Histéresis ferromagnética y temperatura de Curie

Documentos relacionados
Propiedades magnéticas

1- Cuál es el origen del momento magnético permanente de los átomos que lo poseen?

LEY DE INDUCCIÓN DE FARADAY

INTERACCIONES Y MATERIALES MAGNÉTICOS

Cap. 32: Ecuaciones de Maxwell, Magnetismo en la Materia

PROPIEDADES MAGNÉTICAS

EL CICLO DE HISTÉRESIS EN MATERIALES FERROMAGNÉTICOS. Figura 1. Dominios magnéticos de una porción de material ferromagnético.

FUNDAMENTOS DE INGENIERÍA ELÉCTRICA. José Francisco Gómez González Benjamín González Díaz María de la Peña Fabiani Bendicho Ernesto Pereda de Pablo

:: MARCO TEÓRICO [12.3] En la figura (12.1) se muestran dos bobinas B1 y B2 próximas entre si pertenecientes a circuitos diferentes.

5.2. Materiales Ferromagnéticos

TEMA 3: CAMPO MAGNÉTICO

CIDEAD. 2º BACHILLERATO. ELECTROTECNIA. Tema 5.- Las propiedades magnéticas de la materia. Electromagnética.

RELACIONES BÁSICAS LEY DE FARADAY CARACTERÍSTICAS DEL NUCLEO CARACTERÍSTICAS DE LOS TERMINALES LEY DE AMPERE

1. MOTOR DE CORRIENTE CONTINUA Y DINAMO

Aplicaciones de la ley de Faraday

SESION 9.2: EXCITACIÓN DE LAS MAQUINAS DE C.C.

Consiste en provocar una corriente eléctrica mediante un campo magnético variable.

Facultad de Ingeniería. Escuela de Eléctrica. Asignatura: Teoría Electromagnética.

d m φ dt ξ = Por otro lado, por definición, la fem es la integral del campo a lo largo de una trayectoria C, o trayectoria cerrada

CICLO DE HISTÉRESIS DE MATERIALES FERROMAGNÉTICOS

Transductores inductivos

Magnetismo en la materia

TÉCNICO SUPERIOR UNIVERSITARIO EN PROCESOS INDUSTRIALES ÁREA SISTEMAS DE GESTIÓN DE LA CALIDAD EN COMPETENCIAS PROFESIONALES

TÉCNICO SUPERIOR UNIVERSITARIO EN MECATRÓNICA ÁREA AUTOMATIZACIÓN EN COMPETENCIAS PROFESIONALES ASIGNATURA DE ELECTRICIDAD Y MAGNETISMO

Química del Estado Sólido. Análisis Térmicos. Dr. José Francisco Gómez García

BOBINAS. Definición. Simbología. La bobina ideal es un elemento pasivo, que almacena energía eléctrica en forma de campo magnético.

Documento No Controlado, Sin Valor

TÉCNICO SUPERIOR UNIVERSITARIO EN MANTENIMIENTO ÁREA INDUSTRIAL EN COMPETENCIAS PROFESIONALES ASIGNATURA DE ELECTRICIDAD Y MAGNETISMO

x x x x x x n= número de espiras por unidad de longitud r r enc nli El número de espiras en el tramo L es nl N= número total de espiras

PRÁCTICA # 3 PRINCIPIOS DE ELECTROMAGNETISMO

Magnetismo en la materia (Materiales magnéticos)

5 a) Explique el funcionamiento de un transformador eléctrico. b) Podría funcionar con corriente continua? Justifique la respuesta.

LA CORRIENTE ELÉCTRICA GENERA CAMPOS MAGNÉTICOS

UNIVERSIDAD MICHOACANA DE SAN NICOLÁS DE HIDALGO FACULTAD DE INGENIERÍA MECÁNICA ÁREA: CIENCIAS BÁSICAS Y MATEMÁTICAS

MAGNETISMO EN MATERIALES

Junio Pregunta 3B.- Una espira circular de 10 cm de radio, situada inicialmente en el plano r r

INDUCCIÓN ELECTROMAGNÉTICA

PROGRAMA INSTRUCCIONAL MAQUINAS ELÉCTRICAS I

1. Estudiar la FEM inducida en bobinas y la inductancia mutua. 2. Estudiar el cambio de la inductancia en una bobina al variar el núcleo laminado.

