Circuitos magnéticos. Introducción
|
|
|
- Lorenzo Chávez Cuenca
- hace 9 años
- Vistas:
Transcripción
1 Circuitos magnéticos Objetivos 1. Establecer el concepto de circuito magnético y las simplificaciones para su análisis. 2. Fundamentar las leyes de Ohm y de Kirchhoff de los circuitos magnéticos, aplicándolas en el análisis de circuitos sencillos. 3. Analizar circuitos magnéticos no ramificados en los casos en que el flujo magnético sea conocido, utilizando la metodología dada en este material. Sumario a) Conceptos fundamentales y leyes de los circuitos magnéticos b) Leyes de Kirchhoff para un circuito magnético c) Análisis de circuitos magnéticos no ramificados Bibliografía complementaria: "Fundamentos de la Teoría de Circuitos Eléctricos II ", FTC II Esperanza Ayllón y otros, Ediciones del MES, Páginas 135 a 161 Adicional: Materiales elaborados por los profesores del CIPEL, Instituto Superior Politécnico José Antonio Echeverría, CUJAE, Ing. Américo Montó Olivera, Dra. Ing. Esperanza Ayllón Fandiño, digitalizados por el Lic. Raúl Lorenzo Llanes. Introducción En la práctica de la Ingeniería Eléctrica son innumerables los equipos que emplean materiales ferromagnéticos para intensificar el flujo magnético, en una determinada región del espacio. Entre tales equipos se pueden mencionar los motores y generadores, transformadores, instrumentos de medición, y diversos dispositivos de protección. De aquí que sea muy importante estudiar los métodos de cálculo de los circuitos magnéticos. Las explicaciones serán referidas a circuitos magnéticos estimulados con fuente de corriente directa y en estado estable. Por tanto los flujos, inducción magnética e intensidades del campo magnético serán constantes en el tiempo. a) Conceptos fundamentales y leyes de los circuitos magnéticos. a.1) Circuito magnético. A continuación se muestra un ejemplo de circuito magnético. Si por el enrollado mostrado en el circuito, se establece una corriente eléctrica I, entonces se establece en el núcleo un flujo magnético orientado según la regla de la mano derecha. Este conjunto de dispositivos (núcleo, enrollado), permite producir un campo magnético tanto en el interior del núcleo como en el entrehierro. 1
2 Un circuito magnético es un conjunto de dispositivos que ocupan una región donde se establece un campo magnético. En la práctica, los núcleos se construyen de materiales ferromagnéticos. En ellos se cumple : µ r >> 1 permeabilidad magnética relativa del medio material µ= µ r µ 0 permeabilidad magnética absoluta del medio µ 0 permeabilidad magnética absoluta del vacío (µ 0 = 4π 10-7 H/m) a.2) Relación entre los vectores inducción magnética e intensidad del campo magnético. = μ H = μ μ H B r 0 a.3) Simplificaciones a.3.1) con respecto al flujo magnético Ejemplos de sustancias ferromagnéticas: hierro, níquel, cobalto, aleaciones como el acero electrotécnico Como µ r = µ r (H) la permeabilidad magnética relativa depende de la intensidad del campo magnético y en consecuencia, la curva B = B (H) de magnetización normal no es lineal. Valores típicos para aceros electrotécnicos: B 0 0,8 T en la zona lineal 0,8-1,3 T en el codo B no es proporcional a H, entonces µ r = µ r (H ) constante En los circuitos magnéticos las líneas de inducción magnética forman trayectorias cerradas. La mayor parte se cierran a través el núcleo (flujo fundamental φ) y otra parte de las líneas del flujo magnético se cierran por el aire (flujo de dispersión φ a ). En general Φ >> Φ a y se va a despreciar al flujo de dispersión. a.3.2) Se tomará la longitud de la línea media en el cálculo de H en la ley de Ampere. Se supone H constante a lo largo de la línea media, y colineal con el diferencial de longitud quedando: Hl = NI Suponemos la inducción magnética constante en la sección transversal cumpliéndose: Φ = B S S: área de la sección transversal 2
3 a.3.3) Se consideran materiales con ciclo de histéresis estrecho (materiales magnéticamente blandos), de modo que la curva de magnetización normal constituya una buena aproximación para los cálculos de inducción magnética e intensidad del campo magnético a.4) Ley de Ohm para el circuito magnético Utilizando las simplificaciones explicadas: HL = NI Φ = B S B = µ H (B/µ) L = NI (Φ/µS)L = NI NI = Φ L /µs Se define la fem magnetomotriz (fmm) como: fmm = NI y entonces fmm = φ R o HL = ΦR siendo R = L /µs la reluctancia del núcleo expresión análoga a la ley de Pouillet para la resistencia eléctrica R = ρ l /S La reluctancia representa la oposición que presenta el medio al establecimiento de un flujo magnético. En el sistema internacional e unidades las unidades de reluctancia son H -1 (Henry a la menos uno) Valores típicos entre H -1 En el siguiente cuadro se muestra la analogía entre magnitudes de los circuitos magnéticos y los circuitos eléctricos. Circuito magnético Circuito eléctrico R = L /µs R =ρ l /S Φ I µ 1/ρ Fmm = NI Fem = E HL V Se define la permancia G = 1 / R la cual mide la facilidad que presenta el medio al establecimiento de un flujo magnético. Analogía con..? 3
