Potencial escalar magnético y cargas de magnetización. Cálculo de la intensidad magnética en ausencia de corrientes libres.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Potencial escalar magnético y cargas de magnetización. Cálculo de la intensidad magnética en ausencia de corrientes libres."

Transcripción

1 c Rafael R. Boix y Francisco Medina 1 Potencial escalar magnético y cargas de magnetización. Cálculo de la intensidad magnética en ausencia de corrientes libres. Consideremos un cuerpo magnetizado en ausencia de corrientes libres, y supongamos que el cuerpo magnetizado ocupa un volumen τ. Sea S la supercie cerrada que limita al volumen τ, y sea n un vector unitario normal a S en cada punto, dirigido hacia el exterior del cuerpo magnetizado. Sea r el vector de posición de los puntos del cuerpo magnetizado, y sea M(r ) la magnetización. El cuerpo magnetizado va a crear en todos los puntos del espacio un campo magnético B(r) y un vector intensidad magnética H(r). Dado que el cuerpo está magnetizado en ausencia de corrientes libres (piense, por ejemplo, en un imán permanente que está magnetizado sin que sobre él actúe un campo magnético externo), de acuerdo con la expresión diferencial de la ley de Ampère en presencia de cuerpos materiales, el vector intensidad magnética creado por el cuerpo magnetizado H(r) va a ser un campo vectorial irrotacional, esto es, se cumple que: H(r) = 0 (1)

2 c Rafael R. Boix y Francisco Medina 2 Y de acuerdo con lo que hemos visto en el tema 0, H(r) debe poder escribirse en términos de un potencial escalar. Por analogía con lo que ocurre con el campo eléctrico, vamos a denir el potencial escalar magnético φ m (r) creado por el cuerpo magnetizado como un campo escalar que está relacionado con H(r) mediante la ecuación: H(r) = φ m (r) (2) Basándonos en la ecuación (2), vamos a obtener una expresión del potencial escalar magnético creado por el cuerpo magnetizado en términos de la magnetización. Al estudiar las corrientes de magnetización, hemos visto que el potencial vector magnético creado por el cuerpo magnetizado se puede escribir en términos de la magnetización mediante la expresión: A(r) = µ 0 τ M(r ) ( ) 3 dτ (3) Y de acuerdo con la denición de potencial vector magnético, el campo magnético creado por el cuerpo magnetizado se puede escribir: B(r) = A(r) = = µ 0 τ µ 0 M(r ) M(r τ ) ( ) dτ 3 3 dτ (4) Si ahora hacemos uso de la identidad vectorial (A B) = (B )A (A )B + A( B) B( A) (donde A = A(r) y B = B(r) son dos campos vectoriales) en el caso en que A = M(r ) y B = ( r r r r 3 ), el integrando de la segunda integral de la ecuación

3 c Rafael R. Boix y Francisco Medina 3 (4) se puede reescribir: M(r ) 3 = 3 M(r ) (M(r ) ) 3 +M(r r r ) 3 3 ( M(r )) (5) Ahora bien, si tenemos en cuenta que el operador no actúa sobre las coordenadas del vector r y hacemos uso de la expresión obtenida en el tema 0 para la delta de Dirac tridimensional (junto con el resultado del apartado a) del problema 2 del Boletín 0), podemos escribir que: 3 M(r ) = 0 (6) M(r r r ) 3 = M(r 1 ) = M(r ) 2 1 = M(r )δ( ) (7) M(r ) = 0 (8) y sustituyendo las ecuaciones (6), (7) y (8) en la ecuación (5), se llega a que: M(r ) 3 = (M(r ) ) 3 + M(r )δ( ) (9) Por otro lado, si hacemos uso de la identidad vectorial (A B) = A ( B)+B ( A)+(A )B+(B )A (donde A = A(r) y

4 c Rafael R. Boix y Francisco Medina 4 B = B(r) son dos campos vectoriales) en el caso en que A = M(r ) ( ) y B =, se obtiene lo siguiente: r r r r 3 M(r ) 3 = M(r r r ) ( M(r )) + (M(r ) ) M(r ) (10) Ahora bien, si tenemos en cuenta que: 1 3 = = 0 (11) M(r ) = 0 (12) y tenemos en cuenta la ecuación (6), la ecuación (10) se convierte en: M(r ) 3 = (M(r ) ) 3 (13) Y sustituyendo la ecuación (13) en la ecuación (9), llegamos a la siguiente expresión: M(r ) = 3 M(r ) 3 + M(r )δ( ) (14) Si ahora introducimos la ecuación (14) en la ecuación (4), llegamos a que: B(r) = µ 0 1 τ M(r ) 3 dτ + τ M(r )δ( )dτ

5 c Rafael R. Boix y Francisco Medina 5 = µ 0 1 M(r τ ) ( ) dτ 3 + M(r) (15) Por otro lado, de acuerdo con la ecuación (2) y con la denición del vector intensidad magnética, debe cumplirse que: φ m (r) = B(r) µ 0 M(r) = B(r) = µ 0 ( φ m (r) + M(r)) (16) Y comparando las ecuaciones (15) y (16), llegamos a que la expresión del potencial escalar magnético creado por el cuerpo magnetizado viene dada por: φ m (r) = 1 τ M(r ) ( ) 3 dτ (17) salvo una constante aditiva que tomaremos, por convenio, igual a cero. Se observa que la expresión obtenida para el potencial escalar magnético en términos de la magnetización es análoga a la obtenida en el tema 3 para el potencial eléctrico creado por un cuerpo polarizado en términos de la polarización. Por tanto, si procedemos como en el tema 3, el integrando de la ecuación (17) lo podemos reescribir como: M(r ) ( ) 3 = M(r ) = 1 M(r ) M(r ) (18) donde se ha utilizado la identidad vectorial A f = (fa) f( A) (que a su vez se deduce de la identidad vectorial (fa) = A f + f( A), siendo A = A(r ) un campo vectorial y f = f(r ) un campo escalar) en el caso en que A = M(r ) y

6 c Rafael R. Boix y Francisco Medina 6 f = 1 r r. Si introducimos la ecuación (18) en la ecuación (17) y aplicamos el teorema de la divergencia, se obtiene la siguiente expresión para el potencial escalar magnético creado por el cuerpo magnetizado: φ m (r) = 1 S M(r ) n ds + 1 ( τ M(r )) dτ (19) Al igual que hicimos en el tema 3, vamos a denir un campo escalar σ M (r ) en la supercie S dado por la ecuación: σ M (r ) = M(r ) n r S (20) y otro campo escalar ρ M (r ) en el volumen τ dado por la ecuación: ρ M (r ) = M(r ) r τ (21) donde σ M (r ) se mide en A/m en el sistema internacional y ρ M (r ) se mide en A/m 2. Si ahora sustituimos las ecuaciones (20) y (21) en (19), llegamos a la siguiente expresión para el potencial escalar magnético creado por el cuerpo magnetizado: φ m (r) = 1 S σ M (r ) ds + 1 τ ρ M (r ) dτ (22) Por analogía con la expresión obtenida en el tema 3 para el potencial eléctrico creado por un cuerpo polarizado en términos de las densidades de carga de polarización, a σ M (r ) se la conoce como densidad supercial de carga de magnetización y a ρ M (r ) se la conoce como densidad volumétrica de carga de magnetización (en algunos libros se llama a σ M (r ) densidad supercial de polo magnético, y a ρ M (r ), densidad volumétrica de polo magnético). De hecho, las cargas de magnetización son al potencial escalar

