T0. TRANSFORMADAS DE LAPLACE
|
|
|
- Jaime Silva Ortíz
- hace 9 años
- Vistas:
Transcripción
1 ESCUELA TÉCNICA SUPERIOR DE NÁUTICA Y MÁQUINAS NAVALES / NAUTIKAKO ETA ITSASONTZI MAKINETAKO GOI ESKOLA TEKNIKOA MATEMATICAS T0. TRANSFORMADAS DE LAPLACE Mediante transformadas de Laplace (por Pierre-Simon Laplace) puede resolverse un tipo de ecuaciones diferenciales de orden n, son las llamadas ecuaciones diferenciales lineales con coeficientes constantes, muy comunes en la resolución de circuitos eléctricos: Las A son constantes, y la variable "x" en la práctica suele ser el tiempo. T0.1 Transformación (transformada) de Laplace de una función. Para simplificar los cálculos supondremos que nuestras funciones y = f(x) cumplen las siguientes condiciones: 1) f(x) está definida para todos los puntos. 2) f(x) es contínua o contínua a trozos en cualquier intervalo 0 < x < b. 3) f(x) es de orden exponencial, lo cual significa que f(x) es tal que: La transformada de Laplace de una función f(x) con las características arriba indicadas se define como: Así definida, como una integral, la transformada de una función f(x) cumple las típicas propiedades de linealidad: [1] Ejemplo 1: Hallemos la transformada de Laplace de una función constante, y = A. Respuesta: Sin más que utilizar la fórmula [1] donde sustituímos f(x) por A e integramos: 1
2 Ejemplo 2: Hallemos la transformada de Laplace de una función exponencial inversa, f(x) = e -ax. Respuesta: Utilizamos la fórmula [1] donde sustituímos f(x) por su valor e integramos: Ejemplo 3: Hallemos la transformada de Laplace de la función f(x) = sen x, siendo una constante. Respuesta: Como siempre, sustituímos f(x)=sen x en la fórmula [1] e integramos: T0.2 Propiedades de las transformadas de Laplace. Expresaremos aquí las propiedades más importantes de la transformada de Laplace de funciones: 2
3 T0.3 Cálculo de transformadas mediante tabla. Para el cálculo de transformadas de Laplace de funciones es conveniente tener disponible una tabla con las transformadas de las funciones más importantes (aquí tiene una tabla de transformadas). Con la ayuda de esta tabla, y mediante las propiedades, podemos hallar la transformada de cualquier función que se nos presente. Ejemplo 4: Con la ayuda de la tabla hallemos la transformada de Laplace de la función: f(x) = x² Respuesta: Utilizando la propiedad 1, de linealidad de la transformadas, y con ayuda de la tabla tenemos: Ejemplo 5: Con la ayuda de la tabla hallemos F(s) para la función f(x) = 2 sen x + 3 cos 2x. Respuesta: Utilizando la linealidad, y mediante la tabla tenemos: Ejemplo 6: Con la ayuda de la tabla hallar F(s) para la función f(x) = x e 4x. Respuesta: Teniendo en cuenta (1) que la transformada de f(x) = x es, y (2) la propiedad 2 de las transformadas, tenemos: Ejemplo 7: Con la ayuda de la tabla hallar F(s) para la función f(x) = x cos ax. Respuesta: Según la tabla, la transformada para f(x) = x cos ax es: entonces, teniendo en cuenta la propiedad 3 de las transformadas, tenemos: 3
4 Ejemplo 8: Con la ayuda de la tabla, hallar F(s) para la función f(x) = e - 2x sen 5x. Respuesta: Según la tabla, la transformada de la función f(x) = sen 5x es: y ahora, según la propiedad 2, con a = -2, tenemos: Ejemplo 9: Con la ayuda de la tabla, hallar F(s) para la función: f(x) = e -x x cos 2x. Respuesta: Primeramente hallamos la transformada de la función f(x) = x cos 2x, de forma idéntica al ejemplo 7, con a=2, tenemos: a continuación, tenemos en cuenta la propiedad 2 con a=-1, Ejemplo 10: Con la ayuda de la tabla, hallar F(s) para la función:. Respuesta: Según la tabla, la transformada de la función f(x) = sen 3x es: ahora utilizando la propiedad 4 tenemos: 4
5 figura. Ejemplo 11: Con la ayuda de la tabla hallar la transformada de Laplace para la onda cuadrada de la Respuesta: Se puede apreciar por la figura que la función f(x) es periódica (de periodo T=2), en concreto, la función puede ser expresada en un periodo en la forma: Por lo tanto, según la propiedad 6 para funciones periódicas tenemos: para realizar la integral del numerador debemos partir el intervalo (0,2) en los dos, (0,1) -en que la función es f(x) =1- y (1,2) -con la función f(x) = -1-: Por lo tanto: Ejemplo 12: Con la ayuda de la tabla hallar la transformada de Laplace para la onda en sierra de la figura. Respuesta: Se puede apreciar por la figura que la función f(x) es periódica (de periodo T=2 ), en concreto, la función puede ser expresada en un periodo en la forma: 5
6 Por lo tanto, según la propiedad 6 para funciones periódicas tenemos: para realizar la integral del numerador debemos partir el intervalo (0,2 ) en los dos, (0, ) -en que la función es f(x) =x- y (,2 ) -con la función f(x) = 2 -x-: por lo tanto tenemos: T0.4 Transformadas de la derivada y de la integral de una función. I) Consideremos una función f(x) cuya transformada de Laplace sea F(s), vamos a ver cuál es la transformada de su función derivada f (x): II) Consideremos una función f(x) cuya transformada de Laplace sea F(s), vamos a ver cuál es la transformada de su función integral : Atención a esta pareja de resultados, que serán fundamentales a la hora de resolver ecuaciones diferenciales con coeficientes constantes. T0. 5 Transformada inversa. La transformada inversa de Laplace de una función F(s), es otra función f(x), designada por, tal que cumple:. 6