4 b) Leyes de Kirchhoff para un circuito magnético b.1) 1ra Ley de Kirchhoff para un circuito magnético En un nodo de un circuito magnético convergen tres ramas o más. En el nodo mostrado convergen tres ramas y se cumple: Φ 3 = Φ 1 + Φ 2 En este punto se unen tres longitudes medias y la suma de los flujos que entran en el nodo es igual a la suma de los flujos que salen. Si tomamos como convenio de signo los flujos que entran negativos y los que salen positivos entonces la primera Ley de Kirchhoff queda: Φ = 0 La suma algebraica de los flujos magnéticos en un nodo es cero b.2) 2da Ley de Kirchhoff para un circuito magnético El circuito magnético mostrado presenta un solo lazo. Se selecciona la referencia del flujo en el sentido que impone la fmm mayor. Se tomará fmm 1 > fmm 2 Se supone un núcleo formado por dos tramos diferentes caracterizado por los datos geométricos: L 1 ; S 1 y L 2 ; S 2 El circuito se puede representar en términos de reluctancias, tensiones magnéticas HL y fmm, NI. Al recorrer el lazo en sentido horario la segunda LK se plantea entonces: - N 1 I 1 + H 1 L 1 + N 2 L 2 + H 2 L 2 = 0 o tambien: - N 1 I 1 + ΦR 1 + N 2 L 2 + Φ R 2 = 0 Donde U 1 = H 1 L 1 = ΦR 1 tensión magnética en la rama 1 U 2 = H 2 L 2 = ΦR 2 tensión magnética en la rama 2 La 2da Ley de Kirchhoff en forma compacta queda: U m = 0 La suma algebraica de las tensiones magnéticas en un lazo es cero 4
5 c) Análisis de circuitos magnéticos no ramificados En el circuito magnético no ramificado mostrado, se suponen conocidas las dimensiones geométricas del circuito magnético mostrado: l; S ; le Se supone que las secciones transversales del hierro y del aire son iguales, Se = S, o sea, se desprecia la dispersión del flujo en el entrehierro. Se conoce también la curva de magnetización normal del material que compone al núcleo ferromagnético, y el flujo Φ en el núcleo. Cómo calcular la fuerza magnetomotriz, fmm = NI? Solución: Se plantea la segunda LK: - N I + H L + H e L e = 0 A continuación se muestra un diagrama que indica el conjunto de cálculos a realizar para obtener las tensiones magnéticas: En el material ferromagnético: Con el flujo Φ se obtiene B B= Φ / S Con B curva de magnetizacion H se multiplica por l H l En el entrehierro: entrehierro Be =Φ / Se He = B e / µ o H e l e Conocidas H l y H e l e se calcula la fmm: N I = H l + H e l e Otro método involucra el cálculo de reluctancias: Φ núcleo B= Φ / S curva de nagnetización H µ = B/H R e =1/µ (L / S) entrehierro R e = 1/µ o (L e / S e ) N I = ΦR + ΦR e Como µ es función de H es necesario acudir a la curva de magnetización para obtener la reluctancia del material del núcleo en el punto de trabajo en cuestión. Al sustituir los valores numéricos se encuentra que: µ o << µ R e >> R y por tanto ΦR e >> ΦR Se concluye que la tensión magnética en el entrehierro es mucho mayor que en el núcleo. Conclusiones Se ha mostrado el concepto de circuito magnético y las simplificaciones que se realizan para el análisis de circuitos sencillos, fundamentándose las leyes de Ohm y las de Kirchhoff de los circuitos magnéticos, para circuitos magnéticos ramificados y no ramificados, aplicándolas en el análisis de circuitos no ramificados, solamente en el caso en el cual el flujo es conocido. Realizado por: Dra. Ing. Esperanza Ayllón Fandiño, CIPEL, Instituto Superior Politécnico José Antonio Echeverría, CUJAE. Cuba 5
Métodos generales de análisis
Métodos generales de análisis Objetivo Explicar los métodos generales de análisis de circuitos eléctricos y ejemplificar su aplicación, utilizando la metodología impartida en este material. Sumario: a)
Tema 3. Circuitos magnéticos
Tema 3. Circuitos magnéticos Ya sabemos de temas anteriores la importancia del campo magnético dentro de la electricidad. Hemos estudiado y aprendido la importancia del campo magnético, su inducción, el
Procesos transitorios y frecuencia compleja
Procesos transitorios y frecuencia compleja Objetivos 1. Comprender y familiarizarse con los procesos transitorios en circuitos de primer orden estimulados con corriente alterna, aplicando el método clásico
RELACIONES BÁSICAS LEY DE FARADAY CARACTERÍSTICAS DEL NUCLEO CARACTERÍSTICAS DE LOS TERMINALES LEY DE AMPERE
MAGNETISMO RELACIONES BÁSICAS LEY DE FARADAY CARACTERÍSTICAS DE LOS TERMINALES CARACTERÍSTICAS DEL NUCLEO LEY DE AMPERE MAGNITUDES MAGNÉTICAS MAGNITUDES ELÉCTRICAS Longitud l Campo magnético H Longitud
Electromagnetismo (Todos. Selectividad Andalucía )
Electromagnetismo (Todos. Selectividad Andalucía 2001-2006) EJERCICIO 3. (2.5 puntos) Un núcleo toroidal tiene arrolladas 500 espiras por las que circulan 2 Amperios. Su circunferencia media tiene una
Leyes de Kirchhoff y análisis de circuitos simples
Leyes de Kirchhoff y análisis de circuitos simples Objetivos 1. Entender las definiciones de rama, nodo, lazo, trayectoria y línea equipotencial, con los criterios dados en clase y aplicarlas en circuitos
Introducción A qué se denomina resistor lineal? Cómo es su característica volt- ampere? Elíptica? Hiperbólica?
