CONTROL DE FRECUENCIA Y POTENCIA ACTIVA

Documentos relacionados
CONTROL DE FRECUENCIA Y POTENCIA ACTIVA

CONTROL DE FRECUENCIA Y POTENCIA ACTIVA

11. CONTROL DE FRECUENCIA Y DE POTENCIA ACTIVA

MODELAMIENTO DE LOS SISTEMAS DE CONTROL DE LAS UNIDADES DE GENERACIÓN DE LAS CENTRALES SAN CARLOS Y TERMOCENTRO - ISAGEN

Que mediante Decreto Supremo N de 2 de marzo de 2001, se aprobó el Reglamento de Operación del Mercado Eléctrico (ROME).

PROPUESTA DE REQUERIMIENTOS TÉCNICOS PARA LA INTEGRACIÓN DE FUENTES DE GENERACIÓN NO SÍNCRONA AL SIN

[ANEXO 4] AJUSTE DE REGULADORES DE TURBINAS HIDRÁULICAS CON TÉCNICAS DE ESTIMACIÓN DE PARÁMETROS [13]

1. Definición y tipos de estabilidad

Máquinas Sincrónicas. EL Conversión de la Energía y Sistemas Eléctricos

ANÁLISIS DE ESTABILIDAD DEL SISTEMA ELÉCTRICO DE LA PAZ EN CONDICIONES DE AISLAMIENTO DEL SISTEMA INTERCONECTADO NACIONAL

PROGRAMA RESUMIDO DE CURSOS

GUÍA V : MÁQUINAS DE CORRIENTE CONTINUA

INSTITUTO POLITÉCNICO NACIONAL

9.3. Turbinas a gas y sus sistemas de regulación de velocidad. Los controles de arranque y parada, sólo toman el control en esas etapas.

SERVICIOS COMPLEMENTARIOS EXPERIENCIA FRANCESA

UD. 4 MAQUINAS ELECTRICAS ELECTROTECNIA APLICADA A LA INGENIERIA MECÁNICA

Análisis de la estabilidad del

Integración de la Generación Eólica en el SIC Visión del Operador del Sistema. (Junio 2010) Eduardo Ricke Director de Operación y Peajes

R E D E L É C T R I C A D E ESPA Ñ A

Anexo 2.3. Resolución de la Ecuación de Oscilación

7. Experiencia Internacional

MODELO DE REGULACIÓN DE FRECUENCIA ÓPTIMO PARA SISTEMAS ELÉCTRICOS INSULARES (CASO REPUBLICA DOMINICANA) E. A. JIMÉNEZ* V. R. ARIAS I.

Impacto de la Generación Eólica en las Redes de Transmisión del SIC (Junio 2011) Eduardo Ricke Director de Operación y Peajes

ANEXO 1 UNIDAD 1 ESMERALDA

DETERMINACIÓN DE MARGEN DE SEGURIDAD PARA LA OPERACIÓN Procedimiento DO

ANEXOS UNIDAD 1 SAN FRANCISCO Tabla 1: Valores base para cálculos por unidad en el generador Dato Descripción Valor Dato Descripción Valor

Ejercicios III SISTEMAS AUTOMÁTICOS Y DE CONTROL

Capítulo 5: Estabilidad Transitoria

OBJETIVO DEL ACTUADOR. Regular el movimiento de un cuerpo que se debe trasladar controladamente de una posición a otra.

III Examen Parcial Máquinas Eléctricas I (06/07/04)

Presentación del Centro de Control Eléctrico. Noviembre del 2012

Elementos Rotativos. Máquinas Asincrónicas (inducción)

En General, la cantidad de energía eólica que puede ser conectada en un sistema eléctrico depende de varios factores como:

A.1. Central Darío Valencia Samper Unidad 1

Problema 1 (60 minutos - 5 puntos)

R ED E L É C T R I C A D E ESPA Ñ A

Almacenamiento de Energía Parte 2. El Sistema de Energía Eléctrica

Control de potencia-frecuencia en sistemas con elevada penetración eólica. TECHWINDGRID 11 - Madrid, 14 de diciembre Miguel García-Gracia

Dinámica del Robot. UCR ECCI CI-2657 Robótica Prof. M.Sc. Kryscia Daviana Ramírez Benavides

