Estudio del efecto de la temperatura sobre la velocidad de reacción

Documentos relacionados
CINÉTICA QUÍMICA DETERMINACIÓN DEL ORDEN DE REACCIÓN Y ENERGÍA DE ACTIVACIÓN

CINÉTICA. FACTORES QUE AFECTAN LA VELOCIDAD DE UNA REACCIÓN QUÍMICA

PRÁCTICO 3: SOLUCIONES

DETERMINACIÓN DE LA CANTIDAD DE ÁCIDO CLORHÍDRICO PRESENTE EN SALFUMÁN COMERCIAL

OBJETIVO Aprender a preparar disoluciones de concentración dada, ya que la mayor parte de las reacciones químicas tienen lugar en forma de disolución.

PRÁCTICA 3 DETERMINACIÓN ESPECTROFOTOMÉTRICA DEL pk DE UN INDICADOR

Ac $ + H 3 O + (1) [c] i. =! i

DETERMINACIÓN DE LA DEMANDA QUÍMICA DE OXÍGENO, DQO, TOTAL EN UNA MUESTRA DE AGUA RESIDUAL DOMÉSTICA

VOLUMEN MOLAR PARCIAL DE UNA MEZCLA BINARIA

Química. Equilibrio ácido-base Nombre:

TRBAJO PRÁCTICO N 5: ph. Objetivo: Determinar el ph de soluciones ácidas y básicas de concentraciones diferentes.

DETERMINACIÓN DEL PORCENTAJE DE PLOMO MTC E

Los FFA se pueden expresar como índice de acidez o porcentaje de acidez.

PREPARACIÓN DE SOLUCIONES

PRÁCTICA Nº 3 PROPIEDADES COLIGATIVAS: DETERMINACIÓN DE LA MASA MOLECULAR DE UN SOLUTO PROBLEMA POR CRIOSCOPIA

Práctica laboratorio: Reacciones de polimerización. Determinación del peso molecular de un polímero mediante análisis de grupos finales

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2002 QUÍMICA TEMA 1: LA TRANSFORMACIÓN QUÍMICA

QUÍMICA 2º BACHILLERATO

Problemas disoluciones

CINÉTICA DE LA REACCIÓN DEL IÓN TIOSULFATO EN MEDIO ÁCIDO.

PNT 9: DETERMINACIÓN DEL ÁCIDO ACETILSALICÍLICO EN COMPRIMIDOS MEDIANTE DIFERENTES MÉTODOS.

Determinación de oxidantes totales en aire

Física y Química 1ºBachillerato Ejemplo Examen. Formulación. (1 puntos) Formula correctamente los siguientes compuestos: Ioduro de Calcio:

PRÁCTICA 3 Estudio cinético de la decoloración de la fenolftaleína en medio básico

DETERMINACIÓN YODO EN ALIMENTOS Método volumétrico Basado en AOAC

DETERMINACIÓN PORCENTUAL DE NaHCO 3 EN TABLETAS EFERVESCENTES

RepublicofEcuador EDICTOFGOVERNMENT±

TRONCO COMUN DIVISIONAL DE CIENCIAS BIOLOGICAS Y DE LA SALUD. MODULO: ENERGIA Y CONSUMO DE SUSTANCIAS FUNDAMENTALES. PRACTICA No.

PRÁCTICA Nº 2 OPERACIONES COMUNES EN UN LABORATORIO

GUIA DE ESTUDIO Nº 7: Equilibrio Químico

LABORATORIO 6. TITULO : Propiedades de los Gases

Determinación de la concentración micelar crítica (cmc) y grado de disociación (α) de un tensioactivo iónico mediante medidas de conductividad

Métodos para la cuantificación de nitrógeno y proteína

Tarea Nº 5 de Química Analítica Problemas que involucran densidades

Ley de conservación de la masa. Estequiometría

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2003 QUÍMICA TEMA 1: LA TRANSFORMACIÓN QUÍMICA

TITULACIÓN ACIDO BASE.

2A Reacciones de Sustitución Nucleofílica Alifática. Obtención de Cloruro de ter-butilo.

EXPERIMENTO 6: SÍNTESIS, PURIFICACIÓN Y ANÁLISIS DEL ÁCIDO ACETIL SALICÍCLICO (aspirina).

Determinar de forma cuantitativa el calor que se absorbe o desprende en una reacción de neutralización en medio acuoso -NaOH+HCl- que evoluciona a

Problemas resueltos de disoluciones y sus diferentes medidas de concentración.