Linealidad en los circuitos eléctricos Objetivos 1. Establecer el concepto de circuito lineal y sus principales propiedades, según los criterios dados en el texto. 2. Definir el concepto de función de
Análisis de circuitos trifásicos. Primera parte
Análisis de circuitos trifásicos. Primera parte Objetivos 1. Mencionar el principio de funcionamiento de los generadores trifásicos. 2. Establecer los tipos básicos de conexiones de circuitos trifásicos
Objetivo Analizar circuitos trifásicos en paralelo, tanto simétricos como asimétricos, utilizando la metodología dada en el material.
Análisis de circuitos trifásicos. Ejercitación. Segunda parte Objetivo Analizar circuitos trifásicos en paralelo, tanto simétricos como asimétricos, utilizando la metodología dada en el material. Sumario
Se quiere construir el diagrama fasorial cualitativo (DF) del circuito mostrado.
Análisis de circuitos monofásicos en corriente alterna Objetivo Aplicar los teoremas y métodos generales de análisis de circuitos eléctricos, los conceptos y fórmulas de los distintos tipos de potencia,
FUNDAMENTOS DE INGENIERÍA ELÉCTRICA. José Francisco Gómez González Benjamín González Díaz María de la Peña Fabiani Bendicho Ernesto Pereda de Pablo
FUNDAMENTOS DE INGENIERÍA ELÉCTRICA José Francisco Gómez González Benjamín González Díaz María de la Peña Fabiani Bendicho Ernesto Pereda de Pablo Tema 5: Fundamentos de electrotecnia PUNTOS OBJETO DE
TEMA 4. REPASO DE LAS LEYES Y PRINCIPIOS DE ELECTROMAGNESTISMO.
TEMA 4. REPASO DE LAS LEYES Y PRINCIPIOS DE ELECTROMAGNESTISMO. CONTENIDO: 4.1. Repaso de nociones de Electromagnetismo. 4.2. Acción de un campo magnético sobre una corriente. Campo creado por una corriente.
TEMA 7 Magnetismo en medios materiales
TEMA 7 Magnetismo en medios materiales 7. 1 Magnetización, campo H, densidad de corriente de magnetización 7.2 Respuesta a un campo magnético aplicado: susceptibilidad y permeabilidad magnéticas 7.3 Materiales
Circuitos resistivos activos. Primera parte
Circuitos resistivos activos. Primera parte Objetivos 1. Analizar circuitos equivalentes de transistores constituidos por resistores y fuentes dependientes. 2. Explicar las características del amplificador
Campo magnético en el entrehierro de un electroimán y de un imán permanente
c Rafael R. Boix y Francisco Medina 1 Campo magnético en el entrehierro de un electroimán y de un imán permanente Consideremos un anillo toroidal de un material ferromagnético blando en el caso en que
El circuito magnético principal de las máquinas lineales Líneas de fuerza principales de las máquinas lineales
13.2 - El circuito magnético principal de las máquinas lineales 13.2.1 - Líneas de fuerza principales de las máquinas lineales El flujo inductor que atraviesa el entrehierro y que constituye el flujo activo
Respuesta libre en circuitos de primer orden
espuesta libre en circuitos de primer orden Objetivos a) Establecer los conceptos más generales sobre los procesos que ocurren en los circuitos dinámicos, utilizando los criterios dados en el texto y en
a) Ley de Ampere: Es la ley básica que rige la producción de campo magnético por medio de una corriente y su
Tema: Circuitos Magnéticos. Facultad de Ingeniería. Escuela de Eléctrica. Asignatura: Teoría E. I. OBJETIVOS. - Verificar las magnitudes electromagnéticas básicas, sus unidades, y la validez de sus relaciones
Problemas de Circuitos Magnéticos
Problemas Circuitos Magnéticos Página 1 de 6 Problemas de Circuitos Magnéticos 1-1. Determinar la intensidad en corriente continua que debe circular por la bobina de la Fig. 1-35 para que en la rama central
Ejercicios Tipo Examen:
Universidad Autónoma Metropolitana, Unidad Azcapotzalco Departamento de Energía Área de Ingeniería Energética y Electromagnética 2 Ejercicios Tipo Examen: Transformadores y Máquinas Síncronas (1131074)
CIRCUITOS MAGNÉTICOS
1.1 ELEMENTOS FUNDAMENTALES CIRCUITOS MAGNÉTICOS fig. 1 Enviando una corriente continua a una bobina como se ve en la figura 1, en el interior de la misma se produce un campo magnético, cuyas líneas de
SISTEMAS ELECTROMECÁNICOS
Universidad Técnica Federico Santa María Departamento de Electrónica Valparaíso-Chile SISTEMAS ELECTROMECÁNICOS José Rodríguez Agosto de 1999 Introducción. Introducción. Este apunte contiene las figuras
CIDEAD. 2º BACHILLERATO. ELECTROTECNIA. Tema 5.- Las propiedades magnéticas de la materia. Electromagnética.