7 Un teorema asegura que si la transformada inversa de Laplace de una función F(s) es continua, entonces también es única (no depende de ningún parámetro). Al igual que en el caso de la transformada, también se cumple la linealidad: El método más común para hallar la transformada inversa de una función F(s) es mediante la tabla, fijándonos ahora en la segunda columna para hallar la función f(x) de la primera columna, como veremos a continuación en los ejemplos. Van a ser muy utilizados dos recursos que pasamos a comentar. * El método del cuadrado. Se trata de expresar un polinomio de segundo grado, a s 2 + b s + c, en la forma: a(s + k) 2 + h 2. El proceso es muy simple: * El método de las fracciones parciales. Es el mismo método usado en las integrales indefinidas. Toda función en la forma fraccionaria p(s)/q(s), -siendo p(s) y q(s) polinomios tales que el grado de p(s) sea menor que el del q(s)- puede expresarse como una suma de otras fracciones en cuyos denominadores vienen polinomios de grado 1 o cuadráticos elevados a una potencia. Es decir, la suma de: para cada raíz real del polinomio q(s), s = a, de orden de multiplicidad m, más la suma de: para cada raíz compleja del tipo s 2 + bs + c=0, de orden de multiplicidad p.finalmente 7
8 ponemos el mismo denominador en el miembro de la derecha e identificamos los coeficientes de ambos numeradores, lo que nos conduce a un sistema simple que nos permite hallar el valor de todas estas constantes A1, A2,..., B1, B2,..., C1, C2,... Como ejemplo vamos a realizar esta descomposición para la función: Tenemos tres raíces reales: s = 0 (orden de mult. 3), s = 2 (orden 1) y s = -1 (orden 1), entonces: El denominador común del miembro de la derecha es s 3 (s 2 - s - 2), que obviamente coincide con el de la izquierda. Ponemos este denominador común a la derecha, y cancelamos ambos denominadores, lo que nos lleva a: Ahora en esta identidad vamos haciendo sucesivamente s =0, s=2, s=1,... lo que nos va conduciendo a la determinación de los coeficientes. Finalmente tenemos: * Ejemplos de transformadas inversas: Solución: Si nos fijamos en la tabla de transformadas, comprobamos que nos conviene que haya un 2 en el numerador de la fracción, por lo tanto podemos poner: * * * Solución: Podemos utilizar el método de los cuadrados para expresar: 8
9 * * * Solución: El numerador, s + 4, lo podemos expresar como la suma (s + 2) + 2. Entonces tenemos, * * * Solución: Hacemos la descomposición en fracciones simples, A continuación determinamos A y B, en este caso obtenemos: A = 5/3, B = -2/3. Y por lo tanto: * * * Solución: Realizamos la descomposición en fracciones simples, 9
10 cuyos coeficientes son es este caso: A=1/4, B= -1/4 y C =0. Por lo tanto, tenemos: T0. 5 Resolución de ecuaciones diferenciales con coeficientes constantes mediante la transformada de Laplace. Considérese una ecuación lineal con coeficientes constantes en la forma: junto con n "condiciones iniciales" en la forma: Llamemos Entonces, como se ha visto en T0.4, podemos expresar la transformada de la derivada de y(x) así: resultado que vamos a llamar provisionalmente F1(s). Y ahora vamos aplicando de manera recursiva esta misma fórmula de la transformada de la derivada: Ahora bien, todas estas derivadas de y(x), en el punto origen son las condiciones iniciales. La forma de resolver una ecuación diferencial tal como la que hemos expresado anteriormente, con ciertas condiciones iniciales conocidas, es la siguiente: 1) Tomamos transformadas de Laplace en ambos miembros de la ecuación, con lo cual obtenemos una expresión en la forma: f(s, F(s) )= 0 10
11 2) En esta expresión, despejamos F(s) y finalmente tomamos transformadas de Laplace inversas, lo cual nos conduce directamente a la solución buscada. * Ejemplos: Ejemplo 1: Resolver la ecuación diferencial y - 5 y = 0, con la condición inicial y(0)=2. Solución: Comenzamos por hacer las transformadas de Laplace de ambos miembros: La transformada de 0 es 0, la de "y" es F(s), y la de y' es "s F(s) - y(0)", entonces podemos poner: Ahora despejamos F(s) en esta ecuación: (s F(s) - 2) - 5 F(s) = 0 Y finalmente tomamos transformadas inversas en ambos miembros: con lo que llegamos a la solución pedida: y(x) = 2 e 5x. * * * Ejemplo 2: Resolver la ecuación diferencial y + y = sen x; con la condición y(0)=1. Solución: Tomamos transformadas de Laplace en ambos miembros: Finalmente tomamos transformadas inversas: 11
12 * * * Ejemplo 3: Resolver la ecuación diferencial y" + 4 y + 8 y = sen x, con las condiciones iniciales: y(0) = 1, y (0) = 0. Solución: Tomamos transformadas de Laplace en ambos miembros: es decir, Ahora despejamos F(s) y hallamos transformadas inversas: * * * Ejemplo 4: En el circuito RCL de la figura, se tiene R = 2, L = 1 H, C = 0,5 F, V = 50 volt. Las condiciones iniciales con el circuito abierto son : q(0) = 0, i(0) =0. Hallar la intensidad de corriente i(t) cuando se cierra el circuito. Solución: Aplicando la ley de Ohm al circuito RCL cerrado, se tiene: En este caso podemos expresar, con lo que la ley de Ohm nos queda: Si la transformada de i(t) la denotamos como I(s), y recordando que la transformada de 12
13 la integral de i(t) es: podemos tomar transformadas en ambos miembros: y la solución se obtiene de obtener las transformadas inversas: 13
Determinación de la trasformada inversa mediante el uso de las fracciones parciales
3.6. Determinación de la trasformada inversa mediante el uso de las fracciones parciales 95 3.6. Determinación de la trasformada inversa mediante el uso de las fracciones parciales Transformadas de Ecuaciones
CONCEPTOS BASICOS DE LA TRANSFORMADA DE LAPLACE LA TRANSFORMADA DE LAPLACE
LA TRANSFORMADA DE LAPLACE Por cálculo integral sabemos que cuando vamos a determinar una integral impropia de la forma,su desarrollo se obtiene realizando un cambio de variable en el límite superior de
Fundamentos matemáticos. Tema 8 Ecuaciones diferenciales
Grado en Ingeniería agrícola y del medio rural Tema 8 José Barrios García Departamento de Análisis Matemático Universidad de La Laguna [email protected] 2016 Licencia Creative Commons 4.0 Internacional J.
