMEN FÍSICA 2º BACHILLERATO TEMA 2: CAMPO ELECTROMAGNÉTICO

Física Ondas 10/11/06

XXII OLIMPIADA NACIONAL DE FÍSICA

punto) [c] Calcule la máxima velocidad de oscilación trasversal de los puntos de la cuerda. (0,5 puntos)

[a] En primer lugar, se calcula la frecuencia angular: = 2

FISICA 2º BACHILLERATO CAMPO MAGNÉTICO E INDUCCIÓN ELECTROMAGNÉTICA

FÍSICA de 2º de BACHILLERATO INTERACCIÓN ELECTROMAGNÉTICA

PRUEBAS EBAU FÍSICA. Juan P. Campillo Nicolás 11 de julio de 2017

TEMA 4.- Campo magnético

[b] La onda estacionaria es semejante a la representada seguidamente, con dos vientres: V V N N. 0 0,2 0,4 0,6 0,8 1 1,2 1,4 x

vidrio = =1,66. sen30 = 0,829 0,5 = 1,8$108 (m/s)

Problemas. Laboratorio. Física moderna 09/11/07 DEPARTAMENTO DE FÍSICA E QUÍMICA. Nombre:

Tema 2: Campo magnético

FÍSICA - 2º BACHILLERATO ÓPTICA GEOMÉTRICA - HOJA 1

s sufre, por ese campo magnético, una fuerza

5 a) Explique el funcionamiento de un transformador eléctrico. b) Podría funcionar con corriente continua? Justifique la respuesta.

NOTA CALI/ORDEN/PRES ORTOGRAFÍA PUNTUACIÓN EXPRESIÓN NOTA FINAL

Física Examen Final 20/05/05

PROBLEMAS DE CAMPO MAGNÉTICO

Capítulo 1 SEMINARIO ELECTROMAGNÉTICA

K m = 20,0[N m 1 ] =6,32 rad/s 0,500[kg] 0,050 = 0,050 sen (ω 0+ φ 0 ) φ 0 = arc sen 1 = π / 2. x = 0,050 sen (6,32 t + 1,57) [m]

SOLUCIÓN DE LA PRUEBA DE ACCESO

Fuerzas de un Campo Magnético sobre Cargas Eléctricas en Movimiento

Departamento de Física y Química. PAU Física, modelo 2012/2013 OPCIÓN A

PRUEBAS EBAU FÍSICA. Juan P. Campillo Nicolás. 5 de octubre de 2017

INSTITUTO POLITÉCNICO NACIONAL SECRETARÍA ACADÉMICA DIRECCIÓN DE EDUCACIÓN MEDIA SUPERIOR

Evaluación de Bachillerato para Acceder a estudios Universitarios

CAMPO MAGNÉTICO. j V m 1. Determine:

en una región del espacio en que coexisten un campo magnético B 0,2k T, se pide:

FÍSICA 2º Bachillerato Ejercicios: Campo magnético y corriente eléctrica

Relación de problemas

ENUNCIADOS. Cuestiones

ELECTROMAGNETISMO CARGAS QUE SE INTRODUCEN EN CAMPOS MAGNETICOS. Región del espacio en el cual se ejerce una fuerza de carácter

CANTABRIA / SEPTIEMBRE 02. LOGSE / FÍSICA / EXAMEN COMPLETO

Física 2º Bto. (A y B) Campo magnético. Óptica. Física Moderna 04 junio 2008 B 1 = 2 $

1999. Señala brevemente qué analogías y diferencias existen entre los campos eléctricos y magnéticos.

Física 2º Bto. (A y B) Movimiento ondulatorio. Campos gravitatorio y eléctrico 19 marzo 2008

Física P.A.U. ELECTROMAGNETISMO 1 ELECTROMAGNETISMO

PAEG UCLM SEPTIEMBRE 2015 FÍSICA OPCIÓN A - PROBLEMA 1

XIX OLIMPIADA NACIONAL DE FÍSICA

Problema. Cuestiones. Física 2º Bach. Campo magnético. Inducción electromagnética. 09/03/07 DEPARTAMENTO DE FÍSICA E QUÍMICA. Nombre: [6 PUNTOS]

FFI. Ingeniería Informática (Software). Grupo 2. curso Boletín Tema 4. Página 1 de 6

FÍSICA - 2º BACHILLERATO CAMPO MAGNÉTICO RESUMEN EVIDENCIA EXPERIMENTAL ACERCA DEL MAGNETISMO

XXVII Olimpiada Española de Física

TEMA 5.- Vibraciones y ondas

Bárbara Cánovas Conesa

Transcripción:

PROBLEMAS RESUELTOS PROBLEMA 1 Una onda armónica transversal que se propaga a lo largo de la dirección positiva del eje de las X tiene las siguientes características: Amplitud 5cm,longitud de onda 8π cm y velocidad de propagación 40cm/s. Sabiendo que la elongación de la partícula de abscisa x = 0, en el instante t = 0, es de 5cm, determinar: a) El número de onda y la frecuencia angular de la onda. b) La ecuación que representa el M.V.A.S. de la partícula de abscisa x = 0 c) La ecuación que representa la onda armónica transversal indicada Ecuación de la onda transversal: y(x,t) = Acos ( ωt- kx + ϕ)(1) ω = frecuencia angular de la onda k = Número de onda ϕ = Constante en los orígenes de espacio y tiempo a) k = 2π/λ = 2π/8π = 0.25 cm 1 (2) ω = vk = 40. 0.25 = 10 rad/s (3) Sustitu. A=5cm, (2) y (3) en (1): y(x,t) = 5cos (10t 0.25x + ϕ) b) partir de las condiciones iniciales calcularemos la constante de fase ϕ y(0,0) = 5 = 5cosϕ ϕ = 0º y (0,t) = 5cos10t c) y(x,t) = 5cos (10t 0.25x) t en s. x en cm y en cm

PROBLEMA 2 Un cuerpo de masa 100 kg está situado en la superficie de la Tierra. a) Cuál es su peso? b) Si se duplicara el radio de la Tierra, manteniendo la masa de ésta, cuál sería entonces el peso del cuerpo? c) Si se duplicara el radio de la Tierra, manteniendo constante su densidad media, cuál sería en tal caso el peso del objeto? Ignórese el efecto de la rotación terrestre. (g = 9.8 m.s-2 ) M = M(4/3)π(2R) 3 / (4/3)π(R) 3 =8M a) Peso = F = GMm/R 2 = mg = 100 x 9.8 = 980 N b) Ahora el radio terrestre vale R = 2 R F = GMm /R 2 Sustituyendo y operando:peso = F = 245 N. c) R = 2R y ρ = M/V = M /V Peso = F = GM m/r 2 = 8GMm/4R 2 = 2mg = 2 x 100 x 9.8 = 1.960 N.

PROBLEMA 3 Calcular la masa del sol, suponiendo que la órbita de la Tierra en torno a él es una circunferencia de radio 1.5 x 1011 m. Recuérdese que la Tierra recorre su órbita en un año y que la constante de gravitación universal vale G = 6.7 x 10-11 N m2/kg2. La fuerza gravitatoria ejercida por el Sol sobre la Tierra será igual a la masa de la misma por la aceleración centrípeta: G m s m t / R 2 = m t v 2 / R (1) La longitud de la órbita de la Tierra es igual al producto de la velocidad de la Tierra por el periodo: 2 π R = v T (2) De (1) y (2) se obtiene: m s = 4 π 2 R 3 / 6 T 2 = 1.99x10 30 kg.

PROBLEMA 4 Cada uno de los electrones que componen un haz tiene una energía cinética de 1.6 x 10-17 J. a) Calcular su velocidad. b) Cuál será la dirección, sentido y módulo de un campo eléctrico que haga que los electrones se detengan a una distancia de 10 cm, desde su entrada en la región ocupada por el campo? (Carga del electrón e= - 1.6 x 10-19 C. Masa del electrón me = 9.1 x 10-31 kg.) a) Despejaremos la velocidad de la energía cinética: v = 2E c / m Sustituyendo datos obtendremos: v = 5.93x10 6 m/s. b) Para que el electrón se detenga es necesario aplicar un campo eléctrico de la misma dirección y sentido que las de la velocidad de los electrones w = E cf - E ci - F. s = - E ci E = E ci / e.s Sustituyendo datos y operando obtendremos: E = 1.10 3 N/C.