Desarrollo del tema. 1. El comportamiento interpretación. magnético de la materia. 2. a excitación magnética. 3. El ciclo de histéresis. 4. os circuitos magnéticos. 5. Problemas propuestos del campo magnético.
Electromagnetismo. Temario. 1. Magnetismo. 2. Electromagnetismo. 3. Circuitos magnéticos. Por: César Chilet León. Agosto 2013
Electromagnetismo Por: César Chilet León Agosto 2013 Temario 1. Magnetismo. 2. Electromagnetismo. 3. Circuitos magnéticos 1 MAGNETISMO Imán Son elementos que tienen la propiedad de atraer el hierro (magnetismo).
Inducción electromagnética. M del Carmen Maldonado Susano
Inducción electromagnética M del Carmen Maldonado Susano Cuando las intensidades de corriente son del mismo sentido existen entre ellas fuerzas atractivas; cuando las intensidades de corriente son de sentido
Tarea 1 1-Calcular la potencia en cada uno de los elementos. E = 36 V. 7-Calcular la tensión V ab. Respuesta: - 2 V
Tarea 1 1-Calcular la potencia en cada uno de los elementos. 2- Calcular la potencia en todos los resistores. Datos: Vab = Vac = 4 V 4 W, 8 W, 6 W, 12 W, 0 W 3-Calcular E. E = 36 V Dato: I 0 = 5 A Respuesta:
Realizado por: Dra. Ing. Esperanza Ayllón Fandiño, CIPEL, Instituto Superior Politécnico José Antonio Echeverría, CUJAE. Cuba
Teoremas de los circuitos lineales. Primera parte Objetivos 1. Explicar el Teorema de Thévenin para determinar el equivalente de Thévenin de cualquier red lineal, ejemplificando su aplicación en el análisis
Fundamentos de los Motores Eléctricos
1 B = Φ A 2 Fuerza sobre un conductor eléctrico. Fuerza proporcional a: Densidad de flujo magnético. Corriente eléctrica que circula por el conductor. Seno del ángulo que forman los campos B e I. Fuerza
MAQUINAS ELECTRICAS MODULO DE AUTOAPRENDIZAJE V
SESION 1: INTRODUCCION DE A LOS PRINCIPIOS DE LAS MAQUINAS ELECTRICAS 1. DEFINICION DE MAQUINAS ELECTRICAS Las Máquinas Eléctrica son dispositivos empleados en la conversión de la energía mecánica a energía
Energía y Telecomunicaciones
Energía y Telecomunicaciones Tema 3.2. Circuitos magné4cos y máquinas eléctricas. Material complementario Alberto Arroyo Gu4érrez Mario Mañana Canteli Raquel MarCnez Torre Jesús Mirapeix Serrano Cándido
SESION 2: EL CIRCUITO MAGNETICO 1. INTRODUCCION
SESION 2: EL CIRCUITO MAGNETICO 1. INTRODUCCION EJEMPLO 1. La siguiente figura muestra un circuito magnético, consistente en una bobina de magnetización con un núcleo sencillo ferromagnético. Calcular
1º E.U.I.T.I.Z. Curso Electricidad y Electrometría. Problemas resueltos tema 7 1/10
1º E.U.I.T.I.Z. Curso 2006-2007. Electricidad y Electrometría. Problemas resueltos tema 7 1/10 2.- La carcasa semiesférica de la figura, de radio interior R = 1 m y espesor despreciable, se encuentra en
INDICE Capitulo 1. El concepto del circuito magnético Capitulo 2. Excitación de estructuras ferromagnéticas con corriente directa
INDICE Capitulo 1. El concepto del circuito magnético 1-1. introducción 1 1-2. algunas leyes básicas de electrostática 3 1-3. algunas leyes básicas de magnetostática 8 1-4. otras conclusiones útiles en
PROGRAMA INSTRUCCIONAL MAQUINAS ELÉCTRICAS I
UNIVERSIDAD FERMÍN TORO VICE RECTORADO ACADÉMICO FACULTAD DE INGENIERÍA ESCUELA DE ELÉCTRICA PROGRAMA INSTRUCCIONAL MAQUINAS ELÉCTRICAS I CÓDIGO ASIGNADO SEMESTRE U. C DENSIDAD HORARIA H.T H.P/H.L H.A
1- Cuál es el origen del momento magnético permanente de los átomos que lo poseen?
ASIGNATURA FISICA II AÑO 2012 GUIA NRO. 11 MAGNETISMO EN MEDIOS MATERIALES Bibliografía Obligatoria (mínima) Capítulo 30 Física de Serway Tomo II Apunte de cátedra: capítulo XI PREGUNTAS SOBRE LA TEORIA
EPO 11 ESCUELA PREPARATORIA OFICIAL NÚM. 11
Resuelve los siguientes problemas sobre los temas vistos en clase. En una placa circular de 5cm de radio existe una densidad de flujo magnético de 4 T. Calcula el flujo magnético, en webers y maxwell,
Experimento de laboratorio No. 6 Estudio de la ley de Faraday en un transformador.
Experimento de laboratorio No. 6 Estudio de la ley de Faraday en un transformador. AUTOR(ES): Aurea D. Rodríguez Llerena, OBJETIVOS 1. Estudiar el fenómeno de inducción electromagnética en un transformador.
