67.31 Transferencia de Calor y Masa

Documentos relacionados
CAPÍTULO VI TRANSPORTE DE ENERGÍA POR RADIACIÓN

radiación Transferencia de Calor p. 1/1

km. , considerando que es un cuerpo negro calentado por el Sol. 2. Determinar la temperatura del suelo de Marte, T (1)

Universidad Nacional de La Plata Facultad de Ciencias Astronómicas y Geofísicas. INTRODUCCIÓN a las CIENCIAS de la ATMÓSFERA

interacción de la radiación con la materia

TEORÍA CORPUSCULAR DE LA LUZ.

TEMA 3: Interacción de la radiación solar con la superficie de la Tierra y la atmósfera

El cuerpo negro. Figura 3.1: Cuerpo negro

Clase VII Termodinámica de energía solar fototérmica

5.1. Magnitudes radiométricas

INTRODUCCIÓN A LA TELEDETECCIÓN CUANTITATIVA

LAS LEYES DE LA RADIACIÓN EN LA TIERRA Y EN EL ESPACIO OBJETIVO RESUMEN. GENERACIÓN DE LINEAS: Leyes de Kirchhoff

MÉTODOS DE TRANSFERENCIA DE CALOR

Balance Global de Energía

Física, Materia y Radiación

XVII.- RADIACIÓN TÉRMICA FUNDAMENTOS Y FACTORES DE FORMA

TRANSFERENCIA DE CALOR INTEGRANTES ELI JARA CAMPOS JOSEPH ARAYA MARTÍNEZ

Radiación electromagnética

Física moderna. José Mariano Lucena Cruz Física 2 o Bachillerato

XIX.- RADIACIÓN TÉRMICA FUNDAMENTOS Y FACTORES DE FORMA

FIS Bases de la Mecánica Cuántica

T = Al sustituir el valor de la longitud de onda para la que la energía radiada es máxima, l máx, se obtiene: = 1379 K 2, m

Carrera: EMM Participantes Representante de las academias de ingeniería Electromecánica de los Institutos Tecnológicos.

TEMA 1. MECANISMOS BÁSICOS DE TRANSMISIÓN DE CALOR

REPÚBLICA BOLIVARIANA DE VENEZUELA

Capítulo 1. Antecedentes de la Química Cuántica y primeras Teorías Atómicas

Programa de Transmisión de Calor

Balance de Energía Superficial

Radiación del cuerpo negro 2.1 CONCEPTOS BÁSICOS SOBRE EL EQUILIBRIO TERMODINÁMICO

Transferencia de Calor por Radiación

Tema 7.- Principios de fotoquímica

GF3003 Ciencias Atmosféricas. Laura Gallardo Klenner Departamento de Geofísica de la Universidad de Chile Primavera 2010

MATERIA MOLÉCULAS ÁTOMOS PARTÍCULAS SUBATÓMICAS. Partícula Masa (g) Carga (Coulombs) Carga unitaria. Electrón

TERMOGRAFIA NIVEL I 1.- INTRODUCCION: Fundamentos de Temperatura y Transferencia de calor. 2.- CARACTERISTICAS DE LOS MATERIALES:

Óptica Fenómenos luminosos. Juan Carlos Salas Galaz

Espectroscopía de Absorción Molecular

La Hipótesis: Los electrones de las paredes se agitan térmicamente y emiten radiación electromagnética dentro de la cavidad.

radiación electromagnética

Unidad 1 Estructura atómica de la materia. Teoría cuántica

LABORATORIO DE OPERACIO ES U ITARIAS II GUIA DE LABORATORIO SEMESTRE RADIACIÓ TÉRMICA

5.- PROPIEDADES ÓPTICAS DE LOS MATERIALES FÍSICA DEL ESTADO SÓLIDO II

c = λν λ = longitud de onda (distancia entre crestas de la onda) 1Å(angstrom) = 10 8 cm = m

Física Estadística. Tercer curso del Grado en Física. J. Largo & J.R. Solana. Departamento de Física Aplicada Universidad de Cantabria

Radiación. Cuerpo Negro Espectros Estructura del Atomo Espectroscopia Efecto Doppler. L. Infante 1

FÍSICA CUÁNTICA. Física de 2º de Bachillerato

FÍSICA CUÁNTICA 1. Antecedentes y crisis. 2. Modelo atómico de Bohr. 3. Principios de la mecánica cuántica.

