MODOS O ACCIONES DEL CONTROLADOR
|
|
|
- Amparo Parra Córdoba
- hace 8 años
- Vistas:
Transcripción
1 MODOS O ACCIONES DEL CONTROLADOR El modo o acción del controlador es la relación que existe entre el error e(t) que es la señal de entrada y la orden al actuador u(t), señal de salida. O sea es como responde o acciona el controlador frente a la existencia de un error. u (t) = f (e) Independientemente de cual sea la tecnología utilizada en la construcción del controlador: mecánico, neumático, electrónico o a microprocesadores, se pueden elegir distintos modos o acciones de control estándar. Los modos de control (continuos) que se utilizan en las aplicaciones resultan de combinar hasta 3 modos básicos o fundamentales: proporcional (P), integral (I), derivativo (D)
2 a) MODO PROPORCIONAL (P): Salida al actuador proporcional al error y(t) = Kp.e O sea es una acción de control proporcional a la desviación del valor medido de la variable controlada respecto al punto de consigna. b) MODO INTEGRAL (I) Salida al actuador proporcional a la integral del error (o sea al error acumulado) Para facilitar la suma cuando se usa el P+ I, se suele introducir el tiempo integral: Ti definido por: K i = Kp / Ti. El modo I es una acción lenta que se va desarrollando con el transcurso del tiempo, como se comprende si recordamos que la integral es el área bajo la curva e(t). c) MODO DERIVATIVO (D) Salida proporcional a la derivada del error o sea proporcional a la velocidad de variación del error.
3 Td: tiempo derivativo La acción D se anula cuando el error alcanza un valor constante o estacionario. Usualmente los controladores industriales usan los modos: P, P+I, P+D y P+I+D, y cada uno tiene propiedades características: 1) La acción proporcional P sóla varía instantánea y simultáneamente con el error. En particular alcanza un valor fijo o estacionario cuando el error es constante. La acción proporcional presenta el problema del error en estado estacionario cuando hay variaciones de carga. También se dice que produce un error de off-set. EJEMPLO: En el control de nivel por flotador y palanca de la fig. siguiente hay una acción de control proporcional.
4 Partimos de una posición de equilibrio (estado estacionario) en que debe ser: Q in = Q out siendo Q in y Q out caudales de entrada y salida, palanca horizontal y con el nivel en el valor deseado h o (set point).
5 Si la carga (Q out caudal de salida) aumenta, entonces para alcanzar una nueva posición de equilibrio (estado estacionario) tiene que aumentar la entrada (Q in ) y para ello la apertura de la válvula debe aumentar, y eso implica que el nuevo nivel de equilibrio h debe estar por debajo del inicial o valor deseado. Esa diferencia de niveles es lo que se conoce como error de estado estacionario En la expresión: u (t) = Kp.e el factor Kp se llama ganancia proporcional, (en la bibliografía a veces aparece como: Kc) Es un parámetro que se puede variar (ajuste del controlador) para mejorar la respuesta del controlador. En la fig. siguiente se muestra la variación temporal de la variable controlada (curvas a color) después de un salto en escalón unitario en el punto de consigna (en negro) cuando aumenta la ganancia del controlador Kp sucesivamente a valores: 2, 5, 10 y 15. Se observa que al ir aumentando Kp : 1. El error en estado estacionario disminuye. 2. El proceso responde más rápidamente. 3. La sobre-oscilación (o sobre paso) y las oscilaciones aumentan.
6
7 2) Acción proporcional + integral: PI La salida del controlador es: La combinación: P+ I elimina el error de off-set. Esto es porque el modo I tiene en cuenta la historia pasada del error y se estabiliza sólo cuando el error se hace cero Cuando Ti crece el efecto de I disminuye, en el caso límite en que T i tiende a (es) infinito se acerca (corresponde) al control P sólo Las propiedades de la acción integral se muestran en la fig. siguiente en la que se puede ver la respuesta temporal de un controlador PI a un cambio en escalón del set-point. La ganancia proporcional Kp se mantuvo constante y se varió sólo el tiempo integral.
8 Se observa que: 1. El error en estado estacionario se elimina. 2. Cuando T i disminuye (mayor acción integral) la respuesta se hace cada vez más oscilatoria, pudiendo en último término llegar a inestabilizar el sistema.
9 3) La acción proporcional + derivativa PD. La salida del controlador es: La acción D detecta la velocidad de cambio del error por lo que da al PD cierto carácter de previsión: el modo PD es de acción rápida, de alta sensibilidad y produce una corrección significativa antes que el error se vuelva muy grande (efecto de amortiguamiento). La acción D no elimina el error de off-set, pero por su acción de amortiguamiento reduce el sobre-pico lo que permite valores de Kp altos lo que disminuye el error de off-set como se vio. En la fig. sgte. se puede ver la simulación de un controlador PD con una entrada escalón. Las oscilaciones se amortiguan a medida que T d aumenta la salida se va aproximando cada vez más a una exponencial.