PROBLEMA 5 Tres hilos conductores rectilíneos, indefinidos y paralelos, están situados en el mismo plano. Los tres conductores están recorridos por corrientes iguales a 1 A, siendo sus sentidos los indicados en la figura. a) Hallar la fuerza por unidad de longitud (dando el módulo, dirección y sentido) sobre el conductor central. b) Si se invierte el sentido de la corriente del conductor de la derecha, cuál es la fuerza por unidad de longitud sobre el conductor central?.(µo = 4 π. 10-7 kg m C-2) Los conductores 1 y 3 crearán en P dos campos B 1 y B 3, respectivamente, dados por la ley de Biot y Savart. La dirección y el sentido de ambos son los indicados en la figura y el valor de su módulo vendrá dado por: B i = µ 0 I / 2π d i / i = 1, 3 Cada uno de los campos ejercerán sobre el conductor 2 una fuerza dada por la ley de Laplace. Las direcciones y los sentidos son los indicados en la figura y, el valor de sus módulos vendrán dados por: F i / l = µ 0 I 2 / 2 π d i I 2 /2π( 1/ d 1-1/ d 2 ) = 2.7 x 10-6 N/m. El módulo de la resultante será: F/l = µ 0 En el segundo caso, ambas fuerzas se ejercerán hacia la derecha, por haber cambiado el sentido del campo creado por el conductor de la derecha. El resultado será: F /l = 16/15 x 10-5 N / m.

PROBLEMA 6 Un carrete de hilo conductor, de 500 espiras de 0.05 m. De radio, está colocado en un campo magnético uniforme de módulo 0.1 T, de modo que el flujo que lo atraviesa es máximo. A) Hallar la f.e.m. media inducida en el carrete si, en un intervalo de 0.o2 s, el campo duplica su valor. B) Hallar la f.e.m. media inducida, si el carrete gira 180º con respecto a un eje que pasa por su centro y es perpendicular al campo magnético, en un intervalo de 0.02 s, cuando éste vale 0.1 T. a) φ = N B S ; φ máx α = 0º φ = N B S Ley de Faraday Lenz : ε = - dφ / dt ε m = φ 2 -φ 1 / t 2 t 1 = 2φ 1 - φ 1 / t = NB 1 πr 2 / t ε m = 500 x 0.1 x π x 0.05 2 / 0.3 = 19.63 V b) φ = NBS cos α ε m = 2 x 500 x 0 1 x π x 0.05 2 / 0.02 = 39.27 V

PROBLEMA 7 Un rayo de luz amarilla, emitido por una lámpara de sodio, tiene una longitud de onda en el vacío de 589 10-9 m. Determinar: a)su frecuencia b)su velocidad de propagación y su longitud de onda en el interior de una fibra de cuarzo, cuyo índice de refracción n = 1.458 c)el ángulo de incidencia mínimo para el rayo de luz que, propagándose por el interior de la fibra de cuarzo, encuentre la superficie de discontinuidad entre el cuarzo y el aire y experimente reflexión total. Dato: velocidad de la luz en el vacío = 3 x 108 m/s. Las ondas electromagnéticas al cambiar de medio varían su velocidad, permaneciendo constante su frecuencia. a) n = c/ v y λ = v T n = c T / λ λ = λ 0 = c T 589 x10-9 = 3 x 10 8 T T = 589/3 x 10-17 s. f = 1/ T f = 5.1 x 10 14 Hz. b) λ 0 = c T y λ = v T λ 0 / λ = c / v = n v = 3 x10 8 / 1.458 = 2.1 x 10 8 m/s. λ = λ 0 / n = 589 x10-9 / 1.459 = 4 x 10-7 m. c) El ángulo de incidencia mínimo para experimentar reflexión total es el ángulo límite: sen i = n aire / n cuarzo sen i = 1 / 1.458 = 0.686 i = 43º

PROBLEMA 8 Un espejo esférico, cóncavo, ha de formar una imagen invertida de un objeto en forma de flecha sobre una pantalla situada a una distancia de 420 m. Delante del espejo. El objeto mide 5 mm. Y la imagen ha de tener una altura de 30 cm. Determinar: a) A qué distancia del espejo debe colocarse el objeto. b) El radio de curvatura del espejo. Efectuar la construcción geométrica de la citada imagen. La parte cóncava la colocaremos dirigida hacia la parte izquierda. Definición de aumento lateral: y / y = - s / s s = - (-420) x 0.5 / (-30) s = - 7 cm. el objeto lo colocaremos a 7 cm. delante del espejo b) Ecuación de los focos conjugados: 1/ s + 1/s = 1/ f 1/-420 + 1/-7 = 1/f f = - 6.88 cm. el foco estará situado a 6.88 cm del vértice del espejo y delante de él. proporciona la posición de la imagen. R = 2 f = - 13.76 cm. Construcción gráfica: Desde el extremo del objeto tiraremos dos rayos, uno paralelo al eje que se reflejará pasando por el foco y, otro que pasando por el centro de curvatura no se desvía. La intersección de ambos nos

PROBLEMA 9 En un conductor metálico los electrones se mueven con una velocidad de 1x10-2 cm/s. Según la hipótesis de De Broglie, cuál será la longitud de onda asociada a estos electrones?. Toda partícula, sea cual sea su masa y velocidad, llevará asociada una onda?. Datos: Masa del electrón : me = 9.109 x 10-31 kg. Constante de Planck: h = 6.626 x 10-34 J.s Hipótesis de De Broglie: Toda partícula en movimiento lleva asociada 4 una onda, cuya longitud de onda viene dada por: λ = h / m v λ = 6.626 x 10-34 / 9.109 x10-31 x 1.10 - λ = 7.274 m. En partículas de gran masa no se podrá apreciar esta dualidad, sólo en el mundo microscópico apreciaremos este doble comportamiento.