La física del siglo XX

El problema de la radiación de energía

Tema 14 11/02/2005. Tema 8. Mecánica Cuántica. 8.1 Fundamentos de la mecánica cuántica

Tema 12: EL NACIMIENTO DE LA MECÁNICA CUÁNTICA.

DESARROLLO. La frecuencia tiene una relación inversa con el concepto de longitud de onda, a mayor frecuencia menor

02/06/2014. Química Plan Común

Recordando. Primer Modelo atómico (1900) Segundo Modelo atómico (1910) J. J. Thomson Budín de pasas. E. Rutherford Modelo planetario

RADIACIÓN ELECTROMAGNÉTICA Y TÉCNICAS DE OBSERVACIÓN. Curso Introducción a la Astronomía 1

Federico Robledo Estudiante de doctorado en Ciencias de la Atmósfera y docente del DCAO. Porqué pensar en un Sistema Climático?

Energía y primera ley de la termodinámica

La radiación electromagnética.

EJERCICIOS EFECTO FOTOELÉCTRICO

La ley de desplazamiento de Wien (Premio Nobel 1911):

Clase 4:Radiación del cuerpo, efecto fotoeléctrico y modelos atómicos

RADIACIÓN TÉRMICA TRABAJO PRÁCTICO. Objetivos

OPERACIONES UNITARIAS

Modelo de Thomson Modelo de Rutherford. Estructura atómica. José Mariano Lucena Cruz 10 de mayo de 2010

Ciencias de la Tierra y el Espacio Clase 2 Leyes de radiación.

interacción de la radiación con la atmósfera

Relación Problemas Tema 11: Física Cuántica

RADIACIÓN ELECTROMAGNÉTICA

Capítulo 24. Emisión y absorción de la luz. Láser

ESPECTROFOTOMETRIA. BASES FISICAS

SEGUNDA OLIMPIADA NACIONAL UNIVERSITARIA DE FÍSICA (ONUF) 14 de marzo de 2014

Cuerpo negro. Un cuerpo que absorbe toda la radiación que incide en él se llama Cuerpo Negro Ideal(CNI). R =σt 4

TEMA 13. Fundamentos de física cuántica

PROBLEMAS SOBRE RADIACIÓN TÉRMICA pfernandezdiez.es

Capas del sol. Superficial o fotósfera: Poco espesor Temp de 6000 C Irradia la parte visible del espectro

EL ÁTOMO 1. El átomo. 2. Modelos atómicos. 3. Núcleo atómico. 4. Espectros atómicos. 5. Modelo atómico cuántico.

BALANCE DE ENERGÍA. Diseño de Plantas Industriales Programa de Ingeniería Ambiental Facultad de Ciencias Ambientales

PROGRAMA DE CURSO. Competencia a la que tributa el curso

LICENCIATURA EN TECNOLOGÍA FÍSICA MODERNA. III. Antecedente de la Teoría Cuántica. IV. Mecánica Cuántica

EL ESPECTRO ELECTROMAGNÉTICO

Satélites Meteorológicos

Las ventanas atmósfericas

Determinación de la constante de Rydberg

La distinción entre ambas se puede realizar de manera muy básica de la siguiente manera:

Transferencia de Calor Cap. 4. Juan Manuel Rodriguez Prieto I.M., M.Sc., Ph.D.