7 c Rafael R. Boix y Francisco Medina 7 magnético y al vector intensidad magnética creados por un cuerpo magnetizado en ausencia de corrientes libres lo que son las cargas de polarización al potencial eléctrico y campo eléctrico creados por un cuerpo polarizado. Esto signica que el vector intensidad magnética creado por un cuerpo magnetizado en ausencia de corrientes libres se puede calcular en términos de las cargas de magnetización como si se estuviera resolviendo un problema electrostático en el que las cargas de magnetización actúan como fuentes escalares del vector intensidad magnética. De hecho, es fácil ver que el potencial escalar magnético creado por el cuerpo magnetizado satisface la ecuación de Poisson. Para ello, basta tomar la divergencia de la ecuación (16) y tener en cuenta que el campo magnético es un campo vectorial solenoidal, con lo cual, se debe cumplir que: ( φ m (r) + M(r)) = 0 = 2 φ m (r) = M(r) (23) Y teniendo en cuenta la ecuación (21) en la ecuación (23), se llega a que: 2 φ m (r) = ρ M (r) (24) En aquellos puntos en los que la magnetización sea nula o la magnetización sea uniforme, se va a cumplir que ρ M (r) = M(r) = 0, con lo cual, de acuerdo con la ecuación (24), se va a cumplir también que 2 φ m (r) = 0, o lo que es lo mismo, que el potencial escalar magnético satisface la ecuación de Laplace. Por analogía con la expresión obtenida en el tema 3 para el campo eléctrico creado por un cuerpo polarizado en términos de las cargas de polarización, si introducimos la ecuación (22) en la ecuación (2), llegaremos a una expresión para el vector intensidad magnética creado por el cuerpo magnetizado en términos de las

8 c Rafael R. Boix y Francisco Medina 8 cargas de magnetización, expresión que viene dada por: H(r) = 1 S σ M (r ) ( ) 3 ds + 1 τ ρ M (r ) ( ) 3 dτ (25) Cargas de magnetización en un imán cilíndrico. Para ilustrar el concepto de las cargas de magnetización y de la utilidad de estas cargas en el cálculo de la intensidad magnética creada por un cuerpo magnetizado en ausencia de corrientes libres, vamos a considerar de nuevo el imán cilíndrico uniformemente magnetizado para el cual ya se han calculado previamente las corrientes de magnetización equivalentes. Sea z el eje de revolución del imán cilíndrico, sean a y l el radio y la longitud del imán, y sea M = M 0 u z la magnetización, tal y como se muestra en la gura adjunta. De acuerdo con la ecuación (20), las densidades superciales de carga de magnetización en las dos supercies circulares que limitan el imán cilíndrico por arriba y por abajo vienen dadas por: σ M z=l = M n = M 0 u z (+u z ) = +M 0 σ M z=0 = M n = M 0 u z ( u z ) = M 0 Y la densidad supercial de carga de magnetización en la super- cie lateral del imán cilíndrico será nula ya que: σ M ρ=a = M n = M 0 u z u ρ = 0

9 c Rafael R. Boix y Francisco Medina 9 Finalmente, de acuerdo con la ecuación (21), la densidad volumétrica de carga de magnetización también será nula ya que: ρ M = M = M 0 z = 0 En denitiva, las fuentes escalares del vector intensidad magnética creado por el imán cilíndrico se reducen a dos discos circulares cargados supercialmente, uno con carga de magnetización uniforme positiva y otro con carga de magnetización uniforme negativa. La expresión matemática del vector intensidad magnética creado por estos discos de carga de magnetización va a ser, a excepción de una constante multiplicativa, exactamente igual a la del campo eléctrico creado por dos discos circulares cargados eléctricamente que ocupan las supercies circulares superior e inferior del imán cilíndrico, y que están cargados uniformemente con cargas iguales en valor absoluto y de signo contrario. Pues bien, las líneas de este campo eléctrico deben coincidir con las líneas de campo del vector intensidad magnética creado por el imán cilíndrico, tal y como muestra la gura adjunta. Se observa que en el exterior del imán cilíndrico las líneas de B y H coinciden ya que B = µ 0 H en dicha región. En cambio, en el interior del imán cilíndrico, la intensidad magnética H lleva sentido contrario al del campo magnético B. Esto hace que en el interior del imán cilíndrico se cumpla que B =

10 c Rafael R. Boix y Francisco Medina 10 µ 0 H + M < µ 0 M, y dado que H contrarresta el efecto de la magnetización en el interior del imán cilíndrico, se dice que H en el interior del imán es un campo desmagnetizante. Se observa que las líneas del vector H creado por el imán cilíndrico no son líneas cerradas (lo cual es lógico ya que H = M = ρ M y, por tanto, H no es un campo vectorial solenoidal), y que las líneas de H parten de las cargas de magnetización positivas (fuentes de H) y terminan en las cargas de magnetización negativas (sumideros de H). Se observa también que las cargas de magnetización positivas están localizadas en el polo norte del imán, y que las cargas de magnetización negativas están localizadas en el polo sur. Este resultado va a seguir cumpliéndose para cualquier imán, independientemente de cuál sea su geometría. Finalmente, conviene mencionar que al igual que ocurre con la carga de polarización total de un dieléctrico, la carga de magnetización total de un cuerpo magnetizado es nula ya que: S σ M (r )ds + τ ρ M (r )dτ = S M(r ) n ds τ M(r )dτ = 0 (26) Este último resultado es consecuente con el hecho de que no se pueden aislar polos magnéticos de un único tipo, o lo que es lo mismo, de que no se pueden aislar cargas de magnetización con un único signo.