CUESTIONES CUESTIÓN 1 Un niño está sentado en una noria de feria que gira en un plano vertical. Qué trabajo realizan sobre él las fuerzas gravitatorias en una vuelta completa? Razone la respuesta. Al ser las fuerzas gravitatorias conservativas el trabajo que realizarán no dependerá del camino seguido sino de la posición inicial y final por lo que su valor será cero. CUESTIÓN 2 Dos satélites artificiales 1 y 2, de igual masa, se hallan en órbitas circulares estacionarias de radios R 1 y R 2 ( R 1 < R 2 ) alrededor de la Tierra. Qué satélite tiene mayor a) el radio de la órbita y b) energía potencial gravitatoria? Ley de la Gravitación Universal: La fuerza gravitatoria ejercida por la Tierra sobre ellos, radial y dirigida hacia el centro de la misma, les comunicará una aceleración centrípeta: F 1 = G m T m 1 /R 2 1 = m 1 v2 1 / R 1 (1) F 2 = Gm T m 2 / R 2 2 = m 2 v2 2 /R 2 (2) E c1 = m 1 v 2 1 /2 (3) E c2 = m 2 v 2 2 /2 (4) De (1), (2), (3) y (4) obtendremos: E c1 /E c2 = R 2 /R 1 E c1 > E c2 E p1 = - Gm 1 m T /R 1 + E p E p2 = - Gm 2 m T /R 2 + E p Basándonos en que m 1 = m 2 y que R 2 > R 1 E p1 > E p2

CUESTIÓN 3 Dos cargas positivas de magnitudes Q y 2Q se encuentran separadas una distancia d. En qué punto una tercera carga cualquiera no experimentará fuerza neta alguna?. Para que una tercera carga no experimente ninguna fuerza en un punto, debe anularse el campo eléctrico creado por las dos cargas positivas en dicho punto. Esto sólo puede ocurrir si el punto está en la línea de unión de las dos cargas. Q / x 2 = 2Q / (d x ) 2 x = 0.41. d CUESTIÓN 4 Una carga eléctrica penetra con velocidad v en una zona, donde existe un campo magnético perpendicular a su trayectoria inicial. Describir razonadamente los movimientos que podrá describir la partícula en función del signo de la carga y de la magnitud de su velocidad. Elija arbitrariamente el sentido del campo magnético. La carga estará sometida a la fuerza de Lorentz F = q v x B por lo que al ser F perpendicular a v, describirá una circunferencia. El signo de la carga hará que si la partícula entra con dirección horizontal, la partícula se desvíe hacia abajo o hacia arriba. El radio de la trayectoria descrita vendrá dado por: R = m v / q B Por lo que a mayor velocidad, mayor radio de la trayectoria descrita.

CUESTIÓN 5 Explique razonadamente, poniendo como ejemplo lo que le sucede a una espira circular en el seno de un campo magnético, en qué ley del electromagnetismo se fundamenta la generación de corriente alterna. La generación de corriente alterna se fundamenta en el fenómeno de la inducción, regido por la ley de Faraday-Lenz: ε = dφ / dt. Cuando una espira gira en el interior de un B uniforme, el flujo variará debido a la variación del ángulo que formarán B y S (vectór superficie, perpendicular a la superficie de la espira,que representa, y hacia fuera) φ = B S cosα = B S cosω t ε = B S ω sen ω t que aparecerá una f.e.m. en la espira, de amplitud B S ω y frecuencia ω / 2π CUESTIÓN 6 Por el circuito E 1 se hace pasar una corriente I aplicándole una d.d.p. mediante una batería. Se aumenta lentamente la resistencia variable R del circuito E 1. R es mucho más grande que la resistencia óhmica de la espira E 1. Describa que sucede en la espira E 2 Al aumentar R descenderá I 1 que originará, según la ley de Biot y Savart, un campo magnético variable creador de un flujo magnético variable. Por ley de Faraday-Lenz se inducirá en E 2 una corriente I 2 que compensará el descenso de flujo magnético creado por I 1.