Inductancia. La inductancia es la capacidad de. magnético, como sucede con un capacitor en un campo eléctrico. Bobina de 1500 vueltas y pila de 6 [V]

EXPERIMENTO DE LABORATORIO No 1 EL TRANSFORMADOR MONOFASICO. Página 1 de 6


EVALUACIÓN. Nombre del alumno (a): Escuela: Grupo: 1. Describe las tres formas de electrizar un cuerpo y da un ejemplo de cada una de ellas.

FISICA 2º BACHILLERATO CAMPO MAGNÉTICO E INDUCCIÓN ELECTROMAGNÉTICA

TEMA 4. REPASO DE LAS LEYES Y PRINCIPIOS DE ELECTROMAGNESTISMO.

FENÓMENOS DE INDUCCIÓN ELECTROMAGNÉTICA LA LEY DE FARADAY

UNIVERSIDAD PARA LOS. Física Aplicada a Procesos Naturales MAYORES. Sesión 3. El campo magnético

INDICE Capitulo 1. El concepto del circuito magnético Capitulo 2. Excitación de estructuras ferromagnéticas con corriente directa

Circuitos magnéticos. Introducción

Ejercicios PSU. Programa Electivo Ciencias Básicas Física. GUÍA PRÁCTICA Electricidad II: circuitos eléctricos GUICEL002FS11-A16V1

INDICE Capitulo 1. Circuitos Eléctricos en Corriente Continua: Conceptos y Fenómenos Capitulo 2. Resistencia Eléctrica. Ley de Ohm

MAQUINAS ELECTRICAS MODULO DE AUTOAPRENDIZAJE V

DEPARTAMENTO DE FÍSICA DE LA UNIVERSIDAD DE SONORA ORGANIZACIÓN DE LA MATERIA DE FÍSICA III

EJERCICIOS PAU FÍSICA ANDALUCÍA Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com

UNIVERSIDAD DEL VALLE INGENIERIA ELECTRONICA APLICACIÓN DE LA LEY DE INDUCCIÓN DE FARADAY: EL TRANSFORMADOR INFORME DE LABORATORIO.

APUNTE: EL TRANSFORMADOR

5.- Interacción ente campos magnéticos y corrientes. Ley de Faraday-Henry o de inducción electromagnética

Campo magnético en el entrehierro de un electroimán y de un imán permanente

APLICACIÓN DE LA LEY DE INDUCCIÓN DE FARADAY: EL TRANSFORMADOR TAREA DE PREPARACIÓN

3. TRANSFORMADORES. Su misión es aumentar o reducir el voltaje de la corriente manteniendo la potencia. n 2 V 1. n 1 V 2

SESION 10: GENERADORES DE C.C.

1. Concepto de amplificación de señales en los circuitos de control Amplificadores estáticos Amplificadores magnéticos...

3. Dos dipolos se orientan como se muestra en la Figura. Calcule y dibuje el campo total en el punto de observación A debido a los dipolos.

UNIVERSIDAD CARLOS III DE MADRID ESCUELA POLITÉCNICA SUPERIOR DEPARTAMENTO DE INGENIERÍA ELÉCTRICA

Capítulo 3. Magnetismo

Electromagnetismo (Todos. Selectividad Andalucía )

Tercer principio de la Termodinámica 16 de marzo de 2009 Cuestiones y problemas: Cuestiones 4.43 y 4.44

Propiedades magnéticas y térmicas

LABORATORIO DE MAQUINAS ELECTRICAS. Guía de Practica N 02: MEDICION DE TENSION Y CORRIENTES EN TRANSFORMADORES MONOFASICOS

PR-5. PRÁCTICA REMOTA Respuesta de motores de corriente continua. Equipo modular Feedback MS-150

Faraday tenía razón!! María Paula Coluccio y Patricia Picardo Laboratorio I de Física para Biólogos y Geólogos Depto. de Física, FCEyN, UBA 1999

es la permeabilidad del vacío, esto es 4

INTERACCIÓN MAGNÉTICA

El trabajo realizado para mover la carga eléctrica recibe el nombre de fuerza electromotriz(fem).

