INGESTA RICA EN CARBOHIDRATOS

Documentos relacionados
INGESTA RICA EN CARBOHIDRATOS

Mecanismo de reacción de la citrato sintasa

METABOLISMO ENERGETICO

OXIDACIÓN DEL PIRUVATO Y CICLO DE KREBS. Dra. Carmen Aída Martínez

CICLO DE KREBS. Destinos metabólicos del piruvato 12/04/2012. Colesterol Ácidos Grasos. citrato. citrato. Acetil CoA

Oxidación de ácidos grasos y ciclo de Krebs Departamento de Bioquímica Noviembre de 2005

Ciclo de Krebs Destino del piruvato. Descarboxilación oxidativa. Aspectos estructurales y mecanismos de la piruvato deshidrogenasa.

Citosol. Matriz mitocondrial. La glucolisis (glucosa - piruvato) se produce en el citosol

4. El ciclo de los ácidos tricarboxílicos

Introducción. vlocalizado en las mitocondrias. varranca los e- de los HC, AG y proteínas

Ciclo del ácido cítrico

RESULTADO DE APRENDIZAJE:

Ciclo del Acido Cítrico

CICLO DEL ÁCIDO CÍTRICO

Se obtiene + energía En aerobiosis

El ciclo del Ácido Cítrico El ciclo del Glioxilato. Bioquímica Capítulo 16

Respiración celular. Patricio Muñoz Torres Degradación Oxida.va de la Glucosa

1- DESCARBOXILACIÓN OXIDATIVA DEL PIRUVATO. 2- CICLO DE KREBS. Dr. Mynor A. Leiva Enríquez

RESULTADO DE APRENDIZAJE:

Ciclo del ácido cítrico (Krebs o Ciclo de los ácidos tricarboxílicos

el acetil CoA procede de cualquier sustancia o molécula que degrademos para obtener energía.

08/05/ x C1. Destino del piruvato. - en tejido y/o organismos anaerobicos tienen que reciclar NADH a NAD +

proceso utilizado por la mayoría de las células animales y vegetales, es la degradación de biomoleculas (glucosa, lípidos, proteínas) para que se

BIOQUÍMICA TEMA 6. RUTAS CENTRALES DEL METABOLISMO INTERMEDIARIO

NADH S-CoA C=O + CO 2 CH 3

Metabolismo de carbohidratos 2. Marijose Artolozaga Sustacha, MSc

Metabolismo de carbohidratos 2

ADICION DEL GRUPO ACETILO AL OXALACETATO ( SINTESIS DEL CITRATO)

DEPARTAMENTO DE BIOQUÍMICA ESFUNO - EUTM CICLO DE KREBS CADENA RESPIRATORIA FOSFORILACION OXIDATIVA

Metabolismo de carbohidratos 2 (PirDH y ciclo de Krebs) Marijose Artolozaga Sustacha, MSc

Reacciones de oxidación y reducción

Una explicación sobre la respiración celular

VI. Piruvato deshidrogenasa

CADENA RESPIRATORIA O CADENA DE TRANSPORTE DE ELECTRONES

Fosforilación a nivel de sustrato. Fosforilación Oxidativa (Fosforilación a nivel de Cadena Respiratoria).

FOSFORILACIÓN OXIDATIVA

Conversión del glucoso 6 fosfato en otras hexosas

UNIDADES METABOLISMO

CATABOLISMO DE LOS ÁCIDOS GRASOS

UNIVERSIDAD AUTÓNOMA DE YUCATÁN LICENCIATURA EN BIOLOGÍA MARINA ASIGNATURA: BIOQUÍMICA. DOCENTE: América Pech Aké

X. METABOLISMO DE LÍPIDOS. 1. Generalidades de la β-oxidación 2. Generalidades de la síntesis de ácidos grasos 3. Regulación

PROCESOS ENERGÉTICOS II

RESPIRACIÓN CELULAR. C 6 H 12 O 6 + O 2 + 6H 2 O CO H 2 O + Energía

Glucosa. Glucosa 6 fosfato. Fructosa 6 fosfato. Fructosa 1,6 bifosfato. 1,3 Bifosfoglicerato. 3 Fosfoglicerato. 2 Fosfoglicerato.