GUIA N o 2: TRANSMISIÓN DE CALOR Física II

Las Ondas y la Luz. Las Ondas

(( )) Tema 5: Técnicas espectroscópicas: Espectrofotometría. visible Infrarrojo. Ultravioleta. Espectro de emisión de los cuerpos en equilibrio

MÓDULO II FUNDAMENTOS BÁSICOS DE LA TERMODINÁMICA

UNIDAD VIII: RADIACION TERMICA. Introducción. Ley de KIRCHOFF. Ley de PLANCK. Transporte de calor por radiación.

ASPECTOS GENERALES DE LA TRANSFERENCIA DE CALOR U.C: TRANSFERENCIA DE CALOR

Se tiene para tener una idea el siguiente cuadro de colores perceptibles por el ojo humano dependiendo de la longitud de onda.

leyes de la radiación Dpto. de Ingeniería Cartográfica Carlos Pinilla Ruiz Ingeniería Técnica en Topografía lección 2 Teledetección

EL MODELO ATOMICO DE BOHR

Teoría corpuscular: considera la luz como un conjunto de partículas Naturaleza de la luz

RADIACIÓN ELECTROMAGNÉTICA Y ESPECTROS ATÓMICOS. Tipos de radiaciones electromagnéticas según λ.

FÍSICA CUÁNTICA. máx = 2, mk/ T

Espectroscopía de Absorción Molecular

Introducción al calor y la luz

Ondas de Materia Ecuación de Schrödinger. Física Facultad de Ingeniería UNMDP

TRANSFERENCIA DE CALOR

Transcripción:

Índice general 6. Radiación 3 6.1. Introducción........................................... 3 6.1.1. El mecanismo físico de la radiación.......................... 3 6.1.2. Cuerpo Negro, Leyes de Radiación.......................... 4 6.1.3. Intensidad de radiación y Ley de Lambert...................... 6 6.2. Intercambio de energía radiante................................ 8 6.2.1. Radiación en una cavidad............................... 8 6.2.2. Analogía eléctrica.................................... 10 6.2.3. Intercambio entre n-superficies............................ 12 1

67.31 Transferencia de Calor y Masa 2

6 Radiación 6.1 Introducción 6.1.1 El mecanismo físico de la radiación Origen de la radiación Para una descripción cuantitativa de los mecanismos atómicos y moleculares que participan del fenómeno de la radiación, es preciso acudir a la mecánica cuántica: en este curso nos limitaremos a una descripción cualitativa. Cuando se transfiere energía a un cuerpo, algunos de los átomos o moléculas que lo constituyen pasa a estados excitados. Este estado no es estable y las partículas tienden a retornar al estado de energía original. En el restablecimiento, emiten una cierta cantidad de energía bajo forma de ondas electromagnéticas. La energía emitida es lo que llamamos radiación. La potencia emisiva E(W/m 2 ) nos indica la cantidad de energía radiante por unidad de tiempo y de área. Características de la radiación, radiación térmica. Formas de interacción de la radiación con la materia La radiación electromagnética se caracteriza por su longitud de onda λ y su frecuencia ν f de forma que la velocidad de propagación de onda c = λν f. Asimismo, la radiación manifiesta su naturaleza corpuscular ya que interactúa con la materia por medio de cuantos discretos, fotones que tienen una energía E = hν f, donde h = 6,626 10 34 es la constante de Planck. La cantidad de movimiento de cada fotón es hν f /c. La radiación térmica está dada por el intervalo de longitudes de onda tales que al ser absorbido por un cuerpo, se transforma en energía calórica. El rango es: λ térmico [0,1... 100µm] mientras que el espectro visible es λ visible [0,4... 0,7µm] En un cuerpo real, no toda la energía incidente es absorbida sino que una parte es reflejada y otra transmitida por el mismo. Si consideramos el comportamiento global de un cuerpo, podemos definir los coeficientes: de absorción α = de reflexión ρ = de transmisión τ = Energía absorbida Energía incidente. Energía reflejada Energía incidente. Energía transmitida Energía incidente. 3