Capítulo 4: Ecuaciones dinámicas del conjunto motor-carga

ETN 404 Mediciones Eléctricas Docente: Ing. JC Avilés C. 2014

MÁQUINAS ELÉCTRICAS ROTATIVAS: MOTORES DE CC

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E.

CONTENIDOS. Contenidos. Presentación. xiii

FISICA GENERAL III 2012 Guía de Trabajo Practico No 9 ANÁLISIS DE CIRCUITOS RL, RC Y RCL SERIE Y PARALELO. R. Comes y R. Bürgesser

Descarga Glow. Introducción. Características de la descarga glow

El transformador trifásico de tres columnas se puede sintetizar a partir de tres transformadores monofásicos idénticos de la siguiente forma:

Laboratorio de Fundamentos Físicos de la Ingeniería LEY DE OHM

Preguntas Teóricas Física III

Electrotecnia General (Prf. Dr. José Andrés Sancho Llerandi) Tema 11 TEMA EXCITACIÓN, SUSCEPTIBILIDAD Y PERMEABILIDAD MAGNÉTICA.

Clase VI. Máquinas de Corriente Directa: Generadores de Corriente Directa. Generalidades

PROBLEMAS INTERACCIÓN ELECTROMAGNÉTICA

Carrera: ECM Participantes Participantes de las Academias de Ingeniería Electrónica de los Institutos Tecnológicos. Academias de Ingeniería

a) Si la intensidad de corriente circula en el mismo sentido en ambas. b) Si la intensidad de corriente circula en sentidos contrarios.

Unidad Didáctica 4 Electricidad

UNIVERSIDAD DE ANTIOQUIA FACULTAD DE CIENCIAS EXACTAS Y NATURALES INSTITUTO DE FÍSICA PROGRAMA DE ELECTRICIDAD Y MAGNETISMO

ELECTRICIDAD Y MAGNETISMO FIZ 1300 FIS 1532 (10)

Práctica 4 Detector de ventana

Olimpiadas de Física Córdoba 2010

Nombre de la asignatura: Electricidad y Magnetismo. Créditos: Aportación al perfil

Física 2º Bachillerato Curso Cuestión ( 2 puntos) Madrid 1996

Universidad Nacional Autónoma de Honduras. Escuela de Física. Electricidad y magnetismo II Fs-415. Filtros Eléctricos y sus aplicaciones

CAPITULO XI EL VATIMETRO. El vatímetro es un instrumento capaz de medir la potencia promedio consumida en un circuito

Capítulo 5 Inducción Magnética

+ -R + - R 3. u r. u r µ = u r µ cos θ = µ cos θ. F = q E = q k. 3(u. Campo eléctrico generado por un dipolo eléctrico a distancias grandes E

Transcripción:

Histéresis ferromagnética y temperatura de Curie OBJETIVOS: - Observar el comportamiento de histéresis ferromagnética - Determinar la temperatura de Curie de la aleación Monel400 - Comprender la respuesta en frecuencia de un instrumento - Compatibilizar frecuencia de adquisición a la resolución CONCEPTOS NECESARIOS PARA LA PRÁCTICA: - Materiales ferromagnéticos. Histéresis. - Temperatura de Curie - Transformador diferencial - Circuito integrador INTRODUCCIÓN BREVE: Las propiedades de los materiales magnéticos se basan en gran parte en el fenómeno cuántico de la interacción de intercambio. La interacción de intercambio para bosones produce que partículas idénticas puedan encontrarse muy cerca unas de otras, como es el caso en los condensados de Bose-Einstein. Para fermiones en cambio, impone distancia y condiciones de (anti-)alineamiento de espín, como es el caso de la repulsión de Pauli. Un átomo posee un momento magnético permanente determinado por la suma del momento angular y espín de sus electrones. La contribución del núcleo al momento magnético de un átomo es despreciable en comparación con los momentos magnéticos de los electrones. Existen materiales en donde los momentos magnéticos de los átomos componentes poseen una estructura ordenada, incluso en ausencia de un campo magnético externo. Si todos los momentos se encuentran alineados en una misma dirección, el material se denomina Ferromagnético. Cuando un material posee momentos magnéticos alineados, pero orientados en sentidos opuestos y desbalanceados en magnitud o número, dando lugar a un momento magnético macroscópico no nulo, se denomina Ferrimagnético. Tanto los materiales ferro- como ferrimagnéticos pueden poseer una importante magnetización incluso en ausencia de un campo magnético aplicado externamente; esta magnetización se denomina remanente o espontánea (M R). En el caso particular de que un material contenga momentos magnéticos orientados en sentidos opuestos y perfectamente balanceados, este no presentará una magnetización macroscópica espontánea, y se 1 of 5