10 Un ejemplo de aplicación del PD puede ser en el control de temperatura: debido a la inercia térmica del sistema es importante saber hacia dónde se está evolucionando. La acción de calentamiento tiene que pararse a tiempo. Una conducción lenta de calor puede significar que, incluso después de desconectar el sistema de calentamiento, la temperatura continúe aumentando durante mucho tiempo y durante este período la temperatura puede sobrepasar considerablemente su punto de consigna.
11 4) La combinación PID (proporcional + integral + derivativo) reúne las ventajas de los tres modos. La señal de salida es ahora: Las tres constantes son independientes pueden ajustarse separadamente. El controlador PID se puede representar con el siguiente diagrama de bloques con la notación: Kc para la constante proporcional en vez de Kp, (o sea Kp = Kc) :
12 El ajuste o configuración de un controlador consiste en elegir o determinar: Kc, T i y T d, y ello se hace en función de las características de cada lazo particular y con el objetivo de mejorar u optimizar la estabilidad, la velocidad de respuesta del sistema a la presencia de perturbaciones(compensación de sus efectos) y al error de off-set. La tabla siguiente da una idea de cómo varían la estabilidad, la velocidad y el error en estado estacionario cuando se modifican los parámetros del controlador.
13 Esta tabla es sólo una referencia aproximada. Kp aumenta Ti disminuye Td aumenta Estabilidad se reduce disminuye aumenta Velocidad aumenta aumenta aumenta Error est. estacionario no eliminado eliminado no eliminado
14 FUNCION DE TRANSFERENCIA DEL BLOQUE CONTROLADOR: PID Para pasar al dominio de Laplace consideramos las variaciones respecto al estado estacionario (de equilibrio): Usando las propiedades de la T. de Laplace la función de transferencia del controlador PID será:
Acciones básicas de control Clasificación de los controles automáticos
Acciones básicas de control Clasificación de los controles automáticos 1. Control de dos posiciones o de si-no 2. Controles proporcionales (P) 3. Controles proporcionales e integrales (PI) 4. Controles
Presentado por: Laura Katherine Gómez Mariño. Universidad Central
Presentado por: Laura Katherine Gómez Mariño. Universidad Central IMPORTANCIA DEL TEMA ESCOGIDO: Es una herramienta usada en simulación, que es parte crucial en un sistema de control industrial. Un controlador
TSTC. Dpt. Teoría de la Señal, Telemática y Comunicaciones. Robótica Industrial. Universidad de Granada
Dpt. Teoría de la Señal, Telemática y Comunicaciones Robótica Industrial Universidad de Granada Tema 5: Análisis y Diseño de Sistemas de Control para Robots S.0 S.1 Introducción Sistemas Realimentados
SINTONIZACIÓN DE CONTROLADORES INDUSTRIALES
CÁTEDRA: SISTEMAS DE CONTROL (PLAN 2004) DOCENTE: Prof. Ing. Mec. Marcos A. Golato SINTONIZACIÓN DE CONTROLADORES INDUSTRIALES 1 CRITERIOS DE ESTABILIDAD EN EL CONTROL La estabilidad del control es la
CONTROLADOR PID. Jorge Luis Mírez Tarrillo. Ing Mecánio Electricista Maestro en Ciencias mención Física
CONTROLADOR PID Jorge Luis Mírez Tarrillo Ing Mecánio Electricista Maestro en Ciencias mención Física Es una estructura de control que es casi universalmente utilizada en la industria. Se trata de la familia
PRÁCTICAS VÍA INTERNET Maqueta industrial de 4 tanques. Manejo de la Interfaz
PRÁCTICAS VÍA INTERNET Maqueta industrial de 4 tanques Manejo de la Interfaz Realizado: Laboratorio Remoto de Automática (LRA-ULE) Versión: Páginas: Grupo SUPPRESS (Supervisión, Control y Automatización)
Controlador PID con anti-windup
Laboratorio de Control de Procesos Industriales Práctica 1 Controlador PID con anti-windup 1 de noviembre de 2008 Introducción 2 INTRODUCCIÓN REGULADORES PID La idea básica del controlador PID es simple
CONTROLADORES PID. El controlador PID. Fernando Morilla García Dpto. de Informática y Automática ETSI de Informática, UNED
CONTROLADORES PID El controlador PID Fernando Morilla García Dpto. de Informática y Automática ETSI de Informática, UNED Madrid 11 de enero de 2007 1 Introducción (1/3) Esquema básico de control PID Perturbaciones
Glosario de Términos de Control
Glosario de Términos de Control Unifiquemos términos a fin de utilizar un lenguaje común en este aspecto de la tecnología. Siempre teniendo en cuenta que nuestro objeto de estudio serán los sistemas de
SERIE 5 CONTROL EN LAZO CERRADO