LEY DE COULOMB E INTENSIDAD DE CAMPO ELECTRICO

LEY DE COULOMB E INTENSIDAD DE CAMPO ELECTRICO INDICE Prefacio XIV Visita Guiada 1 Análisis Vectorial 1 2 Ley Coulomb e Intensidad de Campo Eléctrico 26 3 Densidad de Flujo Eléctrico, Ley de Gauss y Divergencia 51 4 Energía y Potencial 80 5 Corriente

Más detalles

CAMPOS ELÉCTRICOS DEBIDOS A DISTRIBUCIONES CONTINUAS DE CARGA

CAMPOS ELÉCTRICOS DEBIDOS A DISTRIBUCIONES CONTINUAS DE CARGA CAMPOS ELÉCTRICOS DEBIDOS A DISTRIBUCIONES CONTINUAS DE CARGA Este documento enuncia de forma más detallada la formulación matemática que permite el estudio de campos eléctricos debido a distribuciones

Más detalles

Campo Eléctrico en el vacío

Campo Eléctrico en el vacío Campo Eléctrico en el vacío Electrostática: Interacción entre partículas cargadas q1 q2 Ley de Coulomb En el vacío: K = 8.99 109 N m2/c2 0 = 8.85 10 12 C2/N m2 Balanza de torsión Electrostática: Interacción

Más detalles

Introducción. Flujo Eléctrico.

Introducción. Flujo Eléctrico. Introducción La descripción cualitativa del campo eléctrico mediante las líneas de fuerza, está relacionada con una ecuación matemática llamada Ley de Gauss, que relaciona el campo eléctrico sobre una

Más detalles

Departamento de Física Aplicada III

Departamento de Física Aplicada III Departamento de Física Aplicada III Escuela Superior de Ingenieros Camino de los Descubrimientos s/n 4109 Sevilla Examen de Campos electromagnéticos. o Curso de Ingeniería Industrial. Septiembre de 011

Más detalles

Proyecciones. Producto escalar de vectores. Aplicaciones

Proyecciones. Producto escalar de vectores. Aplicaciones Proyecciones La proyección de un punto A sobre una recta r es el punto B donde la recta perpendicular a r que pasa por A corta a la recta r. Con un dibujo se entiende muy bien. La proyección de un segmento

Más detalles

TEMA 0: Herramientas matemáticas

TEMA 0: Herramientas matemáticas 1 TEMA 0: Herramientas matemáticas Tema 0: Herramientas matemáticas 1. Campos escalares y vectoriales 2. Gradiente 3. Divergencia 4. Rotacional 5. Teoremas de Gauss y de Stokes 5. Representación gráfica

Más detalles

GEOMETRÍA. que pasa por el punto P y es paralelo a π. (0,9 puntos) b) Determinar la ecuación del plano π

GEOMETRÍA. que pasa por el punto P y es paralelo a π. (0,9 puntos) b) Determinar la ecuación del plano π GEOMETRÍA 1.- Se considera la recta r : ( x, y, z) = ( t + 1, t,3 t), el plano π: x y z = 0y el punto P (1,1,1). Se pide: a) Determinar la ecuación del plano π 1 que pasa por el punto P y es paralelo a

Más detalles

Vectores y rectas. 4º curso de E.S.O., opción B. Modelo de examen (ficticio)

Vectores y rectas. 4º curso de E.S.O., opción B. Modelo de examen (ficticio) demattematicaswordpresscom Vectores y rectas º curso de ESO, opción B Modelo de examen (ficticio) Sean los vectores u = (,5) y v = (, ) a) Analiza si tienen la misma dirección No tienen la misma dirección

Más detalles

PROGRAMA DE: ELECTROMAGNETISMO II IDENTIFICACION DE LA ASIGNATURA CODIGO OPTICO:

PROGRAMA DE: ELECTROMAGNETISMO II IDENTIFICACION DE LA ASIGNATURA CODIGO OPTICO: UNIVERSIDAD DEL ZULIA FACULTAD EXPERIMENTAL DE CIENCIAS D.E.B.S. COORDINACION ACADEMICA DE LA FEC DEPARTAMENTO DE FISICA UNIDAD ACADÉMICA ELECTROMAGNETISMO PROGRAMA DE: ELECTROMAGNETISMO II IDENTIFICACION

Más detalles

Introducción a la Teoría Analítica de Números

Introducción a la Teoría Analítica de Números Introducción a la Teoría Analítica de Números Pablo De Nápoli clase 3. Ejemplos de funciones generatrices El teorema que vimos la clase anterior sobre el producto de series de Dirichlet permite determinar

Más detalles

PROBLEMAS RESUELTOS MOVIMIENTO ONDULATORIO

PROBLEMAS RESUELTOS MOVIMIENTO ONDULATORIO PROBLEMAS RESUELTOS MOVIMIENTO ONDULATORIO 1. Una onda transversal se propaga en una cuerda según la ecuación (unidades en el S.I.) Calcular la velocidad de propagación de la onda y el estado de vibración

Más detalles

REPÚBLICA BOLIVARIANA DE VENEZUELA UNIVERSIDAD BICENTENARIA DE ARAGUA SECRETARIA DIRECCIÓN DE ADMISIÓN Y CONTROL DE ESTUDIOS

REPÚBLICA BOLIVARIANA DE VENEZUELA UNIVERSIDAD BICENTENARIA DE ARAGUA SECRETARIA DIRECCIÓN DE ADMISIÓN Y CONTROL DE ESTUDIOS FACULTAD: CARRERA: INGENIERIA INGENIERIA ELECTRICA AÑO: 94 UNIDAD CURRICULAR: CODIGO: REQUISITOS: TEORIA ELECTROMAGNETICA ELC-714 MAT-505/ELC-505 UNIDAD DE CREDITOS: 04 DENSIDAD DE HORARIO: 05 HORAS TEORICA:

Más detalles

Ejercicios de Ondas Mecánicas y Ondas Electromagnéticas.

Ejercicios de Ondas Mecánicas y Ondas Electromagnéticas. Ejercicios de Ondas Mecánicas y Ondas Electromagnéticas. 1.- Determine la velocidad con que se propagación de una onda a través de una cuerda sometida ala tensión F, como muestra la figura. Para ello considere

Más detalles

Campo Magnético en un alambre recto.

Campo Magnético en un alambre recto. Campo Magnético en un alambre recto. A.M. Velasco (133384) J.P. Soler (133380) O.A. Botina (133268) Departamento de física, facultad de ciencias, Universidad Nacional de Colombia Resumen. Se hizo pasar

Más detalles

Módulo 1: Electrostática Campo eléctrico

Módulo 1: Electrostática Campo eléctrico Módulo 1: Electrostática Campo eléctrico 1 Campo eléctrico Cómo puede ejercerse una fuerza a distancia? Para explicarlo se introduce el concepto de campo eléctrico Una carga crea un campo eléctrico E en

Más detalles

FISICA 2º BACHILLERATO CAMPO MAGNÉTICO E INDUCCIÓN ELECTROMAGNÉTICA

FISICA 2º BACHILLERATO CAMPO MAGNÉTICO E INDUCCIÓN ELECTROMAGNÉTICA A) CAMPO MAGNÉTICO El Campo Magnético es la perturbación que un imán o una corriente eléctrica producen en el espacio que los rodea. Esta perturbación del espacio se manifiesta en la fuerza magnética que

Más detalles

Electricidad y Magnetismo. Ley de Coulomb.