INTEGRACIÓN INDEFINIDA
1. PRIMITIVA DE UNA FUNCIÓN Definición: Sean F(x) y f(x) dos funciones reales definidas en un mismo dominio D. Se dice, entonces, que F(x) es una primitiva de f(x) si se cumple quef'(x) = f(x), x. Dicho
Transformada de Laplace - Conceptos Básicos. e -st f(t)dt. L { f (t) } = F(s) =
Transformada de Laplace - Conceptos Básicos Definición: Sea f (t) una función de t definida para t > 0. La Transformada de Laplace de f(t) se define como: L { f (t) } = F(s) = 0 e -st f(t)dt Algunas Propiedades
Integral indefinida. Integral indefinida es el conjunto de las infinitas primitivas que puede tener una función.
Integral indefinida 1. Integración Integrar es el proceso recíproco del de derivar, es decir, dada una función f(x), busca aquellas funciones F(x) que al ser derivadas conducen a f(x). Se dice, entonces,
UNIDAD 10: ECUACIONES DE SEGUNDO GRADO.
UNIDAD 10: ECUACIONES DE SEGUNDO GRADO. 10.1 Estudio elemental de la ecuación de segundo grado. Expresión general. 10.2 Resolución de ecuaciones de segundo grado completas e incompletas. 10.3 Planteamiento
MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES
MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 5 Curso preparatorio de la prueba de acceso a la universidad para mayores de 25 años curso 2010/11 Nuria Torrado Robles Departamento de Estadística Universidad
CURSO CERO DE MATEMATICAS. Apuntes elaborados por Domingo Pestana Galván. y José Manuel Rodríguez García
INGENIEROS INDUSTRIALES Y DE TELECOMUNICACIONES CURSO CERO DE MATEMATICAS Apuntes elaborados por Domingo Pestana Galván y José Manuel Rodríguez García UNIVERSIDAD CARLOS III DE MADRID Escuela Politécnica
TEMARIO PRESENTACIÓN 7 MÓDULO I 17 EXPRESIONES ALGEBRAICAS 19
TEMARIO PRESENTACIÓN 7 MÓDULO I 17 EXPRESIONES ALGEBRAICAS 19 Introducción 19 Lenguaje común y lenguaje algebraico 22 Actividad 1 (Lenguaje común y lenguaje algebraico) 23 Actividad 2 (Lenguaje común y
Unidad II. Si una función f(x) tiene primitiva, tiene infinitas primitivas, diferenciándose todas ellas en unaconstante.
Unidad II Integral indefinida y métodos de integración. 2.1 Definición de integral indefinida. Integrar es el proceso recíproco del de derivar, es decir, dada una función f(x), busca aquellas funciones
Apellidos: Nombre: para x 1, determina sus asíntotas. 4. Halla el valor de los parámetros m y n para que la función f sea continua en todo.
EXAMEN DE MATEMÁTICAS CONTINUIDAD Y DERIVABILIDAD Apellidos: Nombre: Curso: º Grupo: C Día: 3- II- 6 CURSO 05-6. Halla el dominio de definición y recorrido de las funciones a) f(x)= 9 b) g(x)= 4. Calcula
10. 1 Definición de espacio euclídeo.
ESCUELA TÉCNICA SUPERIOR DE NÁUTICA Y MÁQUINAS NAVALES / NAUTIKAKO ETA ITSASONTZI MAKINETAKO GOI ESKOLA TEKNIKOA MATEMATICAS 10. ESPACIOS EUCLÍDEOS 10. 1 Definición de espacio euclídeo. Producto escalar
ESCUELA TÉCNICA SUPERIOR DE NÁUTICA Y MÁQUINAS NAVALES / NAUTIKAKO ETA ITSASONTZI MAKINETAKO GOI ESKOLA TEKNIKOA NOCIONES PRELIMINARES DE MATEMÁTICAS
ESCUELA TÉCNICA SUPERIOR DE NÁUTICA Y MÁQUINAS NAVALES / NAUTIKAKO ETA ITSASONTZI MAKINETAKO GOI ESKOLA TEKNIKOA NOCIONES PRELIMINARES DE MATEMÁTICAS C. NÚMEROS COMPLEJOS. C.1 Noción de número complejo.