L(Leucina)- K(lisina) F(fenilalanina) Y(Tirosina) I(isoleucina) W(triptófano) T(treonina)

Biología 2º Bachiller. Tema 13: Respiración y fotosíntesis

(Vía aerobia) Pág. 177

CONCEPTOS BÁSICOS Y VISIÓN GENERAL DEL METABOLISMO

Fundación H.A. Barceló Facultad de Medicina. Licenciatura en Nutrición Bioquímica Primer año Módulo 19 - Lección 1

El catabolismo es la fase degradativa del metabolismo. El catabolismo es semejante en organismos autótrofos y heterótrofos.

Metabolismo & Respiración Celular

Bloque 2: Organización y fisiología celular. Función de nutrición 2ª parte

1- LANZADERAS 2- DESCARBOXILACIÓN DEL PIRUVATO Dr. Mynor A. Leiva Enríquez

ESTRATEGIAS DEL METABOLISMO ENERGÉTICO.

Gluconeogénesis y Síntesis de Carbohidratos Catabolismo - Carbohidratos, Ácidos Grasos y Amino Ácidos Convergencia: Ciclo de Krebs, Fosforilación

Metabolismo Oxidativo

Ciclo del Ácido Cítrico Miguel Ángel Ordorica Vargas & María de la Luz Velázquez Monroy

El catabolismo de la glucosa

Ciclo de Krebs en su interrelación con el metabolismo general

TEMA 19. Ciclo del ácido cítrico (ciclo de los ácidos tricarboxílicos o de Krebs)

COLEGIO MAYOR DEL CARIBE Santa Marta Magdalena Colombia TALLER PLAN DE MEJORAMIENTO BIOLOGÍA NOVENO PRIMER PERIODO ESTUDIANTE: / FECHA:

OXIDACIÓN DEL PIRUVATO Y CICLO DE KREBS (o ciclo del ácido cítrico, o ciclo de los ácidos tricarboxílicos)

Química Biológica. Seminario Metabolismo

Fundación H.A. Barceló Facultad de Medicina. Licenciatura en Nutrición Bioquímica Primer año Módulo 14 Lección 1

Concepto. Catabolismo Anabolismo

-La molécula glucídica utilizada por las células como combustible es la glucosa, que puede proceder de:

METABOLISMO ENERGETICO. Dra. Carmen Aída Martínez

Integración del metabolismo

TEMA 11 Metabolismo de lípidos y de aminoácidos

energía química ATP. carbohidratos grasas proteínas glucosa

1. Las mitocondrias. La respiración celular.

Figura: las reacciones del ciclo de Krebs.

Dra. Carmen Aída Martínez

I- LÍPIDOS 1. INTRODUCCIÓN 2. CATABOLISMO DE LOS ÁCIDOS GRASOS 3. RENDIMIENTO II- PROTEÍNAS 1. INTRODUCCIÓN 2. CATABOLISMO DE LOS ÁMINOACIDOS III-

Planta en desarrollo. Energía

Metabolismo Biología de 12º

Metabolismo de lípidos

PROPEDÉUTICO DE ODONTOLOGÍA BIOQUÍMICA BÁSICA

EXAMEN DEPARTAMENTAL DE BIOQUÍMICA FACULTAD DE CIENCIAS-UAEM. Nombre:

GUIAS DE ESTUDIO PARA SEGUNDO PARCIAL DE TEORIA

Orden en estructuras biológicas

Metabolismo II. Anabolismo

1- De acuerdo a los datos del gráfico podemos afirmar que :

26/10/2009. Clase 12. Energética celular Glucólisis y oxidación aeróbica I MAPA METABÓLICO

Fundamentos físico-químicos y efectos biológicos del oxígeno. Allan White

Mitocondrias y Respiración Celular

Cap. 7 Respiración Celular y Fermentación

1- BIOSÍNTESIS DE LOS ÁCIDOS GRASOS DE CADENA LARGA

Tema 5: Nutrición y metabolismo Parte 3

COLEGIO INTERNACIONAL ÁREA DE CIENCIAS BÁSICAS Y TECNOLOGÍAS CÁTEDRA DE BIOLOGÍA MITOCONDRIAS PROF. LIC. BIOL. LUIS MARÍN

TEMA IV. GLUCÓLISIS. 1.Generalidades 2.Reacciones de la glucólisis 3.Control de la glucólisis