denomina Antiferromagnético. En la figura 1 se muestra esquemáticamente las estructuras de momentos magnéticos características de estos materiales. Para todos estos materiales, existe una temperatura por encima de la cual la agitación térmica vence a la energía de intercambio que mantiene a los momentos magnéticos alineados, y el comportamiento pasa a ser Paramagnético (Figura 1) con cero magnetización espontánea. Esta temperatura de transición se denomina temperatura de Curie (T C) para ferromagnetos y ferrimagnetos, y en el caso de los antiferromagnetos se denomina temperatura de Néel. T Paramagnético M R = 0 T C Ferromagnético Ferrimagnético Anti-ferromagnético M R > 0 M R > 0 M R = 0 Figura 1. Esquema de la orientación y magnitud relativa de dipolos magnéticos en materiales ferro-, ferri- y antiferromagnéticos. Todos, por encima de una cierta temperatura pasan a tener un comportamiento paramagnético. En un material paramagnético los momentos magnéticos no poseen ninguna orientación preferencial, y en consecuencia ninguna magnetización espontánea. En presencia de un campo magnético externo, los momentos magnéticos tenderán a alinearse magnetizando al material. Este proceso se denomina magnetización inducida En la práctica no científica se suele clasificar a un material como magnético cuando posee una significativa magnetización remanente, e.d. cuando presenta ordenamiento ferro- o ferri-magnético y su temperatura de Curie se encuentra bien por encima de la temperatura ambiente o la temperatura típica de trabajo de ese material. Análogamente se suele denominar a un material como no-magnético a cualquier material que no presenta magnetización espontánea, o sea materiales sin momentos magnéticos intrínsecos significativos, antiferromagnetos, y también a los ferro- y ferri-magnetos que poseen una temperatura de Curie por debajo de la temperatura ambiente o la temperatura de trabajo. A temperaturas menores que T C los materiales ferromagnéticos presentan una estructura de dominios que 2 of 5

da origen al comportamiento de histéresis esquematizado en la figura 2. Un dominio es una región del material con todos sus dipolos magnéticos paralelos. Los dominios se separan entre sí por paredes de dominio, regiones donde la orientación de los dipolos magnéticos no es uniforme, sino que varía gradualmente en el espacio entre la orientación de un dominio al vecino. Las paredes de dominio tienen espesores típicos de alrededor de 100 nm. M M S M R H C H Figura 2. Esquema de magnetización M vs. Campo aplicado H para un material ferromagnético. Al someter a un material ferromagnético a un campo magnético H, los dominios alineados con el campo tienden a crecer a costa de reducir los dominios con orientaciones desfavorables. Este proceso ocurre mediante la migración de las paredes de dominio. Cuanto mayor es H, la magnetización del material M aumenta. Naturalmente, este proceso tiene un límite. En un caso ideal el valor máximo M se alcanza cuando todos los momentos magnéticos se orientan con el campo. En la práctica esto se corresponde a paredes de dominio que no pueden moverse más para reorganizar los tamaños de dominio debido a particularidades de la estructura del material. La magnetización máxima alcanzable en un material se denomina magnetización de saturación (M S). Al remover este campo los materiales ferromagnéticos no vuelven a su estado inicial, si no que permanecen magnetizados con cierto valor denominado magnetización remanente M R. A medida que la temperatura aumenta el valor de M R disminuye hasta que se anula por encima T C. Se observa que para temperaturas menores a T C la magnetización remanente sigue la relación: M R (T T C ) β (1) donde β es un parámetro del orden 0.3 a 0.4, T es la temperatura a la que está sometido el material y T C es la temperatura de Curie correspondiente al mismo. 3 of 5