PROGRAMA INSTRUCCIONAL MAQUINAS ELECTRICAS I
UNIVERSIDAD FERMIN TORO VICE-RECTORADO ACADEMICO FACULTAD DE INGENIERIA ESCUELA DE INGENIERIA ELECTRICA PROGRAMA AL MAQUINAS ELECTRICAS I CÓDIGO ASIGNADO SEMESTRE U.C DENSIDAD HORARIA H.T H.P/H.L H.A H.V
1.1 Teorema de Ampere I
1.1 Teorema e Ampere I La ley funamental que etermina el funcionamiento e un circuito magnético viene aa por la ecuación e un circuito magnético viene aa por la ecuación e Maxwell: D rot( H ) J + T H Intensia
Relaciona la circulación de campo magnético a lo largo de una curva cerrada con la intensidad de corriente.
Ley de Ampère Relaciona la circulación de campo magnético a lo largo de una curva cerrada con la intensidad de corriente. Cuando la distribución de corriente posee alto grado de simetría, puede utilizarse
Electrotecnia General
Universidad Nacional de Mar del Plata Departamento de Ingeniería Eléctrica Área Electrotecnia Electrotecnia General (para la Carrera Ingeniería Industrial) Leyes Fundamentales Profesor Adjunto: Ingeniero
Análisis de potencia en circuitos de corriente alterna
Análisis de potencia en circuitos de corriente alterna Objetivos Comprender y familiarizarse con los conceptos y fórmulas de los distintos tipos de potencia, o conjunto de magnitudes que caracterizan a
La anterior ecuación se puede también expresar de las siguientes formas:
1. LEY DE OHM GUÍA 1: LEYES ELÉCTRICAS El circuito eléctrico es parecido a un circuito hidráulico ya que puede considerarse como el camino que recorre la corriente (el agua) desde un generador de tensión
LABORATORIO DE CONVERSORES ESTÁTICOS PRÁCTICA N 9
ESCUELA POLITÉCNICA NACIONAL Campus Politécnico "J. Rubén Orellana R." FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA Carrera de Ingeniería Electrónica y Control LABORATORIO DE CONVERSORES ESTÁTICOS 1.
Módulo 4 MÉTODOS DE RESOLUCIÓN DE CIRCUITOS EN CORRIENTE ALTERNA
E.E.S.T. 8 Módulo 4 MÉTODOS DE RESOLUCIÓN DE CIRCUITOS EN CORRIENTE ALTERNA Ing. Rodríguez, Diego E.E.S.T. 8 INTRODUCCIO N Se entiende por resolver un circuito eléctrico el calcular sus corrientes de rama
Electricidad y Magnetismo. Unidad 7. Inducción Electromagnética
INSTITUTO POLITECNICO NACIONAL ESCUELA SUPERIOR DE INGENIERÍA QUÍNICA E INDUSTRIAS EXTRACTIVAS Electricidad y Magnetismo Unidad 7. Inducción Electromagnética INDUCCIÓN ELECTROMAGNÉTICA A principios de
Electrotecnia General (Prf. Dr. José Andrés Sancho Llerandi) Tema 11 TEMA EXCITACIÓN, SUSCEPTIBILIDAD Y PERMEABILIDAD MAGNÉTICA.
TEMA 11 FERROMAGNETISMO 11.1. EXCITACIÓN, SUSCEPTIBILIDAD Y PERMEABILIDAD MAGNÉTICA. Se define excitación magnética o intensidad del campo magnético H, el campo debido a la corriente magnetizante más el
UNIVERSIDAD NACIONAL DEL CALLAO
UNIVERSIDAD NACIONAL DEL CALLAO FACULTAD DE INGENIERIA ELECTRICA TEMA: CURVA DE MAGNETIZACION, RELACIONES DE TRANSFORMACION Docente: Ing. LLacsa Robles Hugo Curso: Laboratorio Maquinas Eléctricas - (91G)
E.E.S. I. Universidad Abierta Interamericana Facultad de Tecnología Informática. Trabajo de Investigación. Cristian La Salvia
Universidad Abierta Interamericana Facultad de Tecnología Informática E.E.S. I Trabajo de Investigación Alumno: Profesor: Cristian La Salvia Lic. Carlos Vallhonrat 2009 Descripción de la investigación...
LEY DE OHM - CIRCUITOS - RESISTENCIA - INSTRUMENTOS
LEY DE OHM - CICUITOS - ESISTENCIA - INSTUMENTOS Amperímetros y Voltímetros Las dos magnitudes que siempre interesa conocer para un componente de circuito (por ejemplo una resistencia), son la corriente
Unidad Nº 10. Magnetismo
Unidad Nº 10 Magnetismo 10.1. Definición y propiedades del campo magnético. Fuerza magnética en una corriente. Movimiento de cargas en un campo magnético. 10.2. Campos magnéticos creados por corrientes.