SERIE 5 CONTROL EN LAZO CERRADO 1) El proceso de la figura se controla con un controlador proporcional. En general, se piensa que la ganancia del proceso y la del controlador son positivas. a) Dar un ejemplo
07 - Control Todo o Nada.doc 1
1. Control Todo o Nada 1. Control Todo o Nada 1 1.1. Problema de control On-Off 2 1.2. Control en realimentación con ganancia elevada 2 1.3. Modelo para la habitación 3 1.4. Respuesta a Lazo Abierto 4
Contenidos Control y Automatización
Tema 2: Modelos Matemáticos Susana Borromeo Juan Antonio Hernández Tamames Curso 2014-2015 Contenidos 1. Conceptos básicos. 2. Modelado matemático de sistemas Físicos. Linealización. Función de Transferencia
8. Neumática proporcional
Neumática proporcional 8-8. Neumática proporcional La técnica proporcional es novedosa en su aplicación neumática, aunque no tanto en el campo de la oleohidráulica. Está basada en el uso de válvulas proporcionales,
Universidad de Alcalá
Universidad de Alcalá Departamento de Electrónica CONVERSORES ANALÓGICO-DIGITALES Y DIGITALES-ANALÓGICOS Tecnología de Computadores Ingeniería en Informática Sira Palazuelos Manuel Ureña Mayo 2009 Índice
Representación en el espacio de estado. Sistemas Control Embebidos e Instrumentación Electrónica UNIVERSIDAD EAFIT
Representación en el espacio de estado Representación en espacio de estado Control clásico El modelado y control de sistemas basado en la transformada de Laplace, es un enfoque muy sencillo y de fácil
ASIGNATURA: SISTEMAS DE CONTROL CÓDIGO: Teórico #4 Cursada 2015
ASIGNATURA: SISTEMAS DE CONTROL CÓDIGO: 0336 Teórico #4 Cursada 2015 RESUMEN CLASE ANTERIOR (Teórico #3) Capítulo 1 - Introducción 1-1. Descripción y aplicaciones de sistemas de control automático. 1-2.
CONTROL DE REACTORES. ! Reactores de tanque agitado. ! Reactores de flujo pistón! Reactores batch
1/61 CONTROL DE REACTORES! Reactores de tanque agitado! Grados de libertad! Control de presión! Control de temperatura! Control de calidad! Reactores de flujo pistón! Reactores batch 2/61 grados de libertad?
1. Modelos Matemáticos y Experimentales 1
. Modelos Matemáticos y Experimentales. Modelos Matemáticos y Experimentales.. Definición.. Tipos de Procesos.3. Tipos de Modelos 3.4. Transformada de Laplace 4.5. Función de Transferencia 7.6. Función
Plan de curso Sílabo-
Plan de curso Sílabo- a. Asignatura b. Nro. Créditos c. Código Control Digital 3 d. Horas de trabajo directo con el docente 48 Semestrales 3 Semanales e. Horas de trabajo autónomo del estudiante 96 Semestrales
Introducción a la Robótica Mecanismos para el control de un robot (5)
Introducción a la Robótica Mecanismos para el control de un robot (5) Dr Jose M. Carranza [email protected] Coordinación de Ciencias Computacionales, INAOE 3er. Torneo Mexicano de Robots Limpiadores:
Retardo de transporte
Retardo de transporte Escalón Escalón con retardo de transporte T Retardo de Transporte. Ejemplo de un Tiristor Tiempo Muerto Ángulo de Disparo (desde controlador) Pulso de disparo Nuevo Pulso de disparo
1. Diseño de un compensador de adelanto de fase
COMPENSADORES DE ADELANTO Y RETARDO 1 1. Diseño de un compensador de adelanto de fase El compensador de adelanto de fase persigue el aumento del margen de fase mediante la superposición de la curva de
En la figura 1 se observan los cambios de polaridad (positivo y negativo) y las variaciones en amplitud de una onda de ca.
Página 1 de 7 TENSION ALTERNA En la figura 1 se observan los cambios de polaridad (positivo y negativo) y las variaciones en amplitud de una onda de ca. Puede definirse un voltaje alterno como el que varía
Metodología de diseño de Sistemas de Control
Metodología de diseño de Sistemas de Control Tema 2 1 Conocimiento del problema Explotación Definición de las especificaciones Test Metodología de diseño de Sistemas de Control...proceso iterativo Modelado
Curso de Inducción de Matemáticas
Curso de Inducción de Matemáticas CAPÍTULO 1 Funciones y sus gráficas M.I. ISIDRO I. LÁZARO CASTILLO Programa del Curso 1. Funciones y sus gráficas. 2. Límites. 3. Cálculo Analítico de Límites. 4. Derivación.
RESUMEN Nº1: CONTROL EN CASCADA.
RESUMEN Nº1: CONTROL EN CASCADA. En éste informe se tiene como objetivo presentar una de las técnicas que se han desarrollado, y frecuentemente utilizado, con el fin de mejorar el desempeño del control
Señal de Referencia: Es el valor que se desea que alcance la señal de salida. SET POINT.