Universidad Nacional La Matanza

Formación de ATP por la cadena transportadora de electrones Fotosíntesis. Capítulo 17 Bioquímica

TREHALASA( 2"x" Glucosa"

METABOLISMO AEROBICO EN LA MITOCONDRIA Dra. Dora King de García

Respiración Aeróbica y Anaeróbica, y Control

Metabolismo celular. Reacciones que no requieren de oxígeno para poder realizarse. Reacciones que requieren de oxígeno para poder realizarse

METABOLISMO CELULAR Metabolismo celular ruta vía metabólica ANABÓLICAS CATABÓLICAS

Introducción al metabolismo

METABOLISMO Y BIOENERGÉTICA BIOQUÍMICA. CAPÍTULO 14

Transcripción:

INGESTA RICA EN CARBOHIDRATOS 1) MOVILIZACIÓN DE GLUCOSA DEL TORRENTE SANGUÍNEO 2) METABOLISMO DE LA GLUCOSA

METABOLISMO DE LA GLUCOSA INGESTA RICA EN CARBOHIDRATOS GLUCOSA GLUCONEOGÉNESIS RUTA DE LAS PENTOSAS FOSFATO GLUCÓLISIS SÍNTESIS DE GLUCÓGENO GLUCÓGENO PIRUVATO CONDICIONES AERÓBICAS DURANTE EL AYUNO NADPH RIBOSA 5-FOSFATO

DESTINO DEL PIRUVATO EN CONDICIONES AERÓBICAS: RESPIRACIÓN AERÓBICA: INCLUYE GLUCÓLISIS, CICLO DEL ÁCIDO CÍTRICO Y FOSFORILACIÓN OXIDATIVA CICLO DEL ÁCIDO CÍTRICO FOSFORILACIÓN OXIDATIVA EN DÓNDE SUCEDE ESTO?

PARTE DEL PROCESO DE RESPIRACIÓN ES LLEVADO A CABO EN LA MITOCONDRIA MATRIZ MEMBRANA INTERNA MITOCONDRIAL MEMBRANA EXTERNA MITOCONDRIAL

Espacio intermembranal Membrana externa Permeable a moléculas pequeñas e iones Membrana interna Impermeable a moléculas pequeñas e iones (H + ) Presenta: Complejos I a IV ADP-ATP translocasa ATP sintasa (F o F 1 ) Otros transportadores de membrana Matriz Contiene: Complejo piruvato deshidrogenasa Enzimas del ciclo del ácido cítrico Enzimas de la β-oxidación Enzimas de la oxidación de aa DNA, ribosomas ATP, ADP, P i, Mg 2+, Ca 2+, K +

VII. CICLO DEL ÁCIDO CÍTRICO I. Generalidades II. Fuentes del Acetil-CoA. Reacciones anapleróticas III. Regulación IV. Importancia del ciclo como proveedor de esqueletos carbonados para otras vías metabólicas

CICLO DEL ÁCIDO CÍTRICO CICLO DE LOS ÁCIDOS TRICARBOXÍLICOS (CICLO TCA) CICLO DE KREBS (Por su descubridor) FORMA PARTE DEL PROCESO DE RESPIRACIÓN CELULAR Procesos moleculares mediante los que las células consumen oxígeno (O 2 ) y producen dióxido de carbono (CO 2 )

GRASAS POLISACÁRIDOS PROTEÍNAS ÁCIDOS GRASOS Y GLICEROL GLUCOSA Y OTROS AZÚCARES AMINOÁCIDOS ACETIL CoA CoA CICLO DE KREBS CO 2 FOSFORILACIÓN OXIDATIVA ATP

CICLO DEL ÁCIDO CÍTRICO CICLO DE LOS ÁCIDOS TRICARBOXÍLICOS (CICLO TCA) CICLO DE KREBS (Por su descubridor) Hans Krebs Lipmann

EL CICLO DE KREBS ES UN CICLO ANFIBÓLICO PORQUE: A) ES CATABÓLICO (Se lleva a cabo la oxidación del carbono proveniente de otras vías) B) ES ANABÓLICO (Es proveedor de esqueletos carbonados para otras vías metabólicas) Proteínas Glucosa Acetil-CoA CICLO DE KREBS Lípidos SÍNTESIS CO 2 SE LLEVA A CABO EN LA MATRIZ MITOCONDRIAL