67.31 Transferencia de Calor y Masa Penetra la atmósfera terrestre? Tipo de radiación Longitud de onda (m) Radio Microondas Infrarrojo Visible Ultravioleta Rayos X Rayos gamma 10 3 10 2 10 5 0,5 10 6 10 8 10 10 10 12 Escala aproximada de la longitud de onda Edificios Humanos Mariposas Punta de aguja Protozoos Moléculas Átomos Núcleo atómico Frecuencia (Hz) Temperatura de los objetos en los cuales la radiación con esta longitud de onda es la más intensa 10 4 10 8 10 12 10 15 10 16 10 18 10 20 1 K 100 K 10.000 K 10.000.000 K 272 C 173 C 9.727 C ~10.000.000 C Figura 6.1: Espectro electromagnético..fuente Luego, debe cumplirse que α + ρ + τ = 1. Este modelo simplista no tiene en cuenta que los cuerpos reales presentan coeficientes que son función de la longitud de onda de la energía incidente. 6.1.2 Cuerpo Negro, Leyes de Radiación Un cuerpo negro es la superficie que absorbe la totalidad de la radiación incidente, no importando el ángulo ni su longitud de la onda. Según el coeficiente global, α = 1, no se produce reflexión de la radiación. Luego, toda radiación que proviene de un cuerpo negro es emitida exclusivamente por su superficie. Según la ley de Stefan Boltzmann, la emisión vale E b = σt 4 [W/m 2 ] (6.1) donde σ = 5,67 10 8 W/m 2 K 4 es la constante de Stefan-Boltzmann. Sin embargo, la emisión del cuerpo negro no es independiente de la longitud de onda: se rige por la ley de Planck que establece la variación de la emisión E bλ = C 1λ 5 (6.2) e C 2/λT 1 donde, si λ está en µm, C 1 = 3,742 10 8 Wµm 4 m 2 y C 2 = 1,4389 10 4 µm K. Integrando la expresión (6.2) se recupera el resultado de Stefan-Boltzmann. Por otro lado, la ley de Wien, establece el desplazamiento de los máximos de las curvas en función de la temperatura de la emisión. Esta ley se puede deducir también a partir de la expresión de Planck. Resulta λ max T = 2897µm K. Una consecuencia práctica de la ley de Wien es que cuanto mayor sea la temperatura de un cuerpo negro, menor es la longitud de onda en la cual emite. 4

Radiación Ebλ 18 16 14 12 10 8 6 4 2 T = 5400 K T = 2000 K T = 1000 K T = 500 K T = 300 K Ley de Wien 10 2 10 1 10 0 10 1 10 2 λ[µm] Figura 6.2: Potencia emisiva monocromática de una superficie negra a diferentes temperaturas. El pico de la curva se desplaza hacia las longitudes cortas para mayores temperaturas. La curva en negro indica la predicción de la teoría clásica, a diferencia de la teoría cuántica que predice la forma correcta de las curvas. Ley de Planck, ley de Wien. Cuerpos grises, Ley de Kirchoff. Los objetos reales nunca se comportan como cuerpos negros ideales. La emisividad ε depende de la longitud de onda de la radiación, la temperatura de la superficie, ángulo de emisión y de propiedades como rugosidad, etc. En algunos casos resulta conveniente suponer que existe un valor de emisividad constante para todas las longitudes de onda, siempre menor que 1 (que es la emisividad de un cuerpo negro). La simplificación que nos sirve para resolver algunos casos en ingeniería donde no es necesario introducir la expresión de Planck y eventuales cálculos. La ley de Kirchoff es una relación entre la emisión monocromática direccional y la absorción monocromática direccional para una superficie que está en equilibrio termodinámico con su alrededor. ε λ (T, θ, φ) = α λ (T, θ, φ) (6.3) La ley establece que un cuerpo en equilibrio termodinámico emite tanto energía como la que absorbe en cada dirección y en cada longitud de onda. Si esto no ocurriese, el cuerpo podría actuar como una bomba de calor absorbiendo desde una dirección y emitiendo en otra: podría refrigerar una dirección sin necesidad de trabajo... lo que iría contra el segundo principio de la termodinámica. El mismo razonamiento se extiende para el comportamiento espectral de ε, luego, la ley de Kirchoff es una consecuencia de la aplicación del segundo principio. Otra forma de considerar el enunciado de Kirchoff es pensar dos cuerpos, el primero una cavidad y el segundo rodeado por el primero. Supongamos que el primer cuerpo es un cuerpo negro que se encuentra 5