EL ABC DE LA AUTOMATIZACION ALGORITMO DE CONTROL PID; por Aldo Amadori Introducción El Control automático desempeña un papel importante en los procesos de manufactura, industriales, navales, aeroespaciales,
Dinámica y Control de Procesos Repartido 5
Dinámica y Control de Procesos Repartido 5 5.1 El horno mostrado en la figura se utiliza para calentar el aire que se suministra a un regenerador catalítico. El transmisor de temperatura se calibra a 300-500
SISTEMAS AUTOMÁTICOS DE CONTROL
SISTEMAS AUTOMÁTICOS DE CONTROL Un sistema automático de control es un conjunto de componentes físicos conectados o relacionados entre sí, de manera que regulen o dirijan su actuación por sí mismos, es
SESIÓN 14 DERIVADAS SUCESIVAS DE UNA FUNCION, DE MÁXIMOS Y MÍNIMOS Y LA CONCAVIDAD DE UNA CURVA APLICANDO EL CRITERIO DE LA SEGUNDA DERIVADA
SESIÓN 14 DERIVADAS SUCESIVAS DE UNA FUNCION, DE MÁXIMOS Y MÍNIMOS Y LA CONCAVIDAD DE UNA CURVA APLICANDO EL CRITERIO DE LA SEGUNDA DERIVADA I. CONTENIDOS: 1. Derivadas sucesivas de una función 2. Concavidad
CONTROLADORES SISTEMAS DE CONTROL. Introducción. Acciones básicas de control
SISTEMAS DE CONTROL CONTROLADORES Introducción Un controlador es un dispositivo capaz de corregir desviaciones producidas en la variable de salida de un sistema, como consecuencia de perturbaciones internas
EJERCICIOS DE CONTROL POR COMPUTADOR BOLETIN V: SISTEMAS DISCRETOS (I)
C. Determine el valor al que tenderá en régimen permanente la salida ante un escalón de amplitud 3 a la entrada del sistema discreto dado por: z.7 G( z) ( z.5) z C. a) Determinar la región del plano z
DEFINICIONES Y CONCEPTOS (SISTEMAS DE PERCEPCIÓN - DTE) Curso
DEFINICIONES Y CONCEPTOS (SISTEMAS DE PERCEPCIÓN - DTE) Curso 2009-10 1. Generalidades Instrumentación: En general la instrumentación comprende todas las técnicas, equipos y metodología relacionados con
Departamento Ingeniería en Sistemas de Información
ASIGNATURA: TEORIA DE CONTROL MODALIDAD: Cuatrimestral DEPARTAMENTO: ING. EN SIST. DE INFORMACION HORAS SEM.: 8 horas AREA: MODELOS HORAS/AÑO: 128 horas BLOQUE TECNOLOGÍAS BÁSICAS HORAS RELOJ 96 NIVEL:
UNIVERSIDAD NACIONAL DEL SANTA ESCUELA DE INGENIERIA EN ENERGIA MODULO 5
UNIVERSIDAD NACIONAL DEL SANTA ESCUELA DE INGENIERIA EN ENERGIA MODULO 5 CURSO: CONTROL AUTOMATICO PROFESOR: MSC. CESAR LOPEZ AGUILAR INGENIERO EN ENERGIA-INGENIERO MECANICO ELECTRICISTA I. CONTENIDO 1.
SISTEMAS DE CONTROL AUTOMÁTICOS. Sistemas Automáticos 1
SISTEMAS DE CONTROL AUTOMÁTICOS Sistemas Automáticos 1 Lazo abierto Señal de referencia o punto de consigna Energía PREACCIONADOR ACTUADOR PLANTA Señal de salida Ejemplo: Proceso de lavado. Electricidad
PRÁCTICAS VÍA INTERNET Maqueta industrial de 4 tanques. Simulación y análisis con Matlab
PRÁCTICAS VÍA INTERNET Maqueta industrial de 4 tanques Simulación y análisis con Matlab Realizado: Laboratorio Remoto de Automática (LRA-ULE) Versión: Páginas: Grupo SUPPRESS (Supervisión, Control y Automatización)
FORMACIÓN EN VÁLVULAS DE CONTROL: CRITERIOS DE SELECCIÓN Y DISEÑOS SEGÚN CONDICIONES DE PROCESO
FORMACIÓN EN VÁLVULAS DE CONTROL: CRITERIOS DE SELECCIÓN Y DISEÑOS SEGÚN CONDICIONES DE PROCESO. Alberto Argilés Ringo Válvulas S.L. 1.- Introducción La válvula de control manipula el fluido que pasa por
Tema 2.5: Análisis basado en el método del Lugar de las Raíces
Tema 2.5: Análisis basado en el método del Lugar de las Raíces 1. Lugar de las Raíces 2. Trazado de la gráfica 3. Lugar de las raíces generalizado 4. Diseño de controladores 1. El lugar de las raíces Objetivo:
Lección 1 Automatización Industrial. Lección 2 Qué es el PLC?