FISICA II COMPLEMENTO ELECTROMAGNETISMO CIRCUITOS MAGNETICOS UNIVERSIDAD TECNOLOGICA NACIONAL FACULTAD REGIONAL ROSARIO
FISICA II COMPLEMENTO DE ELECTROMAGNETISMO CIRCUITOS MAGNETICOS APLICACIONES EN EL AMBITO PROFESIONAL UNIVERSIDAD TECNOLOGICA NACIONAL FACULTAD REGIONAL ROSARIO DEPARTAMENTO DE CIENCIAS BASICAS Autor:
MAQUINAS ELECTRICAS. Mg. Amancio R. Rojas Flores
MAQUINAS ELECTRICAS Mg. Amancio R. Rojas Flores Las máquinas eléctricas MÁQUINAS ELÉCTRICAS Estáticas Rotativas Transformadores Motores Generadores SISTEMA ELÉCTRICO SISTEMA ELÉCTRICO Transformador MEDIO
Tema 1. Circuitos eléctricos de corriente continua.
Tema 1. Circuitos eléctricos de corriente continua. Se simplificarán las ecuaciones del electromagnetismo aplicadas a dispositivos eléctricos que nos interesarán para generar, almacenar, transportar o
Una corriente eléctrica produce un campo magnético capaz de desviar una brújula. En un conductor que se mueve en un campo magnético se crea una f.e.m.
Oersted Faraday Una corriente eléctrica produce un campo magnético capaz de desviar una brújula. En un conductor que se mueve en un campo magnético se crea una f.e.m. ELECTROMAGNETISMO Una carga eléctrica
Ud. 4 Magnetismo y electromagnetismo. Índice del libro
Ud. 4 Magnetismo y electromagnetismo Índice del libro Ud. 4 Magnetismo y electromagnetismo 1. Magnetismo 1.1. Propiedades de los imanes Continuación 1.2 Líneas de fuerza y campo magnético 1.3. Clasificación
DEPARTAMENTO DE CIENCIAS DE LA ENERGIA Y MECANICA Laboratorio de Instrumentación Industrial Mecánica Laboratorio de Instrumentación Mecatrónica 1
1. Tema: Característica estática de un sensor de inductancia variable. 2. Objetivos: a. Conocer la operación de un dispositivo de inductancia variable. b. Determinación de la característica estática tensión
Interaccio n electromagne tica.
Interaccio n electromagne tica. Introducción. Ciertos minerales de hierro, como la magnetita, tienen la propiedad de atraer pequeños trozos de hierro. A esta propiedad física se le conoce como magnetismo
UNIVERSIDAD SIMON BOLIVAR Departamento de Conversión y Transporte de Energía Sección de Máquinas Eléctricas Prof. E. Daron B.
DIAGRAMA CIRCULAR DE LA MAQUINA Hoja Nº II-074 SINCRONICA DE ROTOR LISO Para corriente de excitación constante, el extremos A del fasor I describe una circunferencia, cuando el ángulo de carga varía desde
Laboratorio Física II Práctica Nº 4 LEYES DE KIRCHHOFF
UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA MUNICIPALIZACIÓN TOCÓPERO ÁREA DE TECNOLOGÍA COORDINACIÓN DE LABORATORIOS DE FÍSICA Laboratorio Física II LEYES DE KIRCHHOFF Adaptado por: Oscar Medina
Segundo parcial - Electrotécnica 1
Segundo parcial - Electrotécnica 1 IIE - Facultad de Ingeniería - Universidad de la República 01 de julio de 011 1. Problema 1 Se cuenta con un sistema de fuentes trifásico, perfecto, secuencia positiva
APLICACIÓN DE LA LEY DE INDUCCIÓN DE FARADAY: EL TRANSFORMADOR TAREA DE PREPARACIÓN
Andrés González 393 APLICACIÓN DE LA LEY DE INDUCCIÓN DE FARADAY: EL TRANSFORMADOR TAREA DE PREPARACIÓN 1. Por qué el núcleo del transformador es de hierro o acero? Podría ser de otro material? El núcleo
Parte II. Transformador Monofásico
Parte II Transformador Monofásico 1 Capítulo 8 Transformador Monofásico Ideal Supongamos un arreglo como en el da la figura 8.1(a), en el cual en una trayectoria cerrada de sección S y longitud L de material
UNIVERSIDAD DE COSTA RICA
UNIVERSIDAD DE COSTA RICA IE-035 LABORATORIO DE MÁQUINAS ELÉCTRICAS I EXPERIMENTO 5 - GRUPO 0 PROFESOR: JUAN RAMON RODRÍGUEZ Transformador Monofásico. Relación de transformación y Circuito Equivalente.
Comprobar experimentalmente la ley de Ohm y las reglas de Kirchhoff. Determinar el valor de resistencias.