Unidad 2: Ecuaciones, inecuaciones y sistemas.
Unidad 2: Ecuaciones, inecuaciones y sistemas 1 Unidad 2: Ecuaciones, inecuaciones y sistemas. 1.- Factorización de polinomios. M. C. D y m.c.m de polinomios. Un número a es raíz de un polinomio es 0.
SESIÓN 6 INTERPRETACION GEOMETRICA DE LA DERIVADA, REGLA GENERAL PARA DERIVACIÓN, REGLAS PARA DERIVAR FUNCIONES ALGEBRAICAS.
SESIÓN 6 INTERPRETACION GEOMETRICA DE LA DERIVADA, REGLA GENERAL PARA DERIVACIÓN, REGLAS PARA DERIVAR FUNCIONES ALGEBRAICAS. I. CONTENIDOS: 1. Interpretación geométrica de la derivada 2. Regla general
Laplace. Transformada Inversa: Universidad Nacional Autónoma de México. Análisis de Sistemas y Señales. Alumnos:
Universidad Nacional Autónoma de México Universidad Nacional Facultad Autónoma de Ingeniería de México Facultad Análisis de Sistemas Ingeniería y Señales Análisis de Sistemas y Señales Transformada Inversa:
Tema 6: Ecuaciones diferenciales lineales.
Tema 6: Ecuaciones diferenciales lineales Una ecuación diferencial lineal de orden n es una ecuación que se puede escribir de la siguiente forma: a n (x)y (n) (x) + a n 1 (x)y (n 1) (x) + + a 0 (x)y(x)
Ecuaciones de 2º grado
Ecuaciones de 2º grado Una ecuación de segundo grado es toda expresión de la forma: ax 2 + bx +c = 0 con a 0. Resolución de ecuaciones de segundo grado Para resolver ecuaciones de segundo grado utilizamos
sobre un intervalo si para todo de se tiene que. Teorema 1 Sean y dos primitivas de la función en. Entonces,
Integral indefinida Primitiva e integral indefinida. Cálculo de primitivas: métodos de integración. Integración por cambio de variable e integración por partes. Integración de funciones racionales e irracionales.
Capítulo 2 Análisis espectral de señales
Capítulo 2 Análisis espectral de señales Objetivos 1. Se pretende que el alumno repase las herramientas necesarias para el análisis espectral de señales. 2. Que el alumno comprenda el concepto de espectro
Límite de una función
Idea intuitiva de límite Límite de una función El límite de la función f(x) en el punto x 0, es el valor al que se acercan las imágenes (las y) cuando los originales (las x) se acercan al valor x 0. Es
Unidad 3: Razones trigonométricas.
Unidad 3: Razones trigonométricas 1 Unidad 3: Razones trigonométricas. 1.- Medida de ángulos: grados y radianes. Las unidades de medida de ángulos más usuales son el grado sexagesimal y el radián. Se define
Ecuaciones diferenciales de orden superior
CAPÍTULO 4 Ecuaciones diferenciales de orden superior 4.5 Obtención de una ecuación diferencial asta ahora el problema tratado ha sido: Obtener la solución general de una ED lineal homogénea con coeficientes
TRANSFORMADA DE LAPLACE. Definición: Transformada de Laplace. Sea f(t) una función definida para t 0; a la expresión
TRANSFORMADA DE LAPLACE Definición: Transformada de Laplace. Sea f(t) una función definida para t 0; a la expresión L= = Se le llama Transformada de Laplace de la función f(t), si la integral existe. Notación:
Una inecuación es una desigualdad algebraica en la que sus dos miembros aparecen ligados por uno de estos signos:
INECUACIONES. Una inecuación es una desigualdad algebraica en la que sus dos miembros aparecen ligados por uno de estos signos:, se lee" menor que",se lee" menor o igual que",se lee" mayor que",se lee
Transformada de Laplace: Aplicación a vibraciones mecánicas
Transformada de Laplace: Aplicación a vibraciones mecánicas Santiago Gómez Jorge Estudiante de Ingeniería Electrónica Universidad Nacional del Sur, Avda. Alem 1253, B8000CPB Bahía Blanca, Argentina [email protected]
1. dejar a una lado de la igualdad la expresión que contenga una raíz.