Electricidad y Magnetismo. Ley de Coulomb. Electricidad y Magnetismo. Ley de Coulomb. Electricidad y Magnetismo. 2 Electricidad y Magnetismo. 3 Electricidad y Magnetismo. 4 Electricidad y Magnetismo. 5 Electricidad y Magnetismo. Electrización es

Más detalles

Essential University Physics

Essential University Physics Essential University Physics Richard Wolfson 20 Carga Eléctrica, Fuerza, y Campo PowerPoint Lecture prepared by Richard Wolfson Slide 20-1 En esta exposición usted aprenderá Como la materia y muchas de

Más detalles

Ley de Gauss. Ley de Gauss

Ley de Gauss. Ley de Gauss Objetivo: Ley de Gauss Hasta ahora, hemos considerado cargas puntuales Cómo podemos tratar distribuciones más complicadas, por ejemplo, el campo de un alambre cargado, una esfera cargada, o un anillo cargado?

Más detalles

Electromagnetismo I. Semestre: TAREA 1 Y SU SOLUCIÓN Dr. A. Reyes-Coronado

Electromagnetismo I. Semestre: TAREA 1 Y SU SOLUCIÓN Dr. A. Reyes-Coronado Electromagnetismo I Semestre: 01- TAREA 1 Y SU SOLUCIÓN Dr. A. Reyes-Coronado Solución por Carlos Andrés Escobar Ruí 1.- Problema: (5pts) (a) Doce cargas iguales q se encuentran localiadas en los vérices

Más detalles

JMLC - Chena IES Aguilar y Cano - Estepa. Introducción

JMLC - Chena IES Aguilar y Cano - Estepa. Introducción Introducción En Magnesia existía un mineral que tenía la propiedad de atraer, sin frotar, materiales de hierro, los griegos la llamaron piedra magnesiana. Pierre de Maricourt (1269) da forma esférica a

Más detalles

UNIVERSIDAD AUTÓNOMA DE SINALOA FACULTAD DE AGRONOMÍA HIDRÁULICA

UNIVERSIDAD AUTÓNOMA DE SINALOA FACULTAD DE AGRONOMÍA HIDRÁULICA UNIVERSIDAD AUTÓNOMA DE SINALOA FACULTAD DE AGRONOMÍA HIDRÁULICA UNIDAD III. HIDROCINEMÁTICA Introducción. La hidrocinemática o cinemática de los líquidos se ocupa del estudio de las partículas que integran

Más detalles

Algebra lineal y conjuntos convexos

Algebra lineal y conjuntos convexos Apéndice A Algebra lineal y conjuntos convexos El método simplex que se describirá en el Tema 2 es de naturaleza algebraica y consiste en calcular soluciones de sistemas de ecuaciones lineales y determinar

Más detalles

FLUJO ELECTRICO Y LA LEY DE GAUSS

FLUJO ELECTRICO Y LA LEY DE GAUSS 21 UNIVRSIDAD NACIONAL SANTIAGO ANTÚNZ D MAYOLO FACULTAD D INGNIRÍA CIVIL CURSO: FISICA III FLUJO LCTRICO Y LA LY D GAUSS AUTOR: Mag. Optaciano L. Vásquez García HUARAZ - PRÚ I. INTRODUCCIÓN Para realizar

Más detalles

Electrotecnia General Tema 26 TEMA 26 CÁLCULO DE REDES DE DISTRIBUCIÓN II

Electrotecnia General Tema 26 TEMA 26 CÁLCULO DE REDES DE DISTRIBUCIÓN II TEMA 26 CÁLCULO DE REDES DE DISTRIBUCIÓN II 26.1. DISTRIBUCIONES PERFECTAMENTE CERRADAS CON TENSIÓN CONSTANTE Y SECCIÓN UNIFORME. Las distribuciones perfectamente cerradas son aquellas en las que el distribuidor

Más detalles

Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO

Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO 1. Un condensador se carga aplicando una diferencia de potencial entre sus placas de 5 V. Las placas son circulares de diámetro cm y están separadas

Más detalles

«La derivada de una función en un punto representa geométricamente la pendiente de la recta tangente a la función en dicho punto»

«La derivada de una función en un punto representa geométricamente la pendiente de la recta tangente a la función en dicho punto» TEMA 10 DERIVADA DE UNA FUNCIÓN EN UN PUNTO f (a): Consideremos una función f(x) y un punto P de su gráfica (ver figura), de abscisa x=a. Supongamos que damos a la variable independiente x un pequeño incremento

Más detalles

Continuidad. 5.1 Continuidad en un punto

Continuidad. 5.1 Continuidad en un punto Capítulo 5 Continuidad 5.1 Continuidad en un punto Definición 5.1.1 (Aplicación continua en un punto). Sean (X, τ) e (Y, τ ) dos espacios topológicos, y sea f : X Y una aplicación entre ellos. Diremos

Más detalles

Resumen sobre mecánica analítica

Resumen sobre mecánica analítica Resumen sobre mecánica analítica Ecuaciones de Lagrange. Supongamos una partícula, cuyo movimiento se puede describir mediante una sóla coordenada x, de modo que en el instante t la posición de la partícula

Más detalles

Problemas de Potencial Eléctrico. Boletín 2 Tema 2

Problemas de Potencial Eléctrico. Boletín 2 Tema 2 1/22 Problemas de Potencial Eléctrico Boletín 2 Tema 2 Fátima Masot Conde Ing. Industrial 21/11 Problema 1 Ocho partículas con una carga de 2 nc cada una están uniformemente distribuidas sobre el perímetro

Más detalles

Geometría de masas: Cálculos del tensor de Inercia

Geometría de masas: Cálculos del tensor de Inercia Departamento: Física Aplicada Mecánica acional (ngeniería ndustrial) Curso 007-08 eometría de masas: Cálculos del tensor de nercia Tensor de inercia de una varilla delgada. Calculo del tensor de inercia

Más detalles

Anejo 1. Teoría de Airy. Solución lineal de la ecuación de ondas.

Anejo 1. Teoría de Airy. Solución lineal de la ecuación de ondas. Anejo 1. Teoría de Airy. Solución lineal de la ecuación de ondas. Introducción y ecuaciones que rigen la propagación del oleaje. La propagación de oleaje en un fluido es un proceso no lineal. Podemos tratar

Más detalles

Campos Electromagnéticos Estáticos

Campos Electromagnéticos Estáticos Capítulo 3: Campos Electromagnéticos Estáticos Flujo de un campo vectorial Superficie cerrada Ley de Gauss Karl Friedrich Gauss (1777-1855) Flujo de E generado por una carga puntual Superficie arbitraria

Más detalles

ENSAYO SOBRE ELECTROSTATICA Y CORRIENTE CONTINUA

ENSAYO SOBRE ELECTROSTATICA Y CORRIENTE CONTINUA ENSAYO SOBRE ELECTROSTATICA Y CORRIENTE CONTINUA Por Javier de Montoliu Siscar, Dr. Ing. Ind. PROLOGO Este texto es esencialmente una transcripción de la electrostática y corrientes continuas del Dr.