-1- Lección 1 Automatización Industrial Grado de automatización Accionamientos Controlador Lógico Programable Lección 2 Qué es el PLC? Sistemas de Control Sistemas de Control de Lazo Abierto Sistemas de
EXAMEN PARCIAL I
UNIVERSIDAD NACIONAL DE INGENIERÍA - FIM MT 7 Control Moderno y Óptimo EXAMEN PARCIAL - 04I Problema : Un tanque vacio con masa m o es posicionado sobre g un resorte lineal con rigidez k. El tanque es
INGENIERÍA EN MANTENIMIENTO INDUSTRIAL HOJA DE ASIGNATURA CON DESGLOSE DE UNIDADES TEMÁTICAS
HOJA DE ASIGNATURA CON DESGLOSE DE UNIDADES TEMÁTICAS 1. Nombre de la asignatura Sistemas Automatizados y Redes Industriales 2. Competencias Validar estudios de ingeniería y proyectos técnicoeconómicos
Cátedra: Sistemas de Control
Ing. A. Mariani/Lic. E. Ciccolella Pág. 27 Ing. A. Mariani/Lic. E. Ciccolella Pág. 26 Ing. A. Mariani/Lic. E. Ciccolella Pág. 25 Fig. 25. Error actuante con entradas escalón y rampa unitario. Conclusión.
Controladores PID. Virginia Mazzone. Regulador centrífugo de Watt
Controladores PID Virginia Mazzone Regulador centrífugo de Watt Control Automático 1 http://iaci.unq.edu.ar/caut1 Automatización y Control Industrial Universidad Nacional de Quilmes Marzo 2002 Controladores
» Ecuación del movimiento libre de un grado de libertad amortiguado: ED lineal de 2º orden homogénea cuya solución es de la forma:
1.3. Oscilador armónico amortiguado 1» Ecuación del movimiento libre de un grado de libertad amortiguado: ED lineal de 2º orden homogénea cuya solución es de la forma: Si introducimos esta solución en
8. Control Multivariable
Control de Procesos Industriales 8. Control Multivariable por Pascual Campoy Universidad Politécnica Madrid U.P.M.DISAM P. Campoy Control Multivariable 007/08 ejemplo sistemas multivariables Dado el mezclador
Problemas de Control e Instrumentación de Procesos Químicos 4º curso de Ingeniería Química
Problemas de Control e Instrumentación de Procesos Químicos 4º curso de Ingeniería Química Problema 3 En la Fig. se pude ver un proceso al que entra una corriente manipulable A y otra corriente no manipulable.
19. DISEÑO DE CONTROLADORES
381 19. DISEÑO DE CONTROLADORES 19.1. INTRODUCCION Con los diagramas de Bode de la respuesta de un lazo abierto se pueden diseñar controladores con las especificaciones del margen de ganancia, el margen
DISPLAY Versión: 3.0. Manual de programación. Para consultar los ultimos manuales y actualizaciones diirijase a
DISPLAY Versión: 3.0 Manual de programación Para consultar los ultimos manuales y actualizaciones diirijase a www.rilo.com.ar/productos www.rilo.com.ar MANUAL DE PROGRAMACIÓN PARA EL USUARIO Y EL TÉCNICO
5 Continuidad y derivabilidad de funciones reales de varias variables reales.
5 Continuidad y derivabilidad de funciones reales de varias variables reales. 5.1 Funciones reales de varias variables reales. Curvas de nivel. Continuidad. 5.1.1 Introducción al Análisis Matemático. El
Funcionamiento del circuito integrado LM 317
1 1) Concepto de realimentación Funcionamiento del circuito integrado LM 317 En muchas circunstancias es necesario que un sistema trate de mantener alguna magnitud constante por sí mismo. Por ejemplo el
Transistor BJT como Amplificador
Transistor BJT como Amplificador Lección 05.2 Ing. Jorge Castro-Godínez Escuela de Ingeniería Electrónica Instituto Tecnológico de Costa Rica II Semestre 2013 Jorge Castro-Godínez Transistor BJT como Amplificador
Intercambiadores de calor
UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA AREA DE TECNOLOGÍA DEPARTAMENTO DE ENERGÉTICA UNIDAD CURRICULAR: TRANSFERENCIA DE CALOR Intercambiadores de calor Profesor: Ing. Isaac Hernández [email protected]
SISTEMA MASA RESORTE - AMORTIGUADOR
UNIVERSIDAD POLITÉCNICA DE VICTORIA SISTEMA MASA RESORTE - AMORTIGUADOR PRÁCTICA 3.1.2 ESCUELA: Universidad Politécnica de Victoria ASIGNATURA: Control Digital CATEDRÁTICO: Dr. Yahir Hernández Mier ALUMNO:
INDICE Capítulo 1. Variables del Circuito Eléctrico Capítulo 2. Elementos de Circuitos Capítulo 3. Circuitos Resistivos
INDICE Capítulo 1. Variables del Circuito Eléctrico 1 Introducción 1 1.1. Reto de diseño: Controlador de una válvula para tobera 2 1.2. Albores de la ciencia eléctrica 2 1.3. Circuitos eléctricos y flujo