Maestría en Sistemas Eléctricos de Potencia PROGRAMAS RESUMIDOS DE LOS CURSOS

Unidad V Respuesta de los sistemas de control

INGENIERÍA ENERGÉTICA

C G. Jerez* J. Toledo* A. Díaz**

Experiencia del uso del sincronismo en la cogeneración de energía WILLIAM ARCESIO SILVA

EJERCICIOS DE MÁQUINAS DE CORRIENTE CONTINUA

ANEXO - RESOLUCIÓN AE Nº 562/2010 TRÁMITE N 725 La Paz, 12 de noviembre de 2010 NORMA OPERATIVA Nº 6 INSTRUCTIVO DE RESTITUCIÓN Nº 3

Módulo 3. Modelado del recurso eólico y solar, sus ciclos diarios, anuales y su complementariedad.

DIPLOMADO EN FUNDAMENTOS DE PLANIFICACION Y ANALISIS DE SISTEMAS ELECTRICOS DE POTENCIA

2.1 La energía eléctrica

Desafíos del Sector Eléctrico Boliviano (Parte I)

Simulación del control Potencia-Frecuencia en un Sistema Eléctrico de Potencia en Matlab

FUNCIONAMIENTO BÁSIC0 SISTEMA ELÉCTRICO ARGENTINO OFERTA VÍNCULO DEMANDA

Todos los derechos reservados para XM S.A. E.S.P.

Almacenamiento de Energía Parte 4. Aspectos de integración de Energías Variables. Alcance y objetivo

INFORME PRELIMINAR. Salida total del Sistema Eléctrico Nacional. Sábado 01 de julio del 2017

CONTROL AUTOMATICO PARA LA REGULACION DE FRECUENCIA EN LAS CENTRALES TERMICAS DE ELECTROGUAYAS

REPORTE FINAL DE INCIDENCIAS

Capítulo 2 Sistemas Multi-Máquinas -Equivalentes-

ANEXO 3. Procedimiento Técnico N 21 Reserva Rotante Para Regulación Primaria de Frecuencia

Integración fuentes renovables no convencionales en la operación del Sistema Interconectado Nacional

ESTUDIOS ELÉCTRICOS REQUERIDOS A GENERACIÓN RENOVABLE NO CONVENCIONAL PARA UNA INTERCONEXIÓN SEGURA Y EN CUMPLIMIENTO A LAS REGULACIONES

ANEXO TÉCNICO: Desempeño del Control de Frecuencia

Control de potencia-frecuencia. October 26, 2009

NORMA DE COMPETENCIA LABORAL

PREGUNTAS EOLICA 2014

INDICE. Capitulo 1. INTRODUCCIÓN. Capitulo 2. GENERACIÓN DISTRIBUIDA. Pag.

La versión digital de esta tesis está protegida por la Ley de Derechos de Autor del Ecuador.

EL 4001 Conversión de la Energía y Sistemas Eléctricos

4 to. Experiencia en Uruguay en la integración de importante cantidad de generación eólica. CONGRESO INTERNACIONAL Supervisión del Servicio Eléctrico

ANEXO - RESOLUCIÓN AE Nº 562/2010 TRÁMITE N 725 La Paz, 12 de noviembre de 2010 NORMA OPERATIVA N 6 INSTRUCTIVO DE RESTITUCIÓN N 1

Catálogo General de Cursos Campus Virtual del CENACE

Todos los derechos reservados para XM S.A.E.S.P.

DETERMINACIÓN DEL CAMPO ELECTROMAGNETICO ALREDEDOR DE UNA LÍNEA DE TRANSMISIÓN ÁEREA DE 230 kv

CAPITULO 1. Métodos para controlar la velocidad de un motor de inducción. El desarrollo de sistemas para controlar la velocidad en motores de

Metodología para el cálculo de los requerimientos de reserva de regulación y reserva rodante en el Sistema Interconectado Nacional

MODOS O ACCIONES DEL CONTROLADOR

SINTONIZACIÓN DE UN CONTROLADOR PID USANDO PARTICLE SWARM OPTIMIZATION PARA EL AGC DE UN SISTEMA ELÉCTRICO MULTIAREA. por. Rubén Lliuyacc Blas