38 6. LEY DE OHM. REGLAS DE KIRCHHOFF Objetivo Comprobar experimentalmente la ley de Ohm y las reglas de Kirchhoff. Determinar el valor de resistencias. Material Tablero de conexiones, fuente de tensión
Capítulo II. Ecuaciones de los circuitos magnéticos
Capítulo II. Ecuaciones de los circuitos magnéticos 2.1. Intensidad de Campo magnético Los campos magnéticos son el mecanismo fundamental para convertir energía eléctrica de corriente alterna de un nivel
ESCUELA SUPERIOR POLITECNICA DEL LITORAL PROGRAMA DE ESTUDIOS
TEORÍA ELECTROMAGNÉTICA 1 UNIDAD ACADÉMICA: CARRERA: ESPECIALIZACIÓN: ÁREA: TIPO DE MATERIA: EJE DE FORMACIÓN: Facultad de Ingeniería en Electricidad y Computación Ingeniería en Electricidad, Ingeniería
UNIVERSIDAD TECNOLOGICA NACIONAL FACULTAD REGIONAL AVELLANEDA DTO. DE ELÉCTRICA. Cátedra: Máquinas Eléctricas II
NIVERSIDAD TECNOLOGICA NACIONAL FACLTAD REGIONAL AVELLANEDA DTO. DE ELÉCTRICA Cátedra: Máquinas Eléctricas II TRABAJO PRÁCTICO N 2 Características Internas y Externas de Máquinas Sincrónicas - Triángulo
Circuitos de corriente directa. Circuito eléctrico es cualquier conexión de elementos eléctricos
Circuitos de corriente directa Circuito eléctrico es cualquier conexión de elementos eléctricos (resistencia, baterías, fuentes, capacitores, etc.) a través de los cuales puede circular corriente en forma
TEMA 1 Nociones básicas de Teoría de Circuitos
TEMA 1 Nociones básicas de Teoría de Circuitos http://www.el.uma.es/marin/ ÍNDICE 1.1. MAGNITUDES ELÉCTRICAS Y CONCEPTOS FUNDAMENTALES: Conceptos básicos de circuitos. Leyes de Kirchoff. Potencia Eléctrica.
FUNDAMENTOS DE INGENIERÍA ELÉCTRICA. José Francisco Gómez González Benjamín González Díaz María de la Peña Fabiani Bendicho Ernesto Pereda de Pablo
FUNDAMENTOS DE INGENIERÍA ELÉCTRICA José Francisco Gómez González Benjamín González Díaz María de la Peña Fabiani Bendicho Ernesto Pereda de Pablo Tema 6: Inducción magnética PUNTOS OBJETO DE ESTUDIO 3
Histéresis ferromagnética y temperatura de Curie
Histéresis ferromagnética y temperatura de Curie OBJETIVOS: Observar el comportamiento de histéresis ferromagnética Determinar la temperatura de Curie de la aleación Monel400 Comprender la respuesta en
FISICA 2º BACHILLERATO CAMPO MAGNÉTICO E INDUCCIÓN ELECTROMAGNÉTICA
A) CAMPO MAGNÉTICO El Campo Magnético es la perturbación que un imán o una corriente eléctrica producen en el espacio que los rodea. Esta perturbación del espacio se manifiesta en la fuerza magnética que
INDICE Capitulo 1. Circuitos Eléctricos en Corriente Continua: Conceptos y Fenómenos Capitulo 2. Resistencia Eléctrica. Ley de Ohm
INDICE Prólogo XI Capitulo 1. Circuitos Eléctricos en Corriente Continua: Conceptos y 1 Fenómenos Introducción 1 1.1. Conceptos previos 3 1.1.1. Estructura de la materia 3 1.1.2. Estructura de los átomos
Bolilla 9: Corriente Eléctrica
Bolilla 9: Corriente Eléctrica Bolilla 9: Corriente Eléctrica Corriente eléctrica es el flujo de cargas a lo largo de un conductor. Las cargas se mueven debido a una diferencia de potencial aplicada a
Page 1 of 5 Departamento: Dpto Ing. Electrica y Electro Nombre del curso: ELECTROMAGNETISMO CON LABORATORIO Clave: 003880 Academia a la que pertenece: Electromagnetismo Requisitos: Ninguno Horas Clase:
INFORMACIÓN SOBRE LA PRUEBA DE ACCESO (PAU) A LA UNIVERSIDAD DE OVIEDO. CURSO 2015 / Materia: ELECTROTECNIA
INFORMACIÓN SOBRE LA PRUEBA DE ACCESO (PAU) A LA UNIVERSIDAD DE OVIEDO. CURSO 2015 / 2016 Materia: ELECTROTECNIA 1. COMENTARIOS Y/O ACOTACIONES RESPECTO AL TEMARIO EN RELACIÓN CON LA PAU: Indicaciones
APUNTES DE FÍSICA II Profesor: José Fernando Pinto Parra UNIDAD 10 EL CAMPO MAGNETICO DEFINICIÓN DEL VECTOR INDUCCIÓN MAGNÉTICA Y DEL CAMPO MAGNÉTICO.
APUNTES DE FÍSICA II Profesor: José Fernando Pinto Parra UNIDAD 10 EL CAMPO MAGNETICO DEFINICIÓN DEL VECTOR INDUCCIÓN MAGNÉTICA Y DEL CAMPO MAGNÉTICO. Todos hemos observado como un imán atrae objetos de
Generación y medición de campos magnéticos
Generación y medición de campos magnéticos Aplicaciones Investigacion Industria Clinica Campo aplicado (H) y campo total (B) La permeabilidad magnética (μ) de un material se define como el cociente entre
Algunas Aplicaciones de Sistemas de Ecuaciones Lineales
Universidad Central de Venezuela Facultad de Ingeniería Departamento de Matemática Aplicada Álgebra Lineal Prof. Norma Guzmán Algunas Aplicaciones de Sistemas de Ecuaciones Lineales 1. Modelo Insumo-Producto
1. Estudiar la relación entre campo magnético variable y f.e.m. inducida en una bobina.
UNIVERSIDAD NACIONAL AUTÓNOMA DE HONDURAS FACULTAD DE CIENCIAS ESCUELA DE FÍSICA FS-415 Electricidad y Magnetismo II Práctica 4: Aplicaciones de la Introducción Durante mucho tiempo se pensó que los fenomenos
Universidad Nacional de Quilmes 1. Teoría de Circuitos. Métodos de resolución de circuitos
1 Teoría de Circuitos Métodos de resolución de circuitos Condición: se aplican a redes bilaterales lineales. El término bilateral se refiere a que no habrá cambios en el comportamiento de la respuesta
Índice de contenidos
FundamentosdeElectrotecniaparaIngenieros Índice de contenidos TEMA 1... 9 CONCEPTOS BÁSICOS DE ELECTRICIDAD... 9 TEMA 1.- CONCEPTOS BÁSICOS DE ELECTRICIDAD... 11 1.1.- Introducción... 11 1.2.- Naturaleza
Potencial escalar magnético y cargas de magnetización. Cálculo de la intensidad magnética en ausencia de corrientes libres.