Más detalles

Dos matrices son iguales cuando tienen la misma dimensión y los elementos que ocupan el mismo lugar en ambas son iguales

Dos matrices son iguales cuando tienen la misma dimensión y los elementos que ocupan el mismo lugar en ambas son iguales Introducción Las matrices aparecen por primera vez hacia el año 1850, introducidas por J.J. Sylvester. El desarrollo inicial de la teoría se debe al matemático W.R. Hamilton en 1853. En 1858, A. Cayley

Más detalles

Capítulo 16. Electricidad

Capítulo 16. Electricidad Capítulo 16 Electricidad 1 Carga eléctrica. Ley de Coulomb La carga se mide en culombios (C). La del electrón vale e = 1.6021 10 19 C. La fuerza eléctrica que una partícula con carga Q ejerce sobre otra

Más detalles

LABORATORIO DE ELECTROMAGNETISMO SUPERFICIES EQUIPOTENCIALES

LABORATORIO DE ELECTROMAGNETISMO SUPERFICIES EQUIPOTENCIALES No 3 LABORATORIO DE ELECTROMAGNETISMO DEPARTAMENTO DE FISICA Y GEOLOGIA UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS Objetivos 1. Dibujar líneas de campo a través del mapeo de líneas equipotenciales.

Más detalles

1 Curvas planas. Solución de los ejercicios propuestos.

1 Curvas planas. Solución de los ejercicios propuestos. 1 Curvas planas. Solución de los ejercicios propuestos. 1. Se considera el lugar geométrico de los puntos del plano tales que la suma del cuadrado de las distancias a los puntos P 1 = (, 0) y P = (, 0)

Más detalles

Tema 7: Geometría Analítica. Rectas.

Tema 7: Geometría Analítica. Rectas. Tema 7: Geometría Analítica. Rectas. En este tema nos centraremos en estudiar la geometría en el plano, así como los elementos que en este aparecen como son los puntos, segmentos, vectores y rectas. Estudiaremos

Más detalles

Campo de velocidades se puede representar mediante una función potencial φ, escalar

Campo de velocidades se puede representar mediante una función potencial φ, escalar Flujo Potencial Campo de velocidades se puede representar mediante una función potencial φ, escalar Condición necesaria flujo irrotacional, V=0. Hipótesis: Flujo irrotacional, incompresible y permanente

Más detalles

Módulo 7: Fuentes del campo magnético

Módulo 7: Fuentes del campo magnético 7/04/03 Módulo 7: Fuentes del campo magnético Campo magnético creado por cargas puntuales en movimiento Cuando una carga puntual q se mueve con velocidad v, se produce un campo magnético B en el espacio

Más detalles

Geometría del Espacio. Física Geográfica. Licenciatura de Humanidades. Febrero-Mayo,

Geometría del Espacio. Física Geográfica. Licenciatura de Humanidades. Febrero-Mayo, Geometría del Espacio. Física Geográfica. Licenciatura de Humanidades. Febrero-Mayo, 2007. 42 Índice. 1. Superficies. 2. El espacio eucĺıdeo tridimensional. Coordenadas Cartesianas. 3. Distancia entre

Más detalles

T-2) LA FUERZA DE LORENTZ (10 puntos)

T-2) LA FUERZA DE LORENTZ (10 puntos) T-2) LA FUERZA DE LORENTZ (10 puntos) Un móvil se desliza por un plano inclinado sobre el que pende el conductor cilíndrico AC a una distancia h de la línea de máxima pendiente, tal como indica la figura.

Más detalles

Pruebas de Acceso a las Universidades de Castilla y León

Pruebas de Acceso a las Universidades de Castilla y León Pruebas de Acceso a las Universidades de Castilla y León MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES EJERCICIO Nº páginas 2 Tablas OPTATIVIDAD: EL ALUMNO DEBERÁ ESCOGER UNA DE LAS DOS OPCIONES Y DESARROLLAR

Más detalles

TEMA 4: Sistemas de ecuaciones lineales II

TEMA 4: Sistemas de ecuaciones lineales II TEM 4: Sistemas de ecuaciones lineales II ) Teorema de Rouché-Frobenius. ) Sistemas de Cramer: regla de Cramer. 3) Sistemas homogeneos. 4) Eliminación de parámetros. 5) Métodos de factorización. 5) Métodos

Más detalles

Sistemas de dos ecuaciones lineales de primer grado con dos incógnitas

Sistemas de dos ecuaciones lineales de primer grado con dos incógnitas Un sistema de dos ecuaciones lineales de primer grado con dos incógnitas tiene la siguiente forma Ax + By + C = 0 A x + B y + C (1) = 0 Ya sabemos que una ecuación lineal de primer grado con dos incógnitas

Más detalles

PRINCIPIOS DE LA DINÁMICA

PRINCIPIOS DE LA DINÁMICA Capítulo 3 PRINCIPIOS DE LA DINÁMICA CLÁSICA 3.1 Introducción En el desarrollo de este tema, cuyo objeto de estudio son los principios de la dinámica, comenzaremos describiendo las causas del movimiento

Más detalles

Departamento de Electrónica y Sistemas PARTE II) ELECTROSTÁTICA. CAMPO ELÉCTRICO

Departamento de Electrónica y Sistemas PARTE II) ELECTROSTÁTICA. CAMPO ELÉCTRICO Departamento de Electrónica y Sistemas PARTE II) ELECTROSTÁTICA. CAMPO ELÉCTRICO 1. Carga eléctrica y materia. Distribuciones de carga 2. Ley de Coulomb 3. Campo eléctrico Departamento de Electrónica y

Más detalles

Ley de Gauss. Líneas de fuerza

Ley de Gauss. Líneas de fuerza Ley de Gauss Líneas de fuerza El campo eléctrico se formula a partir de la fuerza que experimentaría, en cada punto del espacio, una carga de pruebas. En esta forma, se define cuantitativamente la intensidad

Más detalles

Javier Junquera. Movimiento de rotación

Javier Junquera. Movimiento de rotación Javier Junquera Movimiento de rotación Bibliografía Física, Volumen 1, 3 edición Raymod A. Serway y John W. Jewett, Jr. Ed. Thomson ISBN: 84-9732-168-5 Capítulo 10 Física, Volumen 1 R. P. Feynman, R. B.