PROBLEMA EXPERIMENTAL Nº 1

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 QUÍMICA TEMA 1: LA TRANSFORMACIÓN QUÍMICA

Grado en Química. 1 er Curso QUIMICA GENERAL II. Guiones de Prácticas

PRÁCTICA 15 CÁLCULO TEÓRICO Y EXPERIMENTAL DE ph DE DISOLUCIONES DE ÁCIDOS, BASES Y SALES. DISOLUCIONES REGULADORAS.

Materiales Pipetas ;Tubos de ensayo ;Vaso de precipitado ;Sistema calentador (placa calefactora) ;Probeta

Grado en Química. 1 er Curso QUIMICA GENERAL II. Guiones de Prácticas

VALORACIONES ÁCIDO-BASE

Determinación de la Masa Molar del Magnesio

TRABAJO PRÁCTICO N 0 3 TERMOQUÍMICA

PRÁCTICA 3 ESTEQUIOMETRÍA: ESTABLECIMIENTO DE LA ECUACIÓN QUÍMICA DE UNA REACCIÓN DE PRECIPITACIÓN, EMPLEANDO EL MÉTODO DE LAS VARIACIONES CONTINUAS

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2007 QUÍMICA TEMA 1: LA TRANSFORMACIÓN QUÍMICA

REACCIONES DE TRANSFERENCIA DE ELECTRONES, AJUSTE Y ESTEQUIOMETRÍA. 1-Nombra tres sustancias que sean oxidantes enérgicos Por qué?

4.4. MOLES Y MOLÉCULAS.

Titulaciones en Química Analítica. Capítulo 13 CHEM 3320 Rosamil Rey Santos, Ph.D.

Práctica No 12. Determinación experimental de la Presión de vapor de un líquido puro

Un equilibrio heterogéneo muy especial: Equilibrio de Precipitación

C: GASES Y PRESIÓN DE VAPOR DEL AGUA

TRANSFERENCIA DE PROTONES. CUESTIONES Y PROBLEMAS. E1B.S2009 Para las especies CN, HF y CO 3

REGLAMENTOS. (4) Las medidas previstas en el presente Reglamento se ajustan al dictamen del Comité de la Organización Común de Mercados Agrarios,


PRACTICA No. 9 PREPARACION DE DISOLUCIONES

1. Se dispone de una disolución acuosa de ácido sulfúrico del 98% de riqueza en masa y densidad 1,84 g/ml.

ALCALINIDAD TOTAL- REACCIONES ACIDO-BASE Página 1

PRÁCTICA 3 DETERMINACIÓN DEL OXÍGENO DISUELTO POR EL MÉTODO DE WINKLER

6 APENDICE. A. Curvas de Calibración

PRÁCTICA Nº 7 SOLUCIONES AMORTIGUADORAS Y CURVAS DE TITULACIÓN

Balance de masa con reacción química. Balances de masa con reacción química en reactores discontinuos y continuos.

Molaridad y molalidad

INFORMACION TECNICA QUIMAL ETCH 913. Aditivo para el satinado del aluminio CONDICIONES DE TRABAJO

PRÁCTICA 6 CINÉTICA QUÍMICA DETERMINACIÓN DE LA CONSTANTE DE VELOCIDAD DE REACCIÓN EN LA HIDRÓLISIS DEL CLORURO DE TERBUTILO

PRÁCTICA 2: CONDUCTIVIDAD TÉRMICA DE LOS METALES

EQUILIBRIO QUÍMICO: DETERMINACIÓN DE LA CONSTANTE DE PRODUCTO DE SOLUBILIDAD DEL Ba(NO 3 ) 2

QUÍMICA DEL ARSÉNICO, ANTIMONIO Y BISMUTO

EQUILIBRIO QUÍMICO. 1. Equilibrio químico. 2. La constante de equilibrio. 3. EL principio de LeChatelier. Química 2º bachillerato Equilibrio químico 1

PRACTICA # 1 DETERMINACION DE FOSFORO OLSEL Y BRAY P-1

TÍTULO: Determinación colorimétrica de fenoles en agua por el método de la 4- aminoantipirina

EL EQUILIBRIO QUÍMICO Y SUS PERTURBACIONES

DETERMINACIÓN DE LA LEY EXPERIMENTAL DE RAPIDEZ. ESTUDIO DE LA CINÉTICA DE YODACIÓN DE LA ACETONA. Grupo: Equipo: Fecha: Nombre(s):