DISPOSITIVO y DESARROLLO EXPERIMENTAL El dispositivo experimental se muestra esquemáticamente en la figura 3a. En primer lugar consiste de un bobinado primario P dentro del cual se colocan dos bobinados secundarios S1 y S2 conectados entre sí en serie y en contrafase. Este conjunto de bobinas forman lo que se denomina un transformador diferencial. La muestra de Monel400, cuya respuesta magnética se quiere medir se coloca en S2. Para la determinación de la temperatura de la muestra, se coloca en estrecho contacto térmico con la muestra de Monel400 una resistencia comercial de platino (PT100) cuya resistencia se medirá a cuatro terminales. (a) V A R Generador de funciones + Amplificador (b) P P R S1 S2 V i (t) C V o (t) V B Integrador Medición de T Figura 3. (a) Esquema del dispositivo experimental. (b) Circuito integrador. La caída de tensión sobre la resistencia R, dispuesta en serie con el bobinado primario P, es proporcional a la corriente que circula por P y en consecuencia al valor de H en los secundarios. Al aplicar una tensión variable en el primario, se induce en el secundario una fuerza electromotriz de acuerdo con la ley de Faraday-Lenz: V 2 = N 2 dφ B dt donde N 2 es número de vueltas del secundario y Φ B el flujo magnético concatenado por el secundario (e.d. El valor del campo B que atraviesa por unidad de área la sección transversal de S2). De esta ecuación, se desprende que la integral temporal de V 2 es proporcional al valor promedio de B en S2. Esta integral temporal se realiza online con un circuito integrador como el que se muestra en la figura 3b. La práctica consiste en registrar y analizar dichas curvas para varias temperaturas en el rango que va desde la temperatura del Nitrógeno líquido hasta temperatura ambiente, observar la transición ferro-/paramagnética y determinar la T C del Monel. (2) 4 of 5

PREGUNTAS A RESPONDER DURANTE LA PRÁCTICA E INCLUIR EN EL INFORME - Demuestre por que los voltajes V B y V A son proporcionales a B y H, respectivamente. - En qué rango de frecuencias el circuito de la figura 4 actúa como un integrador? Qué ocurre fuera de ese rango? - En qué rango de frecuencias funciona el amplificador? Cuál sería entonces el rango de frecuencias adecuado para realizar esta medición? - Cuál es el principio de funcionamiento de la resistencia Pt100 como medidor de temperatura? - Por qué es conveniente medir la resistencia a cuatro terminales? - Cuál es la temperatura de Curie del Monel400? - Podría integrar numéricamente la señal en lugar de la integración por hardware? - Qué resolución debe tener el medidor de temperatura? Por qué no se emplea otro termómetro? Revise rango, sensibilidad y respuesta temporal antes de empezar a medir. - Por qué es necesario un amplificador en el circuito primario? Qué orden de magnitud tiene el campo magnético al que se somete el secundario? De qué orden de magnitud es la tensión generada en el secundario? PREGUNTAS PARA EL MINI EXAMEN PREVIO A LA PRÁCTICA: 1- Explique los comportamientos ferro- para- y diamagnético 2- Qué es una curva de histéresis? Grafique e indique la magnetización remanente y la coercitividad. 3- Qué es la temperatura de Curie? Explique qué sucede físicamente en el material por debajo y por encima de T C. 4- Qué son los materiales magnéticamente duros y blandos? Para qué se usan? 5- Cómo funciona un transformador, un transformador diferencial y un auto-transformador? Para qué se usan cada uno? 6- Cómo funciona un circuito integrador? Calcule la función de transferencia y la frecuencia de corte. 7- Qué significa la integral de la curva de histéresis? 8- Depende el comportamiento de histéresis de la frecuencia? Y de la temperatura? Explique. 5 of 5