2. PROCEDIMIENTO PARA LA OPERACIÓN DEL SISTEMA ELÉCTRICO.

LABORATORIO DE INSTRUMENTACIÓN INDUSTRIAL

(s+2) s(s+1)(s+1+j)(s+1-j) Accionamiento Hidráulico

CAPÍTULO 3 OPERACIÓN DE LOS SISTEMAS DE POTENCIA. 3.1 Estado de la operación

Propuesta de modificación código de conexión para la incorporación del recurso eólico Orden de Consultoría UPME

La regulación de la operación en Colombia

DESARROLLO DEL MERCADO ELECTRICO MAYORISTA BOLIVIANO

3.9 PROGRAMAS DE ESTUDIO DE LA ESPECIALIDAD

5 ESTABILIDAD TRANSITORIA EN EL SIN

ELECTRÓNICA DE POTENCIA

Modelos Dinámicos (UDM) Arranque de Generadores Estabilidad Transitoria Estimación de Parámetros Transitorios Electromagnéticos

Programa para el Trazado de Curvas Características en Régimen Estacionario de Máquina de Inducción CurvasREMI: Validación

Metodología de diseño de Sistemas de Control

Reporte Semanal del Mercado Eléctrico Mayorista

El Despacho Económico de la Generación y el Mercado Eléctrico Mayorista

ANÁLISIS DE LOS TRANSITORIOS ELECTROMECÁNICOS EN UNA PLANTA DE GENERACIÓN

FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA Carrera de Ingeniería Electrónica y Control LABORATORIO DE INSTRUMENTACIÓN INDUSTRIAL PRÁCTICA N 9

Antes de imprimir este documento piense en el medio ambiente

Capítulo 4: Ecuaciones dinámicas del conjunto motor-carga

ANEXO DEFINICION DE LAS PRUEBAS AUTORIZADAS PARA DESVIARSE DESCRIPCIÓN CAUSA AUTORIZADA

Transcripción:

CONTROL DE FRECUENCIA Y POTENCIA ACTIVA Índice.- Introducción 2.- Modelo del Control de Frecuencia 3.- Regulación Primaria de Frecuencia 4.- Control Automático de Generación

Índice.- Introducción 2.- Modelo del Control de Frecuencia 3.- Regulación Primaria de Frecuencia 4.- Control Automático de Generación Variación de la Demanda Demanada del SIN (MW) 30 800 900 750 25 700 700 20 600 Días Demanda (MW) 800 500 650 600 5 550 400 0 300 30 500 450 20 0 days 5 0 hours 5 20 5 400 5 0 Horas 5 20 Demanda del SIN Enero 2008 2

Variación de la Demanda Curva Promedio Semanal - Año 2008 900.00 800.00 MW 700.00 600.00 500.00 400.00 300.00 0 20 40 60 80 00 20 40 60 80 Horas Demanda Semanal Distribución Actual Distribución 3 bloques - Propuesto Distribución 4 bloques - Propuesto Demanda del SIN Enero 2008 Equilibrio entre la Demanda y la Generación Valvula/Inyector Vapor/Agua Generador Turbina Pm G Pe Carga PL Gobernador Velocidad Sistema Generador Carga Aislada Balance de Energía en un Sistema Eléctrico Un sistema opera en régimen permanente, cuando la potencia mecánica entrante al sistema desde las turbinas es igual a la potencia eléctrica consumida por las cargas, descontando las pérdidas. 3

El Generador Sincrónico como Regulador de Potencia Elementos principales del generador síncrono en el control de frecuencia Regulación Primaria, Secundaria y Terciaria El control de frecuencia en el sistema eléctrico interconectado debe conseguir que: Se mantenga el equilibrio entre generación y demanda Se mantenga la frecuencia de referencia en el sistema Se cumplan los compromisos de intercambio de energía con las áreas vecinas Se mantenga la suficiente energía de reserva Para cumplir estos objetivos, el marco regulatorio debe organizar el funcionamiento del sistema eléctrico para que su operación corresponda a un mercado de energía competitivo. Y el control de frecuencia-potencia se organiza en tres niveles: primario, secundario y terciario. 4