67.31 Transferencia de Calor y Masa a una temperatura T 0 mientras que el segundo cuerpo, a la misma temperatura T 0, no lo es sino que su absorción α y su emisión ε son arbitrarias. Nuestro análisis es más simple si ε sólo depende de la longitud de onda λ, aunque el resultado se puede extender para ε(λ, θ, ϕ). El cuerpo 2 recibe una cantidad de calor para una dada λ, q aλ = α λ E bλ A donde E bλ es la potencia emitida por el cuerpo negro a la longitud de onda λ y A es el área. Por otra parte, como el cuerpo 2 está inmerso en el 1 y a la misma temperatura, emite radiación según q eλ = ε λ E bλ A. La condición de equilibrio exige que q eλ = q aλ, luego, ε λ = α λ, un resultado que sólo depende de las propiedades espectrales del cuerpo 2 1. Se desprende de la ley de Kirchoff que α = ε. Dado que el cuerpo negro se define como aquel en donde α = 1, en cuerpos reales α < 1 y entonces, ningún cuerpo real podrá emitir más que un cuerpo negro a la misma temperatura. El cuerpo negro es un cuerpo ideal pero en algunas circunstancias, se puede aproximar el comportamiento de un cuerpo real al de un cuerpo negro. Figura 6.3: Materialización de un cuerpo negro. 6.1.3 Intensidad de radiación y Ley de Lambert Para considerar los efectos de la geometría en el intercambio por radiación, debemos estudiar la manera en la cual los ángulos de orientación afectan la radiación entre superficies como muestra la figura 6.4. La superficie circular da emite radiación en todas las direcciones. Una superficie de radio r recibe la radiación y, en particular, una porción da a de la misma. El calor que fluye hasta da a será proporcional al ángulo sólido 2 dω que se establece desde da. Si la superficie es esférica, da s = rdθr sin θdφ luego dω = sin θdθdφ. El flujo de calor depende también del ángulo θ: en la figura 6.4 pueden observarse tres elementos de área como son vistos desde da. En los dos casos extremos es fácil ver el efecto: para θ = 0, el área coincide con da ; por otro lado, para θ = 90, el área es nula. Ahora podemos definir a la intensidad de radiación I(θ, φ) como la cantidad de calor que fluye desde da por unidad de ángulo sólido y por unidad de área proyectada ortogonalmente a la dirección considerada. si da a percibe un flujo de calor d Q(θ, φ), I(θ, φ) = d Q(θ, φ) da cos θdω [W/m2 ] (6.4) Si I(θ, φ) fuera independiente de la dirección, se dice que la radiación es difusa. Si se cumple esta condición, se satisface la ley de Lambert 3. Una forma práctica ocurre cuando da es una superficie 1 Señalemos nuevamente que podemos extender ε λ = α λ a ε λ,θ,ϕ = α λ,θ,ϕ. 2 Así como para una curva, el ángulo se define a partir de dαr = ds en radianes, para una superficie es dω = da/r 2 en estéreo-radianes 3 Formulada para óptica, fotometría. 6

Radiación Figura 6.4: Elementos de superficie que intervienen en la definición de la intensidad. esférica (en vez de un disco) negra. El flujo total por unidad de superficie que sale en este caso desde da vale: q = d Q da = I cos θdω (6.5) reemplazando la expresión para el ángulo sólido dω e integrando sobre el hemisferio, obtenemos la radiosidad J: J = 2π 2π 0 0 I(θ, φ) cos θ sin θdθdφ (6.6) Siendo una superficie difusa I es constante, luego J = πi. Si la superficie es negra, la intensidad la emisión es σt 4 por unidad de área. Luego, I = σt 4 π (6.7) Los cuerpos negros o grises son por definición de radiación difusa. En cuerpos reales, los no metales presentan su emisividad mayor para la dirección normal a la superficie, mientras que los metales la tienen en una cercana a la azimutal (Figura 6.5). 7