PARA PODER INICIAR EL CICLO DEL ÁCIDO CÍTRICO ES NECESARIA LA PRODUCCIÓN DE ACETIL-CoA (ACETATO ACTIVADO)

1. EL PIRUVATO SE OXIDA A ACETIL-CoA Y CO 2 1. Es una reacción previa al ciclo de Krebs 2. Es una reacción irreversible G 0 = -33.4 kj/mol 3. Es una reacción catalizada por el complejo de la PIRUVATO DESHIDROGENASA (SON TRES ENZIMAS: E1 + E2 + E3) 4. El complejo requiere de 5 COENZIMAS: el pirofosfato de tiamina (TPP), el flavina adenina dinucleótido (FAD), el coenzima A (CoA-SH), el nicotinamida adenina dinucleótido (NAD) y el lipoato. VITAMINAS TIAMINA TPP RIBOFLAVINA FAD NICOTINAMIDA NAD PANTOTENATO CoA-SH 5. Cataliza una DESCARBOXILACIÓN OXIDATIVA, proceso de oxidación irreversible, donde el piruvato pierde un grupo carboxilo en forma de molécula de CO 2, mientras que los dos carbonos restantes se transforman en el grupo acetilo del Acetil-CoA

ESTRUCTURA DEL COMPLEJO DE LA PIRUVATO DESHIDROGENASA E 1 = PIRUVATO DESHIDROGENASA E 2 = DIHIDROLIPOIL TRANSACETILASA E 3 = DIHIDROLIPOIL DESHIDROGENASA E 2

LA PIRUVATO DESHIDROGENASA CONSTA DE 3 ENZIMAS Y CINCO COENZIMAS E 1 = PIRUVATO DESHIDROGENASA Contiene TPP en su sitio activo E 2 = DIHIDROLIPOIL TRANSACETILASA Contiene 3 dominios: de unión a lipoilo, de unión a E 1 y E 3 y el dominio de aciltransferasa y CoA-SH E 3 = DIHIDROLIPOIL DESHIDROGENASA Contiene FAD y NAD Grupos prostéticos

EL COENZIMA CONTIENE UN GRUPO TIOL REACTIVO (-SH) DE IMPORTANCIA FUNDAMENTAL EN SU PAPEL COMO TRANSPORTADOR DE GRUPOS ACILO EN DIVERSAS REACCIONES METABÓLICAS LOS GRUPOS ACILO SE UNEN COVALENTEMENTE AL GRUPO TIOL FORMANDO TIOÉSTERES QUE SON DE ELEVADA ENERGÍA LIBRE DE HIDRÓLISIS Grupo tiol reactivo Adenina β-mercaptoetilamina Ácido pentoténico Ribosa 3 -fosfato Coenzima A 3 -Fosfoadenosina difosfato

EL LIPOATO TIENE DOS GRUPOS TIOL QUE PUEDEN SER OXIDADOS REVERSIBLEMENTE FORMANDO UN ENLACE DISULFURO PUEDE TRANSPORTAR ELECTRONES Y GRUPOS ACILO

LOS NUCLEÓTIDOS DE NICOTINAMIDA DESHIDROGENACIÓN 340 nm 260 nm OXIDORREDUCTASAS DESHIDROGENASAS NAD + + 2e - + 2H + NADH + H + NADP + + 2e - + 2H + NADPH + H + E o E o

LOS NUCLEÓTIDOS DE FLAVINA Se encuentran fuertemente unidos a las FLAVOPROTEÍNAS GRUPOS PROSTÉTICOS

TIPO DE REACCIONES LLEVADAS A CABO DURANTE LA DESCARBOXILACIÓN OXIDATIVA DEL PIRUVATO: 1. Descarboxilación.-El piruvato se combina con el TPP y se descarboxila formando un hidroxietilo 2. Oxidación.- El grupo hidroxietilo se oxida formando un grupo acetilo 3. Transferencia.- El acetilo formado se transfiere al lipoato que está unido a un residuo de lisina en E 2 E 2 E 1