Más detalles

Unidad V. 5.1 Recta tangente y recta normal a una curva en un punto. Curvas ortogonales.

Unidad V. 5.1 Recta tangente y recta normal a una curva en un punto. Curvas ortogonales. Unidad V Aplicaciones de la derivada 5.1 Recta tangente y recta normal a una curva en un punto. Curvas ortogonales. Una tangente a una curva es una recta que toca la curva en un solo punto y tiene la misma

Más detalles

Guía n 0: Herramientas de Física y Matemáticas

Guía n 0: Herramientas de Física y Matemáticas Guía n 0: Herramientas de Física y Matemáticas Problema Dadas dos partículas en el espacio ubicadas en los puntos de coordenadas p = (0,5, 2) y p 2 = (2,3,). Hallar el vector posición de la partícula respecto

Más detalles

TEMA II.8. Ecuación Euler. Dr. Juan Pablo Torres-Papaqui. Departamento de Astronomía Universidad de Guanajuato DA-UG (México)

TEMA II.8. Ecuación Euler. Dr. Juan Pablo Torres-Papaqui. Departamento de Astronomía Universidad de Guanajuato DA-UG (México) TEMA II.8 Ecuación Euler Dr. Juan Pablo Torres-Papaqui Departamento de Astronomía Universidad de Guanajuato DA-UG (México) papaqui@astro.ugto.mx División de Ciencias Naturales y Exactas, Campus Guanajuato,

Más detalles

MATERIALES DIELÉCTRICOS

MATERIALES DIELÉCTRICOS MATERIALES DIELÉCTRICOS PREGUNTAS 1. Qué le ocurre a una placa sólida, dieléctrica, cuando se coloca en un campo eléctrico uniforme?. Qué es un material dieléctrico?, argumente. 3. Hay dieléctricos polar

Más detalles

CAMPO ELÉCTRICO ÍNDICE

CAMPO ELÉCTRICO ÍNDICE CAMPO ELÉCTRICO ÍNDICE 1. Introducción 2. Ley de Coulomb 3. Campo eléctrico 4. Líneas de campo eléctrico 5. Distribuciones continuas de carga eléctrica 6. Flujo del campo eléctrico. Ley de Gauss 7. Potencial

Más detalles

2.8. Ecuaciones de Maxwell del electromagnetismo

2.8. Ecuaciones de Maxwell del electromagnetismo 2.8. Ecuaciones de Maxwell del electromagnetismo Para el caso de cargas en movimiento hemos de describir la fuerza mediante una ley de interacción carga-campo y nocarga-carga como es el caso de la ley

Más detalles

Flujo Eléctrico. Hemos aprendido a calcular el E establecido por un sistema de cargas puntuales o una distribución de carga uniforme o continua.

Flujo Eléctrico. Hemos aprendido a calcular el E establecido por un sistema de cargas puntuales o una distribución de carga uniforme o continua. Ley de Gauss Presentación basada en el material contenido en: R. Serway,; Physics for Scientists and Engineers, Saunders College Publishers, 3 rd edition. Flujo Eléctrico Hemos aprendido a calcular el

Más detalles

1. Cinemática: Elementos del movimiento

1. Cinemática: Elementos del movimiento 1. Cinemática: Elementos del movimiento 1. Una partícula con velocidad cero, puede tener aceleración distinta de cero? Y si su aceleración es cero, puede cambiar el módulo de la velocidad? 2. La ecuación

Más detalles

Figura 1.3.1. Sobre la definición de flujo ΔΦ.

Figura 1.3.1. Sobre la definición de flujo ΔΦ. 1.3. Teorema de Gauss Clases de Electromagnetismo. Ariel Becerra La ley de Coulomb y el principio de superposición permiten de una manera completa describir el campo electrostático de un sistema dado de

Más detalles

TEMA 1. MATRICES, DETERMINANTES Y APLICACIÓN DE LOS DETERMINANTES. CONCEPTO DE MATRIZ. LA MATRIZ COMO EXPRESIÓN DE TABLAS Y GRAFOS.

TEMA 1. MATRICES, DETERMINANTES Y APLICACIÓN DE LOS DETERMINANTES. CONCEPTO DE MATRIZ. LA MATRIZ COMO EXPRESIÓN DE TABLAS Y GRAFOS. TEMA 1. MATRICES, DETERMINANTES Y APLICACIÓN DE LOS DETERMINANTES. 1. MATRICES. CONCEPTO DE MATRIZ. LA MATRIZ COMO EXPRESIÓN DE TABLAS Y GRAFOS. DEFINICIÓN: Las matrices son tablas numéricas rectangulares

Más detalles

Esta expresión polinómica puede expresarse como una expresión matricial de la forma; a 11 a 12 a 1n x 1 x 2 q(x 1, x 2,, x n ) = (x 1, x 2,, x n )

Esta expresión polinómica puede expresarse como una expresión matricial de la forma; a 11 a 12 a 1n x 1 x 2 q(x 1, x 2,, x n ) = (x 1, x 2,, x n ) Tema 3 Formas cuadráticas. 3.1. Definición y expresión matricial Definición 3.1.1. Una forma cuadrática sobre R es una aplicación q : R n R que a cada vector x = (x 1, x 2,, x n ) R n le hace corresponder

Más detalles

CAMPOS: CIRCULACIÓN Y FLUJO

CAMPOS: CIRCULACIÓN Y FLUJO AMPO: IRULAIÓN Y FLUJO Dado el vector a ( x + y) i ˆ + xy ˆ j calcular su circulación a lo largo de la recta y x+ desde el punto A (, ) al B (, 2). olución: I.T.I. 99, 5, I.T.T. 2 En la trayectoria que

Más detalles

Unidad 3: Razones trigonométricas.

Unidad 3: Razones trigonométricas. Unidad 3: Razones trigonométricas 1 Unidad 3: Razones trigonométricas. 1.- Medida de ángulos: grados y radianes. Las unidades de medida de ángulos más usuales son el grado sexagesimal y el radián. Se define

Más detalles

CINEMÁTICA: ESTUDIO DEL MOVIMIENTO. Cinemática es la parte de la Física que estudia la descripción del movimiento de los cuerpos.

CINEMÁTICA: ESTUDIO DEL MOVIMIENTO. Cinemática es la parte de la Física que estudia la descripción del movimiento de los cuerpos. CINEMÁTICA: ESTUDIO DEL MOVIMIENTO Cinemática es la parte de la Física que estudia la descripción del movimiento de los cuerpos. 1. Cuándo un cuerpo está en movimiento? Para hablar de reposo o movimiento

Más detalles

como el número real que resulta del producto matricial y se nota por:

como el número real que resulta del producto matricial y se nota por: Espacio euclídeo 2 2. ESPACIO EUCLÍDEO 2.. PRODUCTO ESCALAR En el espacio vectorial se define el producto escalar de dos vectores y como el número real que resulta del producto matricial y se nota por:,

Más detalles

No es otra cosa, que la representación de los resultados de una función sobre el plano carteciano.