67.31 Transferencia de Calor y Masa Figura 6.5: Variación de la emitancia direccional con el ángulo para algunos materiales. 6.2 Intercambio de energía radiante 6.2.1 Radiación en una cavidad Supongamos en primer caso dos superficies negras A 1 y A 2 a temperaturas T 1 y T 2 respectivamente que se encuentran dispuestas como muestra la figura 6.6. Según la ley de Stefan-Boltzmann, la el objeto interior Figura 6.6: Intercambio de calor por radiación en dos superficies emite una radiación σt 4 2 A 2. Si las superficies se encuentran en equilibrio, a temperaturas T 2 = T 1, el cuerpo absorbe σt 4 2 A 2. Si el objeto tuviera una absortancia α, en equilibro la emisión será igual a la absorción A 2 σt 4 α. Si no hay equilibrio de temperaturas, la emisión es σt 4 2 A 2 pero la absorción será σt 4 1 A 2, el intercambio 8

Radiación neto resulta: Q 21 = A 2 σ(t 4 2 T 4 1 ) (6.8) El intercambio de calor en algunas configuraciones geométricas se corresponde bien con el ejemplo anterior: 2 esferas concéntricas, 2 cilindros largos coaxiales, 2 placas grandes enfrentadas. Figura 6.7: No toda la energía radiada de 1 es absorbida por 2. Factor de forma Otras geometrías pueden implicar que una parte de la radiación emitida por una de las superficie no sea completamente absorbida por la restante, como se ve en el esquema de la figura 6.7. Es necesario definir un factor de forma Potencia emisiva de m que llega a n F mn = Potencia emisiva de m en todo espacio F mn 1 y es función del tamaño, de la forma y de la orientación de 2 superficies. En forma similar a (6.8), Q 21 = F 21 A 2 σt 4 2 F 12 A 1 σt 4 1 (6.9) Si ambas superficies estuviesen a la mima temperatura, Q 12 = 0 y F 21 A 2 = F 12 A 1. Como el factor de forma no depende de la temperatura, el resultado anterior es válido para aún cuando las temperaturas son diferentes. La relación se conoce como regla recíproca. Entonces Q 21 = F 21 A 2 σ(t 4 2 T 4 1 ) (6.10) En forma analítica, da 1 da 2 A 2 F 21 = A 1 F 12 = cos β 1 cos β 2 (6.11) A 1 A 2 πs 2 Para configuraciones sencillas, el factor de forma se encuentra tabulado. Algunas propiedades útiles: n Para un recinto cerrado F ij = 1 j=1 F 1,(2+3) = F 12 + F 13, generalizando: F ij = n F ik. k=1 9

67.31 Transferencia de Calor y Masa Figura 6.8: Determinación analítica del factor de forma entre 2 superficies arbitrarias. 6.2.2 Analogía eléctrica Cuerpos negros La ecuación 6.10) nos muestra el intercambio entre 2 superficies negras. Si llamamos potencia emisiva del cuerpo negro E b = σt 4, la forma lineal de (6.10) sugiere una analogía eléctrica. En forma general para 2 superficies ij: Q 21 = E b2 E b1 1/F 21 A 2 Q ij = E bi E bj 1/F ij A i (6.12) Luego, las potencias emisivas E bi pueden asociarse a potenciales eléctricas y la inversa del área afectada por el factor de forma puede asociarse a una resistencia espacial a la radiación. El planteo nos permite ver con sencillez algunas configuraciones. Consideremos el caso de una pantalla (o escudo) que separa dos placas infinitas (Figura 6.9 ). En estado estacionario la pantalla no puede almacenar energía y los flujos de calor: Q 13 = Q 32. Como Q 1 = Q 13 y Q 2 = Q 23, Q 1 = Q 2. El circuito equivalente de la Figura 6.9 determina: E b1 E b2 Q 1 = 1/A 1 F 13 + 1/A 3 F 32 Como las áreas son las mismas y F 13 = F 32 = 1, Q 1 = E b1 E b2 2/A 1 El efecto del escudo es reducir la mitad el intercambio por radiación. Puede probarse que para n pantallas, las radiación se reduce m + 1 veces. 10