DESCARBOXILACIÓN OXIDATIVA DEL PIRUVATO A ACETIL-CoA POR EL COMPLEJO DE LA PIRUVATO DESHIDROGENASA Piruvato Hidroxietil- TPP Piruvato Dihidrolipoil deshidrogenasa transacetilasa Dihidrolipoil deshidrogenasa E 1 E 2 E 3 DURANTE LA DESCARBOXILACIÓN OXIDATIVA, LOS INTERMEDIARIOS NUNCA ABANDONAN LA SUPERFICIE ENZIMÁTICA

VISIÓN GENERAL DEL CICLO DEL ÁCIDO CÍTRICO 4 de las 8 reacciones son oxidaciones: requieren coenzimas que entran oxidadas y salen reducidas, lo que implica que los sustratos quedaron oxidados Los productos del Ciclo son CO 2, ATP/GTP, NADH y FADH 2 En una vuelta del Ciclo hay dos descarboxilaciones que no tienen los CARBONOS transportados por la Acetil-Co-A

REACCIÓN 1. Formación de citrato 1. Primera reacción del ciclo de Krebs 2. Es una reacción irreversible G 0 = -32.2 kj/mol 3. Es catalizada por la CITRATO SINTASA 4. Cataliza la condensación de Acetil-CoA con oxalacetato para dar lugar a citrato

ESTRUCTURA DE LA CITRATO SINTASA ES UN HOMODÍMERO EL ENZIMA SIN SUSTRATOS LA UNIÓN DEL OXALACETATO INDUCE UN CAMBIO CONFORMACIONAL EL ENZIMA CON OXALACETATO Y UN ANÁLOGO DEL ACETIL-CoA

MECANISMO CATALÍTICO DE LA CITRATO SINTASA COO - LA REACCIÓN CATALIZADA POR LA CITRATO SINTASA ES UNA CONDENSACIÓN MIXTA ALDÓLICA-CLAISEN 1. Formación de un intermediario enólico a través de una catálisis ácido-base (Asp375) y estabilizado por una His 274 (FORMACIÓN DE UN CARBANIÓN) 2. El carbanión realiza un ataque nucleofílico sobre el C-2 del oxalacetato 3. El intermediario resultante (S-Citril-CoA) es hidrolizado, dando citrato

REACCIÓN 2. Formación de isocitrato vía cis-aconitato 1. Es una reacción reversible G o =13.3 kj/mol 2. Es catalizada por la aconitasa (aconitato hidratasa) 3. Requiere de un centro ferro-sulfurado (no es una reacción redox) 4. Cataliza la isomerización reversible del citrato y el isocitrato, con el cis-aconitato como intermediario

LA ACONITASA CONTIENE UNA AGRUPACIÓN [4 Fe-4S]

MODELO PARA EL MECANISMO DE REACCIÓN CATALIZADA POR LA ACONITASA Lloyd et al. (2008) Protein Science 8:2655

REACCIÓN 3. OXIDACIÓN DEL ISOCITRATO A α-cetoglutarato Y CO 2 1. Es una reacción irreversible 2. Es catalizada por la isocitrato deshidrogenasa (IDH) 3. Requiere de Mg 2+ o Mn 2+ y NAD + o NADP + (dependiendo de la especie) 4. Cataliza la descarboxilación oxidativa del isocitrato dando lugar a la formación de α-cetoglutarato ES UN HOMODÍMERO IDH (NADP + ) de corazón de mamíferos Ceccarelli et al. (2002) J. Biol. Chem. 277:43454

MECANISMO CATALÍTICO DE LA ISOCITRATO DESHIDROGENASA EL ISOCITRATO PIERDE UN CARBONO POR DESCARBOXILACIÓN OXIDATIVA 1. El isocitrato se une al enzima y es oxidado a través de una transferencia de hidruro al NAD + O NADP + formando oxalosuccinato 2. El carbonilo resultante favorece el paso de descarboxilación junto con la interacción con el Mn 2+ 3. Reordenamiento del intermediario enol para generar α-cetoglutarato