No es otra cosa, que la representación de los resultados de una función sobre el plano carteciano. FUNCIONES GRAFICAS No es otra cosa, que la representación de los resultados de una función sobre el plano carteciano. INTÉRVALOS Un intervalo es el conjunto de todos los números reales entre dos números

Más detalles

Elementos de análisis

Elementos de análisis Elementos de análisis El estudio universitario del electromagnetismo en Física II requiere del uso de elementos de análisis en varias variables que el alumno adquirirá en la asignatura Análisis Matemático

Más detalles

SESIÓN 10 DERIVACIÓN DE FUNCIONES TRIGONOMÉTRICAS DIRECTAS

SESIÓN 10 DERIVACIÓN DE FUNCIONES TRIGONOMÉTRICAS DIRECTAS SESIÓN 0 DERIVACIÓN DE FUNCIONES TRIGONOMÉTRICAS DIRECTAS I. CONTENIDOS:. Derivadas de funciones trigonométricas directas. Ejercicios resueltos. Estrategias Centradas en el Aprendizaje: Ejercicios propuestos

Más detalles

EJERCICIOS RESUELTOS DE GEOMETRÍA ANALÍTICA

EJERCICIOS RESUELTOS DE GEOMETRÍA ANALÍTICA MATEMÁTICAS EJERCICIOS RESUELTOS DE GEOMETRÍA ANALÍTICA GEOMETRÍA ANALÍTICA A Introducción teórica A Módulo y argumento de un vector A Producto escalar A3 Punto medio de un segmento A4 Ecuaciones de la

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS I TÉRMINO FÍSICA C Segunda evaluación SOLUCIÓN

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS I TÉRMINO FÍSICA C Segunda evaluación SOLUCIÓN ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS I TÉRMINO 2012-2013 FÍSICA C Segunda evaluación SOLUCIÓN Pregunta 1 (3 puntos) Un globo de caucho tiene en su interior una carga puntual.

Más detalles

ASOCIACIÓN DE POLEAS

ASOCIACIÓN DE POLEAS ASOCIACIÓN DE POLEAS Dos objetos de masas m 1 y m 2 cuelgan de un conjunto de poleas combinadas de dos formas distintas (asociación A y B). Calcula en qué condiciones el conjunto se encuentra en equilibrio.calcula

Más detalles

Inecuaciones con valor absoluto

Inecuaciones con valor absoluto Inecuaciones con valor absoluto El valor absoluto de un número real a se denota por a y está definido por: Propiedades a a si a si a 0 a < 0 i a y b son números reales y n es un número entero, entonces:

Más detalles

MÓDULO 8: VECTORES. Física

MÓDULO 8: VECTORES. Física MÓDULO 8: VECTORES Física Magnitud vectorial. Elementos. Producto de un vector por un escalar. Operaciones vectoriales. Vector unitario. Suma de vectores por el método de componentes rectangulares. UTN

Más detalles

MATEMÁTICASII Curso académico BLOQUE GEOMETRÍA. TEMA 1: VECTORES

MATEMÁTICASII Curso académico BLOQUE GEOMETRÍA. TEMA 1: VECTORES MATEMÁTICASII Curso académico 2015-2016 BLOQUE GEOMETRÍA. TEMA 1: VECTORES 1.1 VECTORES DEL ESPACIO. VECTORES LIBRES DEL ESPACIO Sean y dos puntos del espacio. Llamaremos vector (fijo) a un segmento orientado

Más detalles

Problemas métricos. 1. Problemas afines y problemas métricos

Problemas métricos. 1. Problemas afines y problemas métricos . Problemas afines y problemas métricos Al trabajar en el espacio (o análogamente en el plano) se nos pueden presentar dos tipos de problemas con los elementos habituales (puntos, rectas y planos): Problemas

Más detalles

Tema 5: Elementos de geometría diferencial

Tema 5: Elementos de geometría diferencial Tema 5: Elementos de geometría diferencial José D. Edelstein Universidade de Santiago de Compostela FÍSICA MATEMÁTICA Santiago de Compostela, abril de 2011 Coordenadas locales y atlas. Funciones y curvas.

Más detalles

Propiedades magnéticas

Propiedades magnéticas Propiedades magnéticas Fuerzas magnéticas Las fuerzas magnéticas se generan mediante el movimiento de partículas cargadas Eléctricamente; existen junto a las fuerzas electrostáticas. Distribuciones del

Más detalles

Función cuadrática. Ecuación de segundo grado completa

Función cuadrática. Ecuación de segundo grado completa Función cuadrática Una función cuadrática es aquella que puede escribirse como una ecuación de la forma: f(x) = ax 2 + bx + c donde a, b y c (llamados términos) son números reales cualesquiera y a es distinto

Más detalles

Campo Eléctrico. Fig. 1. Problema número 1.

Campo Eléctrico. Fig. 1. Problema número 1. Campo Eléctrico 1. Cuatro cargas del mismo valor están dispuestas en los vértices de un cuadrado de lado L, tal como se indica en la figura 1. a) Hallar el módulo, dirección y sentido de la fuerza eléctrica

Más detalles

de 2/(3) 1/2 de lado y en el tercero hay una la Tierra?.

de 2/(3) 1/2 de lado y en el tercero hay una la Tierra?. 1. Calcula la altura necesaria que hay que subir por encima de la superficie terrestre para que la intensidad del campo Determinar la velocidad de una masa m' cuando partiendo del reposo del primero de

Más detalles

CAMPO ELECTRICO. Campo Eléctrico. Introducción.

CAMPO ELECTRICO. Campo Eléctrico. Introducción. CAMPO ELECTRICO Introducción. El campo eléctrico es la zona del espacio donde cargas eléctricas ejercen su influencia. Es decir que cada carga eléctrica con su presencia modifica las propiedades del espacio

Más detalles

Espacios Vectoriales www.math.com.mx

Espacios Vectoriales www.math.com.mx Espacios Vectoriales Definiciones básicas de Espacios Vectoriales www.math.com.mx José de Jesús Angel Angel jjaa@math.com.mx MathCon c 007-009 Contenido. Espacios Vectoriales.. Idea Básica de Espacio Vectorial.................................