1. Resuelve las siguientes ecuaciones reales: Solución x 1 + x = 0 ; 3 x = 3 ; ln(x 1) + 4 = ln 3 Ecuaciones con raíces: No todas las ecuaciones de este tipo son sencillas de resolver, pero podemos intentar
Factorización ecuación identidad condicional término coeficiente monomio binomio trinomio polinomio grado ax3
Factorización Para entender la operación algebraica llamada factorización es preciso repasar los siguientes conceptos: Cualquier expresión que incluya la relación de igualdad (=) se llama ecuación. Una
Fabio Prieto Ingreso 2003
Fabio Prieto Ingreso 00. INECUACIONES CON UNA VARIABLE.. Inecuación lineal Llamaremos desigualdad lineal de una variable a cualquier epresión de la forma: a + b > 0 o bien a + b < 0 o bien a + b 0 o bien
Ejercicios Resueltos
Ejercicios Resueltos Ejercicio 1 La función de transferencia de un sistema de control tiene como expresión: Determinar, aplicando el método de Routh, si el sistema es estable. Para comprobar la estabilidad
Ejercicios de Integrales resueltos
Ejercicios de Integrales resueltos. Resuelve la integral: Ln Ln Llamemos I Ln u du Aplicamos partes: dv v I Ln t t 4 t t t 4 t t 4 t 4 4 4t 4 t t t A t B t A( t) B( t) A ; B 4 t t Ln t Ln t t C Deshaciendo
UNIDAD 2: ECUACIONES E INECUACIONES. SISTEMAS DE ECUACIONES
UNIDAD 2: ECUACIONES E INECUACIONES. SISTEMAS DE ECUACIONES 1. IDENTIDADES Y ECUACIONES 2. ECUACIONES POLINÓMICAS 3. ECUACIONES BICUADRADAS 4. ECUACIONES RACIONALES 5. ECUACIONES IRRACIONALES 6. ECUACIONES
Cálculo de Derivadas
Cálculo de Derivadas Sean a, b y k constantes (números reales) y consideremos a: u y v como funciones. Derivada de una constante Derivada de x Derivada de la función lineal Derivada de una potencia Derivada
Por qué expresar de manera algebraica?
Álgebra 1 Sesión No. 2 Nombre: Fundamentos de álgebra. Parte II. Objetivo: al finalizar la sesión, el estudiante conocerá e identificará las expresiones racionales, las diferentes formas de representar
Curso º ESO. UNIDADES 6 Y 7: EXPRESIONES ALGEBRAICAS Y ECUACIONES Departamento de Matemáticas IES Fray Bartolomé de las Casas de Morón
2º ESO UNIDADES 6 Y 7: EXPRESIONES ALGEBRAICAS Y ECUACIONES Departamento de Matemáticas IES Fray Bartolomé de las Casas de Morón OBJETIVOS CONTENIDOS PROCEDIMIENTOS Lenguaje algebraico. Normas y Traducción
Regla de la Potencia para la Integración
Regla de la Potencia para la Integración Ejercicios. Calcule cada integral y compruebe los resultados derivando 1. Si comparamos con la definición entonces y Si derivamos obtenemos 2. Para que tenga la
Reemplazos Algebraicos. Gabriel Darío Uribe Guerra Universidad de Antioquia. XIII COLOQUIO REGIONAL DE MATEMÁTICAS y III SIMPOSIO DE ESTADÍSTICA.
Reemplazos Algebraicos Gabriel Darío Uribe Guerra Universidad de Antioquia XIII COLOQUIO REGIONAL DE MATEMÁTICAS y III SIMPOSIO DE ESTADÍSTICA. Universidad de Nariño San Juan de Pasto Mayo 2016 1/23 Introducción
* e e Propiedades de la potenciación.
ECUACIONES DIFERENCIALES 1 REPASO DE ALGUNOS CONCEPTOS PREVIOS AL ESTUDIO DE LAS ECUACIONES DIFERENCIALES 1. Cuando hablamos de una función en una variable escribíamos esta relación como y = f(x), esta
Infinito más un número Infinito más infinito. Infinito por infinito. OPERACIONES CON INFINITO Sumas con infinito. Productos con infinito
OPERACIONES CON INFINITO Sumas con infinito Infinito más un número Infinito más infinito Infinito menos infinito Productos con infinito Infinito por un número Infinito por infinito Infinito por cero Cocientes
Derivadas 6 ACTIVIDADES. 1. Página 140. Función f(x) x 2 1: Función g(x) x 3 7: 2. Página Página Página
Derivadas 6 ACTIVIDADES 1. Página 140 Función f(x) x 2 1: Función g(x) x 3 7: 2. Página 140 3. Página 141 4. Página 141 5. Página 142 211 Derivadas 6. Página 142 Las derivadas laterales no existen, por
METODOS DE INTEGRACION IV FRACCIONES PARCIALES
METODOS DE INTEGRACION IV FRACCIONES PARCIALES Una función racional es una función de la forma En la que f(x) y g(x) son polinomios. Si el frado de f(x) es menor que el de g(x), F(x) se denomina fracción
Límite de funciones. Por otra parte se dice que una función es discontínua si para algún (os) valor (es) de x no existe valor de y.
Límite de funciones El concepto de límite se explica y define desde diferentes perspectivas en los libros de cálculo. Se habla por ejemplo del límite de una sucesión (como ya se explicó), o bien del límite
MATEMÁTICAS 2º BACH CCyTECN INTEGRACIÓN INDEFINIDA. Profesor: Fernando Ureña Portero
1. PRIMITIVA DE UNA FUNCIÓN Definición: Sean F(x) y f(x) dos funciones reales definidas en un mismo dominio D. Se dice, entonces, que F(x) es una primitiva de f(x) si se cumple que F'(x) = f(x), x. Dicho
Sistemas de ecuaciones lineales
Sistemas de ecuaciones lineales TIPOS DE SISTEMAS. DISCUSIÓN DE SISTEMAS. Podemos clasificar los sistemas según el número de soluciones: Incompatible. No tiene solución Compatible. Tiene solución. Compatible
Apéndice sobre ecuaciones diferenciales lineales
Apéndice sobre ecuaciones diferenciales lineales Juan-Miguel Gracia 10 de febrero de 2008 Índice 2 Determinante wronskiano. Wronskiano de f 1 (t), f 2 (t),..., f n (t). Derivada de un determinante de funciones.