REACCIÓN 4. OXIDACIÓN DEL α-cetoglutarato A SUCCINIL-CoA Y CO 2 1. Es una reacción irreversible G 0 = -33.5 kj/mol 2. Es catalizada por el complejo de la α-cetoglutarato deshidogenasa 3. Cataliza la descarboxilación oxidativa del α-cetoglutarato liberando los segundos CO 2 y NADH del ciclo 4. EL COMPLEJO ES ANÁLOGO AL DE LA PIRUVATO DESHIDROGENASA E 1 (α-cetoglutarato deshidrogenasa) E 2 (dihidrolipoil transuccinilasa) E 3 (dihidrolipoil deshidrogenasa) idéntica al de la piruvato deshidrogenasa α-cetoglutarato Complejo de la α-cetoglutarato deshidrogenasa Succinil-CoA

REACCIÓN 5. CONVERSIÓN DE SUCCINIL-CoA EN SUCCINATO Succinil- CoA sintetasa : Fosforilación a nivel de sustrato Rotura tioester y formacion de GTP Succinil-CoA sintetasa Succinil-CoA Succinato

REACCIÓN 5. CONVERSIÓN DE SUCCINIL-CoA EN SUCCINATO 1. Es una reacción reversible G 0 = -2.9 kj/mol 2. Es catalizada por la succinil-coa sintetasa (Succínico tiocinasa) indicando la participación de un nucleósido trifosfato 3. Es la hidrólisis del enlace tioéster favoreciendo la síntesis de un enlace fosfoanhídrido del GTP (MAMÍFEROS) o del ATP (PLANTAS Y BACTERIAS) Es un heterotetrámero Las subunidadesαcontienen el residuo His246 y el sitio de unión para el CoA Las subunidadesβconfieren especificidad por ADP o GDP CoA Wolodko et al. (1994) J. Biol. Chem. 269:10883

MECANISMO CATALÍTICO DE LA SUCCINIL-CoA SINTETASA 1. El succinil-coa reacciona con Pi formando succinil fosfato y CoA 2. El grupo fosforilo del succinil fosfato se transfiere a un residuo de His del enzima 3. El grupo fosforilo del enzima se transfiere al GDP, formándose GTP LA ENERGÍA LIBRE DE HIDRÓLISIS DEL SUCCINIL-CoA SE CONSERVA MEDIANTE LA FORMACIÓN SUCESIVA DE COMPUESTOS DE ALTA ENERGÍA

1 MOLÉCULA DE ACETIL-CoA OXIDADO HASTA: 2 MOLÉCULAS DE CO 2 2 NADHs 1 GTP PARA COMPLETAR EL CICLO EL SUCCINATO DEBE SER CONVERTIDO EN OXALOACETATO, LO CUAL SE CONSIGUE MEDIANTE LAS TRES REACCIONES RESTANTES DEL CICLO

CICLO DEL ÁCIDO CÍTRICO

REACCIÓN 6. OXIDACIÓN DEL SUCCINATO A FUMARATO Succinato deshidrogenasa Succinato Fumarato

REACCIÓN 6. OXIDACIÓN DEL SUCCINATO A FUMARATO 1. Es una reacción reversible G 0 = 0 kj/mol 2. Llevada a cabo por la succinato deshidrogenasa (COMPLEJO II: succinato:quinona oxidoreductasa) Es una proteína unida a la membrana interna mitocondrial (en procariotas unida a la membrana plasmática) 3. Requiere de FAD + y de agrupaciones Fe-Sulfurados Es un tetrámero Agrupaciones Fe - S FAD + Y QUINONAS Oyedotun y Lemire (2004) J. Biol. Chem. 279:9424

La Succinato deshidrogenasa es una proteína unida a la membrana interna mitocondrial (en procariotas unida a la membrana plasmática) Oyedotun y Lemire (2004) J. Biol. Chem. 279:9424

LA SUCCINATO DESHIDROGENASA CATALIZA LA OXIDACIÓN DEL SUCCINATO PARA FORMAR FUMARATO ESPECIE OXIDADA: SUCCINATO ESPECIE REDUCIDA: FADH 2 PASO DE ELECTRONES DESDE EL SUCCINATO A TRAVÉS DEL FAD Y LOS CENTROS Fe-S HACÍA LA CADENA DE TRANSPORTE DE ELECTRONES

REACCIÓN 7. HIDRATACIÓN DEL FUMARATO A MALATO 1. Es una reacción reversible G 0 = -3.8 kj/mol 2. Llevada a cabo por la Fumarasa (Fumarato hidratasa) 3. Cataliza la hidratación del doble enlace del fumarato a través de un estado de transición de un carbanión Fumarato Fumarasa Fumarasa Malato