Regulación Primaria, Secundaria y Terciaria El control primario, se presenta de manera inmediata luego de un desequilibrio entre la generación y la demanda, operando en un margen de tiempo de entre 2 y 20 segundos. Actuá de forma local en cada generador síncrono, atendiendo a la velocidad de giro del eje. La rapidez de este control está limitada por la propia inercia de los generadores. El control secundario, opera en un margen de tiempo de entre 20 segundos y 2 minutos. Actúa en el ámbito del área de control, atendiendo a la frecuencia y al intercambio de potencia con las áreas vecinas. El control terciario, opera en un margen de tiempo superior a 0 minutos. Actúa en el ámbito de un sistema eléctrico extenso, buscando un reparto de cargas optimizado que asegure suficientes reservas de energía. Índice.- Introducción 2.- Modelo del Control de Frecuencia 3.- Regulación Primaria de Frecuencia 4.- Control Automático de Generación 5

Modelo Generador - Carga El conjunto eje - turbina de un generador sincrónico gira sometido a dos pares opuestos: el par mecánico Tm aportado desde la turbina tiende a acelerar el eje, mientras el par electromagnético Te ejercido en el entrehierro del generador tiende a frenarlo. El diagrama de bloques que representa el sistema generador carga, considera un tiempo de arranque mecánico (M = 2H) y una constante de amortiguamiento de la carga (D), que es una constante que relaciona la variación de frecuencia con el incremento de potencia debido a ella. Diagrama de bloques del generador/carga Modelo del Primotor El primotor que impulsa un generador puede ser una turbina de vapor o una hidroturbina. El modelo del primotor debe relacionar la posición de la válvula que regula el flujo de vapor o agua y la potencia mecánica de salida de la turbina. P G primotor ( s ) = Central térmica de vapor sin recalentamiento GT ( s ) = T s + Central térmica de vapor con varias etapas GT ( s ) = válvula PM RC s + T s + RC s + Central hidroeléctrica - Turbina hidráulica GT ( s ) = 2 H s H s + 6

Regulador de Velocidad Isócrono El control de velocidad actúa con la señal de error de la velocidad, generando una señal de control que modifica la potencia mecánica de la turbina en la central. Ante un error negativo de la frecuencia, el regulador aumenta la potencia mecánica aplicada sobre el eje, lo cual tiende a reducir el error de frecuencia. El efecto integrador del regulador hace que el régimen permanente se alcance cuando el error de frecuencia es cero. Esquema del Regulador Isócrono Regulador con característica frecuencia-potencia negativa Para permitir que varios generadores participen en el control primario de frecuencia dentro de un mismo sistema, se aplica en cada uno de ellos una característica frecuencia-potencia en régimen permanente negativa. La constante R es la que determina la característica del regulador en régimen permanente. La constante R se conoce como estatismo de un generador, y es igual a la relación entre el incremento relativo de velocidad Δωr y el incremento relativo de potencia de salida ΔPm Regulador Primario con Estatismo 7

Estatismo Permanente Potencia Velocidad Regulación Frecuencia El estatismo permanente (R) se determina de la siguiente manera: ω ω FL %R = NL ωo Característica Gobernador Velocidad-Estatismo 00 del Estatismo Permanente El estatismo puede expresarse en valores unitarios o porcentuales. Por ejemplo, un estatismo del 5% significa que un incremento de frecuencia del 5% provoca un incremento del 00% en la apertura de la válvula y en la potencia de salida. Respuesta dinámica de un generador con estatismo 8

Generadores en Paralelo Si dos ó mas generadores que cuentan con estatismo permanente en sus gobernadores son conectados a un SEP, ellos tendrán una única frecuencia y compartirán la responsabilidad de estabilizar el sistema ante una variación en la carga. Para garantizar un comportamiento igual de la demanda en proporciones de las especificaciones nominales de las maquinas, es evidente que la característica de velocidad-estatismo deben ser idénticas. Índice.- Introducción 2.- Modelo del Control de Frecuencia 3.- Regulación Primaria de Frecuencia 4.- Control Automático de Generación 9