Regulador PID con convertidores de frecuencia DF5, DV5, DF6, DV6. Página 1 de 10 A Regulador PID
A Página 1 de 10 A Regulador PID INDICE 1. Regulador PID 3 2. Componente proporcional : P 4 3. Componente integral : I 4 4. Componente derivativa : D 4 5. Control PID 4 6. Configuración de parámetros del
de diseño CAPÍTULO 4. Métodos de análisis de los circuitos resistivos 4.1. Reto de diseño: Indicación del ángulo de un potenciómetro 4.2. Circuitos el
CAPÍTULO 1. VARIABLES DEL CIRCUITO ELÉCTRICO 1.1. Reto de diseño: Controlador de una válvula para tobera 1.2. Albores de la ciencia eléctrica 1.3. Circuitos eléctricos y flujo de corriente 1.4. Sistemas
Válvulas automáticas de control serie plástica PAZ
Válvulas automáticas de control serie plástica PAZ Aplicaciones Principales Válvulas Plásticas Válvulas Manuales Apertura y cierre manual por medio de un selector de tres vías. Válvulas de Control Eléctrico
Departamento de Tecnología Villargordo. Componentes del grupo Nº : CURSO
Departamento de Tecnología Villargordo Componentes del grupo Nº : - - CURSO DETECTORES ELECTRÓNICOS Para estos montajes se usará el circuito integrado BC 879, este es un circuito que incluye dos transistores
Marco Antonio Andrade Barrera 1 Diciembre de 2015
Diseño, simulación, construcción, medición y ajuste de un filtro pasa-bajas activo de segundo orden con coeficientes de Bessel, configuración Sallen-Key, ganancia unitaria y una frecuencia de corte f c
E L E C T R I C I D A D. El anillo Saltador. El anillo Saltador
E L E C T R I C I D A D El anillo Saltador El anillo Saltador E L E C T R I C I D A D Los experimentos realizados simultánea pero independientemente por el inglés Michael Faraday y el norteamericano Joseph
Introducción a los Sistemas de Control
Introducción a los Sistemas de Control Organización de la presentación - Introducción a la teoría de control y su utilidad - Ejemplo simple: modelado de un motor de continua que mueve una cinta transportadora.
Resumen de CONVERSORES ANALÓGICO DIGITALES Y DIGITALES ANALÓGICOS
Universidad De Alcalá Departamento de Electrónica Resumen de CONVERSORES ANALÓGICO DIGITALES Y DIGITALES ANALÓGICOS Tecnología de Computadores Almudena López José Luis Martín Sira Palazuelos Manuel Ureña
ECUACIÓN DE OSCILACIONES. Tomado del texto de Ecuaciones Diferenciales de los Profesores. Norman Mercado. Luis Ignacio Ordoñéz
ECUACIÓN DE OSCILACIONES Tomado del texto de Ecuaciones Diferenciales de los Profesores Norman Mercado Luis Ignacio Ordoñéz Muchos de los sistemas de ingeniería están regidos por una ecuación diferencial
Presentación y objetivos.
Control & Instrumentación Control PID, conceptos básicos. Nota técnica 10, rev b Enero 2010 Este documento posee derechos de autor reservados, ARIAN S.A. 2010 Las marcas comerciales referidas son propiedad
6.1. Condición de magnitud y ángulo
Capítulo 6 Lugar de las raíces La respuesta transitoria de un sistema en lazo cerrado, está ligada con la ubicación de los polos de lazo cerrado en el plano complejo S. Si el sistema tiene una ganancia
Control de procesos. Introducción
Control de procesos Introducción El objeto de todo proceso industrial será la obtención de un producto final, de unas características determinadas de forma que cumpla con las especificaciones y niveles
MAT08-13-CALCULA - La calculadora ClassPad 300 como recurso didáctico en la enseñanza de las matemáticas
ENUNCIADO Para completar el curso te proponemos la siguiente actividad: Selecciona cualquier contenido o contenidos del área de Matemáticas (o de otra especialidad si esta no es tu área de trabajo) de
INVENTARIOS Introducción Cantidad Economica de Pedido (EOQ)
INVENTARIOS Introducción Cantidad Economica de Pedido (EOQ) Curso: Investigación de Operaciones Ing. Javier Villatoro MODELO DE INVENTARIOS Componentes Componentes de los modelos de inventarios El problema
Venitladores In-line de flujo combinado con caudales de hasta 1850 m 3 /h
2014 o r u p e r Ai! a d n e vi i v u s en VENTILADORES HELICOCENTRÍFUGOS IN LINE Serie Serie minutos. Características de diseño: La boca de aspiración cuenta con un colector que permite la entrada fluida
Por favor lea atentamente el siguiente manual de instrucciones antes de energizar el equipo.