6.2.- Reacciones de oxidación reducción

PRÁCTICA 1 HERRAMIENTAS Y OPERACIONES BÁSICAS EN EL LABORATORIO BIOANALÍTICO

TEMA 2 CONCEPTOS BÁSICOS Cálculos estequiométricos

PRACTICA No.9 REACCIONES QUIMICAS I

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 QUÍMICA TEMA 6: EQUILIBRIOS ÁCIDO-BASE

Química P.A.U. ÁCIDOS Y BASES 1 ÁCIDOS Y BASES. Rta.: a) [NH₃]ₑ = 0,0096 mol/dm³; [OH ]ₑ = [NH₄+]ₑ = 4,2 10 ⁴ mol/dm³; b) ph = 10,6; K = 1,8 10 ⁵

1. Disoluciones una disolución es cualquier mezcla homogénea disolvente soluto Medidas de composición

PROCEDIMIENTO. 1. Si todavía no lo has hecho, ponte los guantes y las gafas de seguridad. Cinética química Página 2

La concentración másica (C)

Determinación de Alcalinidad en aguas naturales y residuales

Termoquímica Calor de Neutralización

DETERMINACION DEL PM. DE LA FRUCTOSA

FORMAS MÁS COMUNES DE EXPRESAR LA CONCENTRACIÓN:

CÁTEDRA: QUÍMICA GUÍA DE LABORATORIO Nº 3

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA QUÍMICA TEMA 6: EQUILIBRIOS ÁCIDO-BASE.

LABORATORIO Nº 3 Determinación de la capacidad amortiguadora de un buffer

PREPARACIÓN Y CONDUCTIVIDAD DE DISOLUCIONES

Materia: FÍSICA Y QUÍMICA Curso

Manual de Laboratorio de Química Analítica

P3. Reacciones ácido-base; volumetría

Ecuaciones diferenciales de primer orden: Aplicaciones a la Ingeniería Química

Transcripción:

Laboratorio de Química Física Grado en Química PRÁCTICA 4 Estudio del efecto de la temperatura sobre la velocidad de reacción Material cubeta de metacrilato, termostato y unidad refrigeradora compartidos matraz aforado de 500 ml pesasustancias/ varilla agitadora/ cuentagotas/ embudo pequeño matraz aforado de 250 ml botella ámbar de 250 ml (para Na 2 S 2 O 3 ) matraz aforado de 00 ml frasco lavador matraz aforado de 25 ml agitador magnético con imán matraz erlenmeyer de 000 ml 4 vasos de precipitados de 00 ml Productos probeta de 00 ml Ioduro de potasio pipeta de 5 ml graduada Tiosulfato de sodio pentahidratado pipeta de 2 ml graduada Agua oxigenada de 0 vol. micropipeta, propipeta Indicador almidón % cronómetro Acido sulfúrico Objetivos. Analizar el efecto de la temperatura sobre la velocidad de reacción. 2. Relacionar constantes de velocidad y tiempos parciales de reacción. 3. Determinar la energía de activación de la reacción. 4. Determinar la ley de velocidad experimental de la reacción de oxidación del ión ioduro por agua oxigenada en medio ácido (pseudorden de reacción y constante aparente de velocidad). Fundamentos teóricos La velocidad de casi todas las reacciones químicas aumenta, en general, con la temperatura (se duplica o triplica por cada 0 ºC de aumento). Una de las ecuaciones más utilizadas para representar la variación de la constante de velocidad con la temperatura es la ecuación empírica de Arrhenius: k = A e!e a RT () donde A es el factor de frecuencia y E a la energía de activación. Tomando logaritmos en la ecuación (): ln k = ln A! E a R que aplicada a dos temperaturas (T y T 2 ), y dividiendo ambas queda: T ln k 2 =! E " a! % k R $ # T 2 T ' & (2) (3) ecuación válida suponiendo que A y E a son constantes en el intervalo de temperaturas estudiado. Así pues se puede determinar la energía de activación a partir de la relación entre las constantes de velocidad a dos temperaturas. En esta experiencia vamos a determinar la relación entre las constantes de velocidad, y por tanto el valor de la energía de activación, mediante: a) la determinación del tiempo parcial de reacción; y b) las ecuaciones intregradas de velocidad.