Radiación Figura 6.9: Pantalla. Analogía eléctrica. Cuerpos grises Figura 6.10: Esquema del intercambio de una superficie gris. En el caso de superficies grises hay que agregar al análisis las características de absorción, emisión y de reflexión de las mismas. La figura 6.10 muestra los flujos de calor radiativos para una superficie gris opaca (sin transmisión). Sobre ella incide una irradiación G. La radiosidad J representa la radiación que sale de la superficie, ya sea por emisión o por reflexión: J = εe b + ρg. Por otro lado, el flujo de calor es q = J G, positivo si sale más de lo que entra. siendo α + ρ = 1 y α = ε, luego ε = 1 ρ. q = εe b + ρg G = εe b + (ρ 1)G q = εe b + (ρ 1)(J q) q = εe b + ( ε)(j q) q(1 ε) = εe b + ( εj) 11

67.31 Transferencia de Calor y Masa q = ε 1 ε (E b J) (6.13) Tenemos así definido el flujo de calor radiante neto a partir de una superficie gris en función de la potencia emisiva de cuerpo negro E b y de la radiosidad J. Si consideramos 2 superficies grises del tipo de la figura 6.6, de un cuerpo encerrado dentro de otro, los flujos de calor pueden definirse según: Q 12 = J 1 A 1 F 12 J 2 A 2 F 21 donde J 1 A 1 F 12 representa la energía que recibe el cuerpo 2 a partir del 1 y J 2 A 2 F 21 respectivamente la energía que recibe el cuerpo 1 a partir del 2. Recordando que A 1 F 12 = A 2 F 21, Q 12 = A 1 F 12 (J 1 J 2 ) ε 1 Retomando el resultado de (6.13), Q 1 = q 1 A 1 = A 1 (E b1 J 1 ) y el flujo 1 ε Q ε 2 2 = A 2 (E b2 J 2 ). 1 1 ε 2 El balance de energía del problema estacionario es: Q 1 = Q 12 = Q 2 Reemplazando, podemos despejar el valor del flujo de calor Q 12 E b1 E b2 1 ε 1 ε 1 A 1 + 1 + 1 ε (6.14) 2 A 1 F 1 2 ε 2 A 2 Para un problema donde los datos sean las temperaturas, el factor de forma y la emisividad de las superficies, obtenemos así el valor del flujo de calor para superficies grises. Pensando en la analogía eléctrica, (1 ε i )/ε i A i representa una resistencia de la superficie i. Otras configuraciones pueden resolverse con la ayuda de la analogía. 6.2.3 Intercambio entre n-superficies La analogía eléctrica deja de ser conveniente cuando se tienen más de 3 superficies en juego. Una cavidad de múltiples superficies como la representada en la figura 6.11, precisa un planteo matricial. Para ello, supondremos que: las superficies son grises y opacas. Las temperaturas son conocidas en cada superficie. Son conocidos los factores de forma. La conducción y la convección son despreciables y el fluido presente es transparente y no radiante. Para cada superficie, La energía incidente sobre cada superficie será J i = ε i σti 4 + ρ i G i = ε i σti 4 + (1 ε i )G i G i = n F ij J j j=1 12

Radiación Figura 6.11: Cavidad de n-superficies.. Entonces: J i = ε i σt 4 i + ρ i G i = ε i σt 4 i + (1 ε i ) y se define un sistema de n ecuaciones a resolver. n F ij J j (6.15) j=1 13