Controladores MTA Por favor lea atentamente el siguiente manual de instrucciones antes de energizar el equipo. 1. Especificaciones Alimentación: 85~265VAC 50/60HZ, 24VDC o 24VAC (Opcional) Entradas: Termocuplas
Control de Procesos Industriales 1. INTRODUCCIÓN
Control de Procesos Industriales 1. INTRODUCCIÓN por Pascual Campoy Universidad Politécnica Madrid U.P.M.-DISAM P. Campoy Control de Procesos Industriales 1 Control de Procesos Industriales: Introducción
Consideraciones de diseño especial de sistemas servo hidráulicos para pruebas de materiales de alta exigencia
Consideraciones de diseño especial de sistemas servo hidráulicos para pruebas de materiales de alta exigencia Interés particular es el Comportamiento del material Sujetos a : Condiciones dinámicas Impacto
Una función f, definida en un intervalo dterminado, es creciente en este intervalo, si para todo x
Apuntes de Matemáticas II. CBP_ ITSA APLICACIONES DE LA DERIVADA.- CRECIMIENTO Y DECRECIMIENTO DE UNA FUNCIÓN En una función se puede analizar su crecimiento o decrecimiento al mirar la variación que experimentan
SISTEMA DE CLIMATIZACIÓN RADIANTE SISTEMA REMOTO DE REGULACIÓN AMBIENTE ALB VÍA RADIO BASE DE CONEXIONES INALÁMBRICAS ALB. 1.
SISTEMA REMOTO DE REGULACIÓN AMBIENTE ALB VÍA RADIO BASE DE CONEXIONES INALÁMBRICAS ALB 1. Descripción La base de conexiones ALB puede controlar completamente un sistema de suelo radiante de forma inalámbrica.
MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES
MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 5 Curso preparatorio de la prueba de acceso a la universidad para mayores de 25 años curso 2010/11 Nuria Torrado Robles Departamento de Estadística Universidad
La ecuación del salario: W=P F(u,z) Dividiendo los dos miembros por el nivel de precios: W/P=F(u,z)
La ecuación del salario: W=P F(u,z) Dividiendo los dos miembros por el nivel de precios: W/P=F(u,z) La determinación de los salarios implica la existencia de una relación negativa entre el salario real
LA TEORÍA DE LA EMPRESA
www.empresas-polar.com LA TEORÍA DE LA EMPRESA www.sidor.com www.edc-ven.com www.cantv.net EMPRESA: Unidad técnica y económica, dedicada a la transformación de insumos o factores productivos mediante la
1.- CORRIENTE CONTINUA CONSTANTE Y CORRIENTE CONTINUA PULSANTE
UNIDAD 5: CIRCUITOS PARA APLICACIONES ESPECIALES 1.- CORRIENTE CONTINUA CONSTANTE Y CORRIENTE CONTINUA PULSANTE La corriente que nos entrega una pila o una batería es continua y constante: el polo positivo
MINISTERIO DE EDUCACIÓN DIRECCIÓN DE EDUCACIÓN TÉCNICA Y PROFESIONAL. FAMILIA DE ESPECIALIDADES: INFORMÁTICA Y LAS COMUNICACIONES
MINISTERIO DE EDUCACIÓN DIRECCIÓN DE EDUCACIÓN TÉCNICA Y PROFESIONAL. FAMILIA DE ESPECIALIDADES: INFORMÁTICA Y LAS COMUNICACIONES ESPECIALIDAD: AUTOMÁTICA PROGRAMA: Control de Procesos. AÑO: 3ro NIVEL:
15. LUGAR DE LAS RAICES - CONSTRUCCION
15. LUGAR DE LAS RAICES - CONSTRUCCION 15.1 INTRODUCCION El lugar de las raíces es una construcción gráfica, en el plano imaginario, de las raíces de la ecuación característica de un lazo de control para
Significado Físico de los Potenciales Termodinámicos
Significado Físico de los Potenciales Termodinámicos Gonzalo Abal julio 2003 Instituto de Física Facultad de Ingeniería revisado: junio 2004 Abstract En estas notas justificamos la definición de los potenciales
DESCRIPCIÓN CARACTERÍSTICAS
www.lazodecontrol.com DESCRIPCIÓN El controlador de temperatura PID + Lógica Difusa basado en microprocesador incorpora una pantalla LED de 4 dígitos brillante y de fácil lectura, donde se indican los
Estudio Temporal de Sistemas Continuos de 1 er y 2º Orden
niversidad Carlos III de Madrid Departamento de Ingeniería de Sistemas y Automática SEÑALES Y SISTEMAS Práctica 1 Estudio Temporal de Sistemas Continuos de 1 er y 2º Orden 1 Introducción Teórica Se denomina
www.alltronicsperu.com
TOKY Electrical. Co. Ltda. CONTROLADORES DE TEMPERATURA Series TE Fundamentos Básicos del control de Temperatura Que es una termocupla. Las termocuplas son los sensores de temperatura más comúnmente utilizado
TERMODINÁMICA CICLOS III. CICLO DE CARNOT
TERMODINÁMICA CICLOS III. CICLO DE CARNOT GIRALDO TORO REVISÓ PhD. CARLOS A. ACEVEDO PRESENTACIÓN HECHA EXCLUIVAMENTE CON EL FIN DE FACILITAR EL ESTUDIO. MEDELLÍN 2016 CICLOS DE CARNOT. GIRALDO T. 2 Ciclo
TEORÍA DE LA CONDUCTA DEL CONSUMIDOR Y DE LA DEMANDA
S_A._LECV TEORÍA DE LA CONDUCTA DEL CONSUMIDOR DE LA DEMANDA LA FUNCIÓN DE PREFERENCIA Todos los individuos tratan de alcanzar la satisfacción con un ingreso limitado. Este esfuerzo más o menos consciente,
Conductos textiles para climatizacion
Conductos textiles para climatizacion En las evaluaciones para el proyecto de un sistema de ventilación, resulta indispensable, para llevarlo a buen término, desarrollar un análisis de difusión del aire.