c Rafael R. Boix y Francisco Medina 1 Potencial escalar magnético y cargas de magnetización. Cálculo de la intensidad magnética en ausencia de corrientes libres. Consideremos un cuerpo magnetizado en ausencia
PARAMETRIZACIÓN DE LA CURVA DE MAGNETIZACIÓN DE UN TRANSFORMADOR
PARAMETRIZACIÓN DE LA CURVA DE MAGNETIZACIÓN DE UN TRANSFORMADOR Autores: Alejandro Gudiño (1), Juan Francisco Russo (2) Universidad Tecnológica Nacional, Facultad Regional San Francisco, Grupo GISENER.
Inductancia. La inductancia es la capacidad de. magnético, como sucede con un capacitor en un campo eléctrico. Bobina de 1500 vueltas y pila de 6 [V]
Inductancia La inductancia es la capacidad de almacenar energía debido a un campo magnético, como sucede con un capacitor en un campo eléctrico. Bobina de 500 vueltas y pila de 6 [V] Inductancia La inductancia
Consiste en provocar una corriente eléctrica mediante un campo magnético variable.
www.clasesalacarta.com 1 Inducción electromagnética Inducción Electromagnética Consiste en provocar una corriente eléctrica mediante un campo magnético variable. Flujo magnético ( m ) El flujo magnético
Ejemplo: Solenoide toroidal de sección rectangular relleno de un material lineal, homogéneo e isótropo.
c Rafael R. Boix y Francisco Medina 1 Ejemplo: Solenoide toroidal de sección rectangular relleno de un material lineal, homogéneo e isótropo. Consideremos un solenoide toroidal de sección transversal rectangular
x x x x x x n= número de espiras por unidad de longitud r r enc nli El número de espiras en el tramo L es nl N= número total de espiras
c d x x x x x x x b a n número de espiras por unidad de longitud L r r b r r c r r d r r a r r b r r dl µ 0I dl + dl + dl + dl dl L a b c d a enc I enc nli El número de espiras en el tramo L es nl L µ
3. TRANSFORMADORES. Su misión es aumentar o reducir el voltaje de la corriente manteniendo la potencia. n 2 V 1. n 1 V 2
3. TRANSFORMADORES Un transformador son dos arrollamientos (bobina) de hilo conductor, magnéticamente acoplados a través de un núcleo de hierro común (dulce). Un arrollamiento (primario) está unido a una
5 Aplicaciones de ED de segundo orden
CAPÍTULO 5 Aplicaciones de ED de segundo orden 5.3 Circuitos eléctricos Desde hace más de un siglo, la humanidad ha utilizado en su beneficio la energía eléctrica. Actualmente usamos diferentes aparatos
Campo Magnético en un alambre recto.
Campo Magnético en un alambre recto. A.M. Velasco (133384) J.P. Soler (133380) O.A. Botina (133268) Departamento de física, facultad de ciencias, Universidad Nacional de Colombia Resumen. Se hizo pasar
Aplicaciones de la ley de Faraday
Universidad Nacional Autónoma de Honduras Facultad de Ciencias Escuela de Física Aplicaciones de la ley de Faraday Elaborado por: Jorge A. Pérez y Miguel A. Serrano Introducción Los transformadores de
UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD
OPCIÓN A En la asociación de condensadores de la figura, calcular: a) Capacidad equivalente del circuito. b) Carga que adquiere cada condensador al aplicar una tensión de 13 V entre los puntos entre los
UNIVERSIDAD NACIONAL DE TRES DE FEBRERO GUIA DE EJERCICIOS: C A MPO MAGNETICO Y CIRCUITOS MAGNETICOS INGENIERIA DE SONIDO ELECTRICIDAD Y MAGNETISMO
UNIVERSIDAD NACIONAL DE TRES DE FEBRERO ELECTRICIDAD Y MAGNETISMO GUIA DE EJERCICIOS: C A MPO MAGNETICO Y CIRCUITOS MAGNETICOS INGENIERIA DE SONIDO Titular: Ing. Alejandro Di Fonzo Jefe de Trabajos Prácticos:
PROBLEMAS DE FUNDAMENTOS DE TECNOLOGÍA ELÉCTRICA. SEGUNDA PARTE
PROBLEMAS DE FUNDAMENTOS DE TECNOLOGÍA ELÉCTRICA. SEGUNDA PARTE GRADO EN INGENIERÍA ELÉCTRICA GRADO EN INGENIERÍA ELECTRÓNICA INDUSTRIAL Y AUTOMÁTICA GRADO EN INGENIERÍA MECÁNICA GRADO EN INGENIERÍA QUÍMICA