Sistema Generador - Carga Aislada, Unidad Huaji Según la información del CNDC, del sistema eléctrico actualizado a Enero 2008, la representación lineal del regulador de velocidad (Gobernador) de la unidad hidroeléctrica Huaji del sistema hidroeléctrico de Zongo, es por medio del modelo estandarizado IEEEG2. El modelo IEEEG2 del gobernador asociado al sistema hidráulico lineal, es el siguiente: Modelo IEEEG2 del Regulador de Velocidad Sistema Generador - Carga Aislada, Unidad Huaji Utilizando la herramienta computacional MATLAB/SIMULINK, se puede simular el comportamiento de la unidad Huaji suministrando energía amodelo una DE carga aislada produce un incremento en la TURBINA HIDRAULICA cuando Y REGULADORse DE VELOCIDAD "IEEEG2" carga. SIMULACION: MAQUINA ABASTECIENDO UNA CARGA AISLADA Potencia de Referencia 2.2s+ 25 0.478s2 +9.6s+ Ganancia Gobernado Servomotor /R Gobernador IEEEG2 0.5 Variación de la Carga -0.4s+ 0.2s+ 7.36s+0.5 Sistema Hidraulico Penstock/Turbina Sistema Electrico-Mecánico Generador/Carga (+u)*50 Frecuencia Base -K- Respuesta Frecuencia y Potencia Potencia Base Sistema Generador - Barra Infinita, Unidad Hidroeléctrica Huaji 0

Respuesta a un incremento de Carga Sistema Generador Carga Aislada, Unidad Huaji FRECUENCIA DEL SISTEMA Frecuencia [Hz] 50 49 X: 20.0 Y: 49.02 48 47 46 0 5 0 5 Tiempo [s] 20 25 30 20 25 30 POTENCIA MECÁNICA 8 Potencia [MW] 6 4 2 0 8 6 0 5 0 5 Tiempo [s] Sistema de Interconexión de dos Áreas Cada área es representada mediante una fuente de tensión interna detrás de una reactancia equivalente. El flujo de potencia activa a través de la línea de unión es: Linealizando alrededor del punto de equilibrio inicial definido por δo y δ2o, Esquema de un sistema con dos áreas

Respuesta a un incremento de Carga Sistema Generador Carga Aislada, Unidad Huaji Sistema de Regulación Primaria de dos Áreas Eléctricas Regulación Primaria del sistema eléctrico de La Paz conformado por dos áreas Hipótesis del estudio El sistema eléctrico de La Paz o Sistema Norte puede ser representado a través de dos áreas eléctricas conformadas por las instalaciones pertenecientes a las empresas de generación COBEE e HB que conforman el parque generador del Sistema Norte. Considerando que la producción de HB, cubre la demanda de los yungas que es aproximadamente de 5 MW y la demanda de La Paz, que retira energía del SIN a través de Electropaz en el nodo Kenko. El par sincronizante de la línea Pichu Kenko, se determinara considerando al nodo Kenko como una barra infinita, para una potencia inyectada en el nodo Kenko de 75 MW con f.p. de 0.95, valor admitido en las condiciones de desempeño mínimo del SIN. 2

Regulación Primaria del sistema eléctrico de La Paz conformado por dos áreas SIMULACION: SISTEMA DE DOS ÁREAS CON REGULACIÓN PRIMARIA SISTEMA NORTE - COBEE Y HB Potencia de Referencia HB Valvula de Distribución Control Proporcional -K- Valvula Piloto s -K- Control Integral s -K- Ymin Variación de la Carga HB Servomotor Principal Ymax s -K- /Tp -K- /Tdv -.268s+ s /Tg (+u)*50 0.634s+ 2.448s+2 Sistema Hidraulico Penstock/Turbina HB Sistema Electrico-Mecánico Generador/Carga HB Frecuencia Base HB 00 0.0s 0.05s+ Respuesta Frecuencia y Potencia HB Potencia Base HB Control Derivativo -KEstatismo Permanente HB Respuesta Frecuencia y Potencia de Transferencia Área Norte 2.2s+ -K0.478s2 +9.6s+ Estatismo Servomotor Permanente COBEE Gobernador IEEEG2 Frecuencia Base LP Potencia Transportada LT Chuquiaguillo - Kenko Variación de la Carga COBEE Potencia de Referencia COBEE f(u) 00 Potencia Base LP -0.4s+ 0.2s+ 9.788s+2 Sistema Hidraulico Penstock/Turbina COBEE Sistema Electrico-Mecánico Generador/Carga COBEE s -KPar Sinconizante LT Chuquiaguillo - Kenko (+u)*50 Frecuencia Base COBEE 00 Respuesta Frecuencia y Potencia COBEE Potencia Base COBEE Representación delsistema Eléctrico de La Paz Respuesta de la Frecuencia del Sistema Norte a causa de la pérdida de 4 MW FRECUENCIA DEL SISTEMA 50. 50.05 50 Frecuencia (Hz) 49.95 X: 90.26 Y: 49.89 49.9 49.85 49.8 49.75 49.7 Datos Registrados (Medidos) Datos de Simulación en computadora 49.65 49.6 0 0 20 30 40 50 Tiempo (s) 60 70 80 90 00 3