REACCIÓN 8. OXIDACIÓN DE MALATO A OXALOACETATO 1. Última reacción del ciclo 2. Es una reacción reversible 3. Catalizada por la malato deshidrogenasa 4. Requiere de NAD + 5. El enzima unido al NAD + cataliza la oxidación del malato a oxalacetato, mediante la oxidación del grupo hidroxilo del malato para formar una cetona Malato deshidrogenasa Malato Oxaloacetato

GLUCOSA PIRUVATO ÁCIDOS GRASOS AMINOÁCIDOS REACCIONES IRREVERSIBLES CONDENSACIÓN ACETIL-CoA CITRATO ISOMERIZACIÓN DESCARBOXILACIÓN OXIDATIVA OXALOACETATO ISOCITRATO DESHIDRATACIÓN α-cetoglutarato MALATO SUCCINIL-CoA HIDRATACIÓN FUMARATO SUCCINATO DESHIDROGENACIÓN FOSFORILACIÓN A NIVEL DE SUSTRATO DESCARBOXILACIÓN OXIDATIVA

PRODUCTOS DE UNA VUELTA DEL CICLO= 3 NADH, 1 FADH 2, 1 GTP Y 2 CO 2

POR UNA VUELTA DEL CICLO DEL ÁCIDO CÍTRICO SE PRODUCEN LAS SIGUIENTES TRANSFORMACIONES: 1. Un grupo acetilo es oxidado a dos moléculas de CO 2, un proceso en el que participan 4 pares de electrones (los átomos de carbono del acetilo entrante al ciclo Acetil-CoA NO SE OXIDAN) 2. Tres moléculas de NAD + son reducidas a NADH (3 pares de e-) 3. Una molécula de FAD + es reducida a FADH 2 (1 par de e-) 4. Se produce un grupo fosfato de alta energía en forma de GTP (o ATP) 8 electrones CADENA TRANSPORTADORA DE ELECTRONES NADH (2 e-) rinde 3 ATP por lo tanto de 3 NADH se producen 9 ATP FADH 2 (2 e-) rinde 3 ATP UNA VUELTA DEL CICLO DE KREBS GENERA 12 ATP

REGULACIÓN DEL CICLO DEL ÁCIDO CÍTRICO

REGULACIÓN DE LA PRODUCCIÓN DE ACETIL-CoA A TRAVÉS DEL COMPLEJO DE LA PIRUVATO DESHIDROGENASA E 1 + E 2 +E 3 1) POR ALOSTERISMO ES INHIBIDA ALOSTÉRICAMENTE POR LOS METABOLITOS QUE INDICAN UNA SUFICIENCIA DE ENERGÍA METABÓLICA (ATP, Acetil-CoA, NADH y ácidos grasos) ES ACTIVADA CUANDO LAS DEMANDAS ENERGÉTIAS SON MAYORES (AMP, CoA, NAD +, Ca 2+ 2) POR MODIFICACIÓN COVALENTE EL COMPLEJO ES INHIBIDO POR LA FOSFORILACIÓN DE E 1

REGULACIÓN DEL CICLO DEL ÁCIDO CÍTRICO ENZIMAS QUE CATALIZAN LAS REACCIONES IRREVERSIBLES DEL CICLO: CITRATO SINTASA ISOCITRATO DESHIDROGENASA α-cetoglutarato DESHIDROGENASA

MECANISMOS DE REGULACIÓN DEL CICLO DE KREBS 3 MECANISMOS: 1) DISPONIBILIDAD DE SUSTRATO 2) INHIBICIÓN POR PRODUCTO 3) INHIBICIÓN COMPETITIVA POR RETROALIMENTACIÓN DE LOS INTERMEDIARIOS QUE SE LOCALIZAN MÁS ADELANTE A LO LARGO DEL CICLO 4) POR MODIFICACIÓN COVALENTE (ISOCITRATO DESHIDROGENASA SE REGULA POR FOSFORILACIÓN)