Operador Diferencial y Ecuaciones Diferenciales
Operador Diferencial y Ecuaciones Diferenciales. Operador Diferencial Un operador es un objeto matemático que convierte una función en otra, por ejemplo, el operador derivada convierte una función en una
Una ecuación puede tener ninguna, una o varias soluciones. Por ejemplo: 5x 9 = 1 es una ecuación con una incógnita con una solución, x = 2
Podemos definir a las ecuaciones como una igualdad entre expresiones algebraicas (encadenamiento de números y letras ligados por operaciones matemáticas diversas),en la que intervienen una o más letras,
Sistemas de ecuaciones lineales dependientes de un parámetro
Vamos a hacer uso del Teorema de Rouché-Frobenius para resolver sistemas de ecuaciones lineales de primer grado. En particular, dedicaremos este artículo a resolver sistemas de ecuaciones lineales que
Capitulo IV - Inecuaciones
Capitulo IV - Inecuaciones Definición: Una inecuación es una desigualdad en las que hay una o más cantidades desconocidas (incógnita) y que sólo se verifica para determinados valores de la incógnita o
Base y Dimensión de un Espacio Vectorial
Base y Dimensión de un Espacio Vectorial 201 6Asturias: Red de Universidades Virtuales Iberoamericanas 1 Índice 1 Qué es un sistema generador?... 4 2 Base de un espacio vectorial... 4 3 Dimensión de un
SISTEMAS DE ECUACIONES LINEALES
SISTEMAS DE ECUACIONES LINEALES Índice: 1.Introducción--------------------------------------------------------------------------------------- 2 2. Ecuaciones lineales------------------------------------------------------------------------------
UNIVERSIDAD DE ORIENTE NÚCLEO DE BOLÍVAR DEPARTAMENTO DE CIENCIAS ÁREA DE MATEMATICA CATEDRA MATEMATICA 4
UNIVERSIDAD DE ORIENTE NÚCLEO DE BOLÍVAR DEPARTAMENTO DE CIENCIAS ÁREA DE MATEMATICA CATEDRA MATEMATICA 4 APLICACIONES DE LAS MATEMATICAS A LOS CIRCUITOS ELECTRICOS (RC, RL, RLC) Profesor: Cristian Castillo
Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 2: Lunes 18 Viernes 22 de Marzo. Contenidos
Cálculo Coordinación de Matemática I MAT021 1 er Semestre de 2013 Semana 2: Lunes 18 Viernes 22 de Marzo Contenidos Clase 1: La Ecuación Cuadrática. Inecuaciones de grado 2, con y sin valor absoluto. Clase
2. Continuidad y derivabilidad. Aplicaciones
Métodos Matemáticos (Curso 2013 2014) Grado en Óptica y Optometría 7 2. Continuidad y derivabilidad. Aplicaciones Límite de una función en un punto Sea una función f(x) definida en el entorno de un punto
ECUACIONES.
. ECUACIONES... Introducción. Recordemos que el valor numérico de un polinomio (y, en general, de cualquier epresión algebraica) se calcula sustituyendo la/s variable/s por números (que, en principio,
Tema 2.- Formas Cuadráticas.
Álgebra. 004 005. Ingenieros Industriales. Departamento de Matemática Aplicada II. Universidad de Sevilla. Tema.- Formas Cuadráticas. Definición y representación matricial. Clasificación de las formas
Inecuaciones: Actividades de recuperación.
Inecuaciones: Actividades de recuperación. 1.- Escribe la inecuación que corresponde a los siguientes enunciados: a) El perímetro de un triángulo equilátero es menor que 4. (x = lado del triángulo) b)
Las operaciones con números irracionales
Las operaciones con números irracionales Antes de empezar a sumar, restar, multiplicar, y realizar cualquier tipo de las operaciones con números irracionales, debemos comprender como extraer, e introducir
Dos inecuaciones se dice que son equivalentes cuando ambas tienen las mismas soluciones.
10. INECUACIONES Definición de inecuación Una inecuación es una desigualdad entre dos expresiones algebraicas. 2x + 3 < 5 ; x 2 5x > 6 ; x x 1 0 Inecuaciones equivalentes Dos inecuaciones se dice que son
CURSO 2013/2014 RESUMEN LÍMITES Y CONTINUIDAD 2, ,61 2,01 4,0401 1,99 3,9601 2,001 4, ,999 3,
RESUMEN LÍMITES Y CONTINUIDAD Límite de una función en un punto El límite de la función f(x) en el punto x 0, es el valor al que se acercan las imágenes (las y) cuando los originales (las x) se acercan
Bloque 1. Aritmética y Álgebra
Bloque 1. Aritmética y Álgebra 12. Sistemas de ecuaciones 1. Sistemas de ecuaciones Un sistema de ecuaciones es un conjunto de dos o más ecuaciones con varias incógnitas que conforman un problema matemático
Solución de Sistemas de Ecuaciones Diferenciales Lineales
Solución de Sistemas de Ecuaciones Diferenciales Lineales Departamento de Matemáticas, CCIR/ITESM 9 de febrero de Índice..Introducción.................................................Ejemplo.................................................3.Ejemplo................................................
Para las ecuaciones diferenciales ordinarias no lineales no existen métodos generales.
Unidad IV: Sistemas continuos (continuación) Objetivo específico: Entender ampliamente el fenómeno del comportamiento de los modelos matemáticos para la resolución de problemas enfocados a las ecuaciones
1 - Ecuaciones. Sistemas de Ecuaciones Mixtos
Nivelación de Matemática MTHA UNLP 1 1 - Ecuaciones. Sistemas de Ecuaciones Mixtos 1. Conjuntos numéricos Los números mas comunes son los llamados NATURALES O ENTEROS POSI- TIVOS: 1,, 3,... Para designar
SISTEMAS DE ECUACIONES
SISTEMAS DE ECUACIONES Ecuación es una igualdad que contiene por lo menos una incógnita, que se representa por medio de una letra, cuyo valor se debe averiguar. Por ejemplo: 3x + 2 = 4 donde debemos calcular
Parciales Matemática CBC Parciales Resueltos - Exapuni.