Más detalles

Mecánica de Fluidos. Análisis Diferencial

Mecánica de Fluidos. Análisis Diferencial Mecánica de Fluidos Análisis Diferencial Análisis Diferencial: Descripción y caracterización del flujo en función de la descripción de una partícula genérica del flujo. 1. Introducción 2. Movimiento de

Más detalles

Tema 1. Imanes. Campo, inducción y flujo magnético

Tema 1. Imanes. Campo, inducción y flujo magnético Tema 1. Imanes. Campo, inducción Emilio ha observado con frecuencia la utilización de imanes en la vida diaria, De dónde han salido? Cuáles son sus propiedades? Cómo podemos usarlos?. Desde los tiempos

Más detalles

Dpto. Física y Mecánica. Operadores diferenciales

Dpto. Física y Mecánica. Operadores diferenciales Dpto. Física y Mecánica Operadores diferenciales Se denominan líneas coordenadas de un espacio euclídeo tridimensional a aquellas que se obtienen partiendo un punto dado P de coordenadas (q 1, q 2, q 3

Más detalles

T0. TRANSFORMADAS DE LAPLACE

T0. TRANSFORMADAS DE LAPLACE ESCUELA TÉCNICA SUPERIOR DE NÁUTICA Y MÁQUINAS NAVALES / NAUTIKAKO ETA ITSASONTZI MAKINETAKO GOI ESKOLA TEKNIKOA MATEMATICAS T0. TRANSFORMADAS DE LAPLACE Mediante transformadas de Laplace (por Pierre-Simon

Más detalles

Vectores y Matrices. Tema 3: Repaso de Álgebra Lineal Parte I. Contenidos

Vectores y Matrices. Tema 3: Repaso de Álgebra Lineal Parte I. Contenidos Tema 3: Repaso de Álgebra Lineal Parte I Virginia Mazzone Contenidos Vectores y Matrices Bases y Ortonormailizaciòn Norma de Vectores Ecuaciones Lineales Algenraicas Ejercicios Vectores y Matrices Los

Más detalles

1 Universidad de Castilla La Mancha Septiembre 2015 SEPTIEMRE 2015 Opción A Problema 1.- Tenemos tres partículas cargadas q 1 = -20 C, q 2 = +40 C y q 3 = -15 C, situadas en los puntos de coordenadas A

Más detalles

9. Aplicaciones al cálculo de integrales impropias.

9. Aplicaciones al cálculo de integrales impropias. Funciones de variable compleja. Eleonora Catsigeras. 8 Mayo 26. 85 9. Aplicaciones al cálculo de integrales impropias. Las aplicaciones de la teoría de Cauchy de funciones analíticas para el cálculo de

Más detalles

Por el teorema de Green, si llamamos D al interior del cuadrado, entonces. dxdy. y. x P. 1 dx. 1 (4x 3 2y) dy =

Por el teorema de Green, si llamamos D al interior del cuadrado, entonces. dxdy. y. x P. 1 dx. 1 (4x 3 2y) dy = TEOREMA E GREEN. 1. Calcular y dx x dy, donde es la frontera del cuadrado [ 1, 1] [ 1, 1] orientada en sentido contrario al de las agujas del reloj. Por el teorema de Green, si llamamos al interior del

Más detalles

EL MOVIMIENTO Y SU DESCRIPCIÓN

EL MOVIMIENTO Y SU DESCRIPCIÓN 1. EL VECTOR VELOCIDAD EL MOVIMIENTO Y SU DESCRIPCIÓN Se van a tener dos tipos de magnitudes: Magnitudes escalares Magnitudes vectoriales Las magnitudes escalares son aquellas que quedan perfectamente

Más detalles

ESCUELA SUPERIOR POLITECNICA DEL LITORAL PROGRAMA DE ESTUDIOS

ESCUELA SUPERIOR POLITECNICA DEL LITORAL PROGRAMA DE ESTUDIOS TEORÍA ELECTROMAGNÉTICA 1 UNIDAD ACADÉMICA: CARRERA: ESPECIALIZACIÓN: ÁREA: TIPO DE MATERIA: EJE DE FORMACIÓN: Facultad de Ingeniería en Electricidad y Computación Ingeniería en Electricidad, Ingeniería

Más detalles

y tenemos que f(x) > M < 1 M 1 f(x) < 1 M 3x 5 (x 2) 2 = +

y tenemos que f(x) > M < 1 M 1 f(x) < 1 M 3x 5 (x 2) 2 = + Teorema. Suponga que f() > 0 ( 0 δ, 0 + δ) donde 0 es punto de acumulación del Dom f, Demostración. ( ) Supongamos que esto quiere decir f() = + 0 f() = + 0 0 M > 0 R δ > 0 A con 0 < 0 < δ f() > M si M

Más detalles

Interacciones Eléctricas La Ley de Coulomb

Interacciones Eléctricas La Ley de Coulomb Interacciones Eléctricas La Ley de Coulomb 1. Introducción La Electrostática se ocupa del estudio de las interacciones entre cargas eléctricas en reposo. Las primeras experiencias relativas a los fenómenos

Más detalles

CONTINUIDAD DE FUNCIONES. SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos.

CONTINUIDAD DE FUNCIONES. SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos. CAPÍTULO IV. CONTINUIDAD DE FUNCIONES SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos. 121 A. DEFINICIÓN DE FUNCIÓN CONTINUA. Una función

Más detalles

ESCUELA: UNIVERSIDAD DEL ISTMO

ESCUELA: UNIVERSIDAD DEL ISTMO 1.-IDENTIFICACIÓN ESCUELA: UNIVERSIDAD DEL ISTMO CLAVE: 3034 GRADO: ING. EN COMPUTACIÓN, TERCER SEMESTRE TIPO DE TEÓRICA / PRÁCTICA ANTECEDENTE CURRICULAR: 304.- OBJETIVO GENERAL Proporcionar al alumno

Más detalles

Universidad de Sonora Departamento de Física. Mecánica II. Dr. Roberto Pedro Duarte Zamorano 2016

Universidad de Sonora Departamento de Física. Mecánica II. Dr. Roberto Pedro Duarte Zamorano 2016 Universidad de Sonora Departamento de Física Mecánica II Dr. Roberto Pedro Duarte Zamorano 2016 Temario 1. Cinemática rotacional. 2. Dinámica rotacional. 3. Las leyes de Newton en sistemas de referencia

Más detalles

Lentes delgadas Clasificación de las lentes Según su forma Lentes convergentes Lentes divergentes Según su grosor

Lentes delgadas Clasificación de las lentes Según su forma Lentes convergentes Lentes divergentes Según su grosor Lentes delgadas Una lente delgada es un sistema óptico centrado formado por dos dioptrios, uno de los cuales, al menos, es esférico, y en el que los dos medios refringentes extremos poseen el mismo índice

Más detalles

Unidad 8 Áreas y Volúmenes

Unidad 8 Áreas y Volúmenes Unidad 8 Áreas y Volúmenes PÁGINA 132 SOLUCIONES Unidades de medida. Pasa a centímetros cuadrados las siguientes cantidades. a) b) c) Pasa a metros cúbicos las siguientes unidades. a) b) c) Cuántos litros

Más detalles