Respuesta de Frecuencia y Potencia en la línea de Interconexión FRECUENCIA DEL SISTEMA Frecuencia (Hz) 50 49.9 X: 490.5 Y: 49.9 49.8 49.7 49.6 0 50 00 50 200 250 Tiempo (s) 300 350 400 450 500 400 450 500 TRANSFERENCIA DE LA LÍNEA PICHU - KENKO 78 Potencia (MW) 77 76 75 74 73 0 50 00 50 200 250 Tiempo (s) 300 350 Análisis de la desviación de la Frecuencia en Régimen Permanente La desviación de la frecuencia en régimen permanente se determina en base a la aplicación del teorema de valor final a la función de transferencia del sistema Gobernador Turbina. Generalizando la expresión anterior para n generadores en paralelo, A partir de este desarrollo se define el parámetro β llamado característica de respuesta en frecuencia del área (AFCR) o respuesta estática en frecuencia del área. 4

Análisis de la desviación del flujo de potencia en sistemas interconectados en Régimen Permanente El error de flujo de potencia entre áreas en régimen permanente es: Índice.- Introducción 2.- Modelo del Control de Frecuencia 3.- Regulación Primaria de Frecuencia 5.- Control Automático de Generación 5

Introducción Los objetivos principales del control automático de la generación (Automatic generation control / AGC) son la regulación de la frecuencia al valor nominal especificado y mantener el intercambio de potencia entre las áreas al valor programado, mediante el ajuste de la potencia de salida de los generadores seleccionados. Controlador P-f fi Pci Vapor Válvula de admisión Mecanismo de control de la válvula Generador PGi+j QGi Máquina motriz fi Sensor de frecuencia Barras del Generador RED Objetivos del Control Automático de Generación Operación económica del sistema Seguridad operativa Calidad de frecuencia y voltaje Estaciones de Trabajo de Sistema SCADA y de aplicativos. Sistemas de comunicación pública, red privada y celulares. Bases de datos para aplicativos y SCADA Servidores principales y de respaldo 6

33 Centro Nacional de Despacho de Carga La Ley N 604 de 2 de diciembre responsabilidades de los diferentes agentes: de 994, definió las CENTRO NACIONAL DE DESPACHO Operación Integrada recursos del SIN Operación segura, confiable y económica Frecuencia del SIN Tensión STI TRANSMISORES Supervisión activos propios o delegados Ejecución de maniobras Calidad STI Disponibilidad de activos GENERADORES Operación de sus plantas generadoras Cumplir despacho DISTRIBUIDORES Planeación y operación activos propios o delegados Calidad servicio 34 Centro de Despacho de Carga (CDC) Reportes Redespacho Redespacho Maniobras F, V Análisis Elec. Supervisión y Control 34 de 47 7

Análisis del Control Automático de Generación Para hacer el error de la frecuencia igual a cero se debe incluir un control integral al gobernador que ajuste el valor de la potencia de entrada del generador. El Error de Área de Control (ACE) que tiene una componente proporcional al error en la frecuencia del área y otra componente proporcional al error de los intercambios de potencia comprometidos con esa área. Esta señal de error se introduce después a un integrador para garantizar que se van a variar las potencias de entrada a los generadores hasta que el error del área sea cero. El ACE se define como Sistema Troncal de Interconexión (STI) 8

Sistema Interconectado Nacional Región Oriental Región Norte Región Sucre Guaracachi Aranjuez Mazo Cruz Urubo 20 MW 30 MW 30 MW Karachipampa Región Sur Región Oruro 40 MW Potosi Sud 0 MW Carrasco Vinto San José Punutuma Sucre Región Central Santivañez 9