Parciales Matemática CBC 2012 Parciales Resueltos - Exapuni www.exapuni.com.ar Compilado de primeros parciales del 2012 Parcial 1 1) Sea. Hallar todos los puntos de la forma, tales que la distancia entre
Ecuaciones, inecuaciones y sistemas
Ecuaciones, inecuaciones y sistemas. Matemáticas Aplicadas a las Ciencias Sociales I 1 Ecuaciones, inecuaciones y sistemas Ecuaciones con una incógnita. Ecuación.- Una ecuación es una igualdad de expresiones
4. ANÁLISIS DE FUNCIONES DE UNA VARIABLE
Análisis de funciones de una variable 49 4. ANÁLISIS DE FUNCIONES DE UNA VARIABLE En esta sección realizaremos algunos ejercicios sobre el estudio de funciones de una variable: En la parte final hay ejercicios
DEPARTAMENTO DE MATEMATICAS Y FISICA Matemáticas Discreta
DEPARTAMENTO DE MATEMATICAS Y FISICA Matemáticas Discreta SUCESIONES Y RELACIONES DE RECURRENCIA Esta última sección la dedicamos a presentar el concepto de recurrencia, que esta muy ligado al axioma de
Tema 2: Polinomios, ecuaciones y sistemas de ecuaciones.
Tema 2: Polinomios, ecuaciones y sistemas de ecuaciones. Polinomios Ecuaciones Ecuaciones de primer grado Ecuaciones de segundo grado Ecuaciones polinómicas de grado superior Ecuaciones racionales Ecuaciones
2. Ecuaciones de primer grado: (sencillas, con paréntesis, con denominadores).
Bloque 3. ECUACIONES Y SISTEMAS (En el libro Temas 4 y 5, páginas 63 y 81) 1. Ecuaciones: Definiciones. Reglas de equivalencia. 2. Ecuaciones de primer grado: (sencillas, con paréntesis, con denominadores).
Cálculo I (Grado en Ingeniería Informática) Problemas adicionales resueltos
Cálculo I (Grado en Ingeniería Informática) - Problemas adicionales resueltos Calcula el ĺımite lím ( n + n + n + ) n Racionalizando el numerador, obtenemos L lím ( n + n + n (n + n + ) (n + ) + ) lím
APUNTES DE FUNDAMENTOS DE MATEMATICA. CASO I: Cuando todos los términos de un polinomio tienen un factor común.
FACTORIZACION DE POLINOMIOS. CASO I: Cuando todos los términos de un polinomio tienen un factor común. Cuando se tiene una expresión de dos o más términos algebraicos y si se presenta algún término común,
Algunas Aplicaciones de la Transformada de Laplace
Algunas Aplicaciones de la Transformada de Laplace Dr. Andrés Pérez Escuela de Matemática Facultad de Ciencias Universidad Central de Venezuela 11 de marzo de 2016 A. Pérez Algunas Aplicaciones de la Contenido
Clase 4 Funciones polinomiales y racionales
Clase 4 Instituto de Ciencias Básicas Facultad de Ingeniería Universidad Diego Portales Marzo de 2014 Polinomios Definición Se llama polinomio en x a toda expresión de la forma p(x) = a 0 + a 1x+ +a n
MATEMÁTICAS 1º BACHILLERATO Curso EJERCICIOS RESUELTOS DE INECUACIONES
MATEMÁTICAS 1º BACHILLERATO Curso 9-1 EJERCICIOS RESUELTOS DE INECUACIONES EJERCICIOS RESUELTOS DE INECUACIONES A. Inecuaciones lineales con una incógnita x x1 x3 > 1 3 4 x x1 x3 4( x ) 3( x1) 6( x3) 1
OPERACIONES CON POLINOMIOS
4. 1 UNIDAD 4 OPERACIONES CON POLINOMIOS Objetivo general. Al terminar esta Unidad resolverás ejercicios y problemas en los que apliques las operaciones de suma, resta, multiplicación y división de polinomios.
CAPÍTULO 6 APLICACIONES AL CÁLCULO
CAPÍTULO 6 APLICACIONES AL CÁLCULO 1.- CÁLCULO DE LÍMITES.- CÁLCULO DIFERENCIAL 3.- CÁLCULO INTEGRAL 4.- SERIES NUMÉRICAS 5.- FÓRMULA DE TAYLOR 6.- TRANSFORMADA DE LAPLACE CAPÍTULO 6 13 14 1.- CÁLCULO
Figura Trabajo de las fuerzas eléctricas al desplazar en Δ la carga q.