(a) Se define el tiempo parcial de reacción, t p, como el tiempo necesario para consumir una cantidad dada de reactivo, en unas condiciones iniciales de reacción determinadas. Aprovechando el hecho de que, a dos temperaturas diferentes T y T 2, y siempre y cuando las concentraciones iniciales ([A] 0 a t=0) e instantáneas ([A] t a t= t), de todos los reactivos sean las mismas a ambas temperaturas, se puede demostrar que las constantes de velocidad son inversamente proporcionales a los tiempos parciales de reacción, tp y tp 2 : k t p2 = (4) k 2 t p La reacción elegida es la oxidación del ión ioduro por el agua oxigenada en medio ácido (sulfúrico): H 2 + 2I - + 2H + I 2 + 2 H 2 O H 2 + 2 KI + H 2 SO 4 I 2 + 2 H 2 O + K 2 SO 4 (5) cuya ecuación de velocidad puede expresarse como: v = k [I! ] a ] b [H + ] c (6) en la que k es la constante absoluta de velocidad y a, b, c, son, respectivamente, los órdenes parciales de reacción respecto del I -, del H 2 y del H +. La ecuación de velocidad se simplifica ya que la concentración del medio ácido permanece aproximadamente constante (exceso de H + respecto a los otros componentes) y a que el diseño de la experiencia da lugar a que la concentración de I - permanezca constante a lo largo de la reacción, como veremos. Entonces: v = k ap ] b siendo k ap = k[i! ] a [H + ] c " cte (7) La cantidad de iodo producido (y por tanto de agua oxigenada que ha reaccionado) se determina añadiendo al medio de reacción una cantidad prefijada de tiosulfato sódico que reduce al iodo a medida que se produce, según la reacción: I 2 + 2Na 2 S 2 O 3! Na 2 S 4 O 6 + 2NaI (8) y como consecuencia el número de moles (y la concentración) de I - permanecerá muy aproximadamente constante. Según la estequiometría de la reacción (5), los moles de I 2 producidos son iguales a los de H 2 consumidos, y como el I 2 reacciona inmediatamente con el tiosulfato, podremos determinar la cantidad de agua oxigenada que ha reaccionado a partir de la cantidad de tiosulfato añadido al medio de reacción. Por tanto, el tiempo necesario para consumir una cantidad añadida y prefijada de tiosulfato de sodio, por el iodo producido, constituirá una medida del tiempo parcial de reacción. La presencia de yodo es fácilmente detectable añadiendo unas gotas de almidón debido al complejo de color azul que forma el yodo con el almidón. Lab. QF Versión- 5 2

(b) Por otro lado, las constantes de velocidad se podrán obtener también a partir de las pendientes de la representación de la ecuación integrada correspondiente, para lo cual previamente habrá que determinar el orden de la reacción. Teniendo en cuenta las ecuaciones (5) y (7), la ecuación integrada de orden uno (b=) es: y de orden dos: ln ] = ln ] 0! k ap t (9) ] = + k ] ap t (0) 0 De la pendiente del mejor ajuste, se obtendrán las k ap a cada temperatura, k ap y k ap2, cuyo cociente según la ecuación (7) y dado que se parte de concentraciones iguales de I - y de H + en cada serie, es: k ap k ap2 = k k 2 () Con dicha relación y aplicando la ecuación (3) se determinará la energía de activación. Nota: en la deducción de la ecuación (4) se ha tenido en cuenta que la ecuación integrada de velocidad se puede escribir siempre, en reacciones de mecanismo sencillo como: f([a],[a] 0 ) = k t (a) en la que [A] 0 y [A] son las concentraciones del reactivo A inicial (a t=0) y a tiempo t, respectivamente. Esta ecuación es válida para cualquier temperatura, siempre que no haya cambios en el mecanismo y, por consiguiente a dos temperaturas T y T 2 : f([a],[a] 0 ) = k t y f([a],[a] 0 ) = k 2 t 2 (b) Si f ([A] 0, [A] es la misma a ambas temperaturas, entonces: k t = k 2 t 2 (c) y si los tiempos de reacción se corresponden con los tiempos parciales en que se ha consumido una cierta fracción de reactivo, la igualdad anterior nos lleva a la ecuación (4). Disoluciones. 250 ml de disolución 0. M de Na 2 S 2 O 3 (guardar en un frasco color topacio o al abrigo de la luz). 2. 00 ml de agua oxigenada (H 2 ) de 2 volúmenes, por dilución de la de 0 vol. (en vitrina) Para cada serie (temperatura), hay que preparar: 3. 500 ml de KI del 0.2 % en peso (0.6 g en 500 ml de agua), pesar en cada serie la misma cantidad. 4. 0 ml de ácido sulfúrico concentrado (vitrina). El procedimiento se describe a continuación. A un erlemeyer de 000 ml se le añade la disolución de KI (500 ml). A continuación, en la vitirina, al erlemmeyer de 000 ml, se le añade muy lentamente con el dosificador o pipeta los 0 ml de sulfúrico concentrado. Lab. QF Versión- 5 3