REGULACIÓN DE LA CITRATO SINTASA 1) LA ACTIVIDAD DE ESTE ENZIMA VARÍA EN FUNCIÓN DE LA CONCENTRACIÓN DE SUSTRATOS (OXALACETATO Y ACETIL-CoA) DISPONIBILIDAD DE SUSTRATO 2) EL CITRATO ES UN INHIBIDOR COMPETITIVO, ÁSÍ COMO EL SUCCINIL-CoA (POR RETROALIMENTACIÓN) 3) ES INHIBIDA POR NADH 4) EL ATP

REGULACIÓN DE LA ISOCITRATO DESHIDROGENASA 1) POR MODIFICACIÓN COVALENTE: LA FOSFORILACIÓN DEL RESIDUO SER113 (SITIO ACTIVO) INACTIVA EL ENZIMA 2) POR ALOSTERISMO MODULADOR POSITIVO ES EL ADP 3) ES ACTIVADA POR Ca 2+

REGULACIÓN DE LA α-cetoglutarato DESHIDROGENASA 1) ES INHIBIDA POR SU PRODUCTO EL SUCCINIL-CoA 2) POR NADH 3) ES ACTIVADA POR Ca 2+

EL CICLO DE KREBS ES UN CICLO ANFIBÓLICO PORQUE: A)ES CATABÓLICO (Se lleva a cabo la oxidación del carbono proveniente de otras vías) B) ES ANABÓLICO (Es proveedor de esqueletos carbonados para otras vías metabólicas) Proteínas Glucosa Acetil-CoA CICLO DE KREBS Lípidos SÍNTESIS CO 2

VÍAS QUE UTILIZAN INTERMEDIARIOS DEL CICLO: 1. LA BIOSÍNTESIS DE GLUCOSA (GLUCONEOGÉNESIS) SE UTILIZA EL MALATO 2. LA BIOSÍNTESIS DE LÍPIDOS (ÁCIDOS GRASOS Y ESTEROLES) SE UTILIZA CITRATO Y SUCCINIL-CoA 3. LA BIOSÍNTESIS DE AMINOÁCIDOS SE UTILIZA EL α-cetoglutarato, EL OXALOACETATO (POR TRANSAMINACIÓN) 4. LA BIOSÍNTESIS DE PORFIRINAS UTILIZA EL SUCCINIL-CoA EL CICLO ES PROVEEDOR DE ESQUELETOS CARBONADOS

REACCIONES QUE REPONEN LOS INTERMEDIARIOS DEL CICLO DE KREBS DENOMINADAS REACCIONES ANAPLERÓTICAS (RELLENAR) 1) Piruvato carboxilasa PEP carboxicinasa 2) Fosfoenolpiruvato +CO 2 + GDP Oxalacetato + GTP PEP carboxilasa 3) FOSFOENOLPIRUVATO + HCO - 3 OXALACETATO + Pi Enzima málico 4) PIRUVATO + HCO 3- + NAD(P)H MALATO + NAD(P) +

DIAGRAMA DEL CICLO DEL ÁCIDO CÍTRICO QUE INDICA LAS POSICIONES EN LAS QUE SE RETIRAN ALGUNOS METABOLITOS (VÍAS ANABÓLICAS) Y LOS PUNTOS EN LOS QUE LAS REACCIONES ANAPLERÓTICAS REPONEN LOS INTERMEDIARIOS DEL CICLO QUE SE HAN AGOTADO

CPO. PROTEÍCO Proteasas aa libres ALMIDÓN Amilasas glucosa CPO. LIPÍDICO TAG Lipólisis Ac.grasos libres Transaminasas α-cetoácidos Gluconeogénesis PEPK β-oxidación oxalacetato MDH malato MS α-cetogl DH

EL CICLO DEL GLIOXILATO ES ACTIVO EN LAS SEMILLAS EN GERMINACIÓN Y CIERTOS MICROORGANISMOS LA VÍA SE LLEVA A CABO EN LOS GLIOXISOMAS ESTÁN VARIOS ENZIMAS DEL CICLO DE KREBS Y DOS ENZIMAS ADICIONALES: LA ISOCITRATO LIASA Y LA MALATO SINTASA EVITA LAS DOS DESCARBOXILACIONES DEL CICLO DE KREBS PERMITIENDO LA FORMACIÓN NETA DE SUCCINATO, OXALACETATO, Y OTROS A PARTIR DE ACETIL-CoA