1.4. Trabajo en un campo eléctrico. Potencial Clases de Electromagnetismo. Ariel Becerra Al desplazar una carga de prueba q en un campo eléctrico, las fuerzas eléctricas realizan un trabajo. Este trabajo
2. Cuál es el valor del cociente de la suma entre la diferencia de los senos de dos ángulos?
1. Qué relaciones ligan las razones trigonométricas de (45º-a) y (45º+a) 2. Cuál es el valor del cociente de la suma entre la diferencia de los senos de dos ángulos? 3. Demostrar la fórmula: 4. Expresar
POLINOMIOS. FACTORIZACIÓN
POLINOMIOS FACTORIZACIÓN JUSTIFICACIÓN Es muy fácil realizar multiplicaciones de números naturales Más dificultad entraña el problema inverso: la factorización Así, realizar la multiplicación 7 es trivial,
DERIVACIÓN DE LAS FUNCIONES ELEMENTALES
DERIVACIÓN DE LAS FUNCIONES ELEMENTALES 2 El procedimiento mediante el cuál se obtiene la derivada de una función se conoce como derivación. Llamaremos funciones elementales a las funciones polinómicas,
Una ecuación de segundo grado con una incógnita es de la forma:
ECUACIONES CUADRÁTICAS CON UNA INCÓGNITA Una ecuación de segundo grado con una incógnita es de la forma: ax 2 + bx + c = 0, en donde a, b y c son constantes, con a IR, b IR y c IR, además a 0 y x es la
1. NUMEROS REALES a. Los Números Reales
1. NUMEROS REALES a. Los Números Reales Los números reales comprenden todo el campo de números que utilizamos en las matemáticas, a excepción de los números complejos que veremos en capítulos superiores.
Ecuaciones de primer grado y de segundo grado
Ecuaciones de primer grado y de segundo grado La forma reducida de una ecuación de primer grado con una incógnita es una igualdad del tipo a b 0, donde a y b son números reales con a 0. Para resolverla
TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS
TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS 1.- POLINOMIOS Recordemos que un monomio es una expresión algebraica (combinación de letras y números) en la que las únicas operaciones que aparecen entre las
Sistem as de ecuaciones lineales
Sistem as de ecuaciones lineales. Concepto, clasificación y notación Un sistema de m ecuaciones lineales con n incógnitas se puede escribir del siguiente modo: a x + a 2 x 2 + a 3 x 3 + + a n x n = b a
Tema 11.- Autovalores y Autovectores.
Álgebra 004-005 Ingenieros Industriales Departamento de Matemática Aplicada II Universidad de Sevilla Tema - Autovalores y Autovectores Definición, propiedades e interpretación geométrica La ecuación característica
Ejercicio 1: Realiza las siguientes divisiones por el método tradicional y por Ruffini: a)
Tema 2: Ecuaciones, Sistemas e Inecuaciones. 2.1 División de polinomios. Regla de Ruffini. Polinomio: Expresión algebraica formada por la suma y/o resta de varios monomios. Terminología: o Grado del polinomio:
Sistemas de ecuaciones lineales
Sistemas de ecuaciones lineales ALBERTO VIGNERON TENORIO Dpto. de Matemáticas Universidad de Cádiz Índice general 1. Sistemas de ecuaciones lineales 1 1.1. Sistemas de ecuaciones lineales. Definiciones..........
4.1. Polinomios y teoría de ecuaciones
CAPÍTULO 4 Polinomios y teoría de ecuaciones 4.1. Polinomios y teoría de ecuaciones Un polinomio real en x, o simplemente polinomio en x es una expresión algebraica de la forma a n x n + a n 1 x n 1 +
Esta expresión polinómica puede expresarse como una expresión matricial de la forma; a 11 a 12 a 1n x 1 x 2 q(x 1, x 2,, x n ) = (x 1, x 2,, x n )
Tema 3 Formas cuadráticas. 3.1. Definición y expresión matricial Definición 3.1.1. Una forma cuadrática sobre R es una aplicación q : R n R que a cada vector x = (x 1, x 2,, x n ) R n le hace corresponder
Enteros (Z):..., -3, -2, -1, 0, 1, 2, 3,... Números enteros (positivos o negativos), sin decimales. Incluye a los naturales.
Tema 1: Números Reales 1.1 Conjunto de los números Naturales (N): 0, 1, 2, 3. Números positivos sin decimales. Sirven para contar. Enteros (Z):..., -3, -2, -1, 0, 1, 2, 3,... Números enteros (positivos
TEMA 1. Números Reales. Teoría. Matemáticas
1 1.- Los números reales Cuáles son los números reales? Los números reales son todos los números racionales y todos los números irracionales. El conjunto de los números reales se designa con el símbolo
DERIVADAS PARCIALES Y APLICACIONES
CAPITULO IV CALCULO II 4.1 DEFINICIÓN DERIVADAS PARCIALES Y APLICACIONES En cálculo una derivada parcial de una función de diversas variables es su derivada respecto a una de esas variables con las otras
EXPRESIONES ALGEBRAICAS EXPRESIONES ALGEBRAICAS Y POLINOMIOS
EXPRESIONES ALGEBRAICAS Trabajar en álgebra consiste en manejar relaciones numéricas en las que una o más cantidades son desconocidas. Estas cantidades se llaman VARIABLES, INCÓGNITAS o INDETERMINADAS
El polinomio. es divisible por x + 1, y. Comprobar utilizando el valor numérico, que el polinomio calcula con una división otro factor del polinomio.
1 P() 8 El polinomio es el producto de tres factores, siendo dos de ellos los correspondientes a las raíces =1 = - Halla mediante dos divisiones consecutivas por el método de Ruffini el tercer factor Comprobar
2 Unidad II: Ecuaciones Diferenciales de Orden Superior
ITESM, Campus Monterrey Departamento de Matemáticas MA-41: Ecuaciones Diferenciales Lectura # Profesor: Victor Segura Flores Unidad II: Ecuaciones Diferenciales de Orden Superior.1 Ecuaciones Diferenciales