Procedimiento experimental El estudio se realiza a dos temperaturas (dos series) que deben anotarse: Serie : a una temperatura de 0 C en un baño termostático con criostato. Serie 2: a una temperatura de 22 C en un baño termostático (si es necesario usar el criostato). Para cada serie se procede del siguiente modo:. Colocar en el baño y sobre el agitador magnético para que alcancen la temperatura de la experiencia: un erlenmeyer de 000 ml con la disolución de KI, 0 ml de ácido sulfúrico concentrado (dosificador) y el imán. El agitador se pone en marcha y no deberá pararse durante toda la experiencia. un erlenmeyer tapado con 25 ml de la disolución de H 2 (aforado de 25 ml). 2. Cuando se haya alcanzado el equilibrio térmico (unos 0-20 minutos), añadir al matraz de reacción ml de indicador de almidón y los 25 ml de H 2. Poner en marcha el cronómetro (t=0). 3. Cuando se coloree la disolución, añadir inmediatamente 3 ml de disolución de tiosulfato sódico utilizando la micropipeta. Desaparecerá el color azul (debido al complejo formado entre el iodo producido y el indicador de almidón). Cuando vuelva a aparecer el color (lo que nos indica que ya no queda tiosulfato en la disolución), anotar el tiempo sin parar el cronómetro, y añadir otra alícuota de 3 ml de tiosulfato de sodio. 4. Repetir el paso 3 hasta completar una serie de 2 tiempos parciales. Nota: el tiempo que tarda en aparecer el color azul, es el tiempo que tarda en consumirse el tiosulfato añadido, y será el tiempo parcial de reacción. 5. Preparar de nuevo la disolución 3, procurando que la masa de KI sea lo más parecida posible a la de la serie. Repetir el proceso de adición del sulfúrico. 6. Repetir la experiencia, a temperatura de 22 C pero ahora añadiendo 20 alícuotas de tiosulfato, anotando 20 valores de tiempos parciales. Nota: Recordad que hay recipientes para desechar los residuos al acabar la experiencia. Resultados experimentales: presentación de los datos. Presentar en una tabla los siguientes datos: masas o volúmenes teóricos calculados, masas o volúmenes reales utilizados y las concentraciones reales de las disoluciones de tiosulfato y agua oxigenada empleadas. 2. Presentar en otra tabla los datos experimentales: volumen de tiosulfato añadido y los tiempos en que se ha consumido cada una de las alícuotas, para las dos temperaturas. Lab. QF Versión- 5 4

Tratamiento y Discusión de Resultados. Determinar la concentración de agua oxigenada en función del volumen de tiosulfato añadido y recogerlo en la tabla correspondiente (utilizar las concentraciones reales de tiosulfato y agua oxigenada). 2. Determinar los tiempos parciales de reacción para ambas series y completar la tabla correspondiente. 3. Comentar los valores y la tendencia de los t p a cada temperatura y su posible relación con el orden de reacción. 4. Calcular con la ecuación (4) el valor medio de k /k 2 a partir de los cocientes de los tiempos parciales. Calcular también su error aleatorio. 5. Calcular la energía de activación con el número de cifras significativas adecuado, a partir de la ecuación (3). 6. Construir una tabla en la que se indique: ], ln ] y / ] en función del tiempo para ambas temperaturas. 7. Representar gráficamente las ecuaciones integradas de velocidad para orden uno y dos (en cada gráfica los datos de las dos temperaturas). Determinar el orden de reacción respecto del agua oxigenada. 8. De la pendiente de las rectas anteriores, determinar las constantes aparentes de velocidad a cada temperatura y la energía de activación con la ecuación de Arrhenius. Comparar su valor con el obtenido a partir de los tiempos parciales de reacción. Lab. QF Versión- 5 5