Tema 8: Aplicaciones. Ecuaciones en. diferencias: modelos en tiempo discreto. 1 Modelo de crecimiento exponencial. 2 Sucesión de Fibonacci
8 de diciembre de 20 Contexto: Bloque de Álgebra Lineal Tema 6. Sistemas de ecuaciones lineales y matrices. Tema 7. Valores y vectores propios. Tema 8. Aplicaciones del cálculo de los valores y vectores
CAPÍTULO 4 RESULTADOS Y DISCUSIÓN
CAPÍTULO 4 RESULTADOS Y DISCUSIÓN 4.1 Verificación del código numérico Para verificar el código numérico, el cual simula la convección natural en una cavidad abierta considerando propiedades variables,
Tema 5. Análisis de sistemas muestreados
Ingeniería de Control Tema 5. Análisis de sistemas muestreados Daniel Rodríguez Ramírez Teodoro Alamo Cantarero Contextualización del tema Conocimientos que se adquieren en este tema: Relacionar la estabilidad
Curso sobre Controladores Lógicos Programables (PLC).
CURSO Curso sobre Controladores Lógicos Programables (PLC). Por Ing. Norberto Molinari. Entrega Nº 12. Formas de representación de fases operativas de una Máquina... Introducción La complejidad siempre
Fuentes de corriente
Fuentes de corriente 1) Introducción En Electrotecnia se estudian en forma teórica las fuentes de corriente, sus características y el comportamiento en los circuitos. Desde el punto de vista electrónico,
UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS Facultad de Ingeniería Departamento de Ing. Eléctrica Electrónica II
INTEGRADOR, DERIVADOR Y RECTIFICADOR DE ONDA CON AMPLIFICADORES OPERACIONALES LAURA MAYERLY ÁLVAREZ JIMENEZ (20112007040) MARÍA ALEJANDRA MEDINA OSPINA (20112007050) RESUMEN En esta práctica de laboratorio
Tema 2: Propiedades de los Materiales Metálicos.
Tema 2: Propiedades de los Materiales Metálicos. 1. Propiedades mecánicas. 2. Mecanismos de deformación (Defectos). 3. Comportamiento elasto-plástico. 4. Comportamiento viscoso (fluencia y relajación).
CRISTALOQUÍMICA TEMA 9 POLIMORFISMO Y TRANSFORMACIONES POLIMÓRFICAS. TRANSFORMACIONES ORDEN - DESORDEN ÍNDICE
CRISTALOQUÍMICA TEMA 9 POLIMORFISMO Y TRANSFORMACIONES POLIMÓRFICAS. TRANSFORMACIONES ORDEN - DESORDEN 9.1 Introducción 9.2 Estabilidad y equilibrio ÍNDICE 9.3 Concepto de polimorfismo y de transformación
Línea de investigación o de trabajo: Electrónica de Potencia y Control Automático
ASIGNATURA: TEORÍA DE SISTEMAS LINEALES Nombre de la asignatura: TEORÍA DE SISTEMAS LINEALES Línea de investigación o de trabajo: Electrónica de Potencia y Control Automático Tiempo de dedicación del estudiante
DEPARTAMENTO DE INGENIERÍA QUÍMICA. Laboratorio de Ingeniería Química BALANCE DE ENERGÍA EN ESTADO NO ESTACIONARIO
DEPARAMENO DE INGENIERÍA QUÍMICA Laboratorio de Ingeniería Química BALANCE DE ENERGÍA EN ESADO NO ESACIONARIO 1. INRODUCCIÓN El sistema al que se va a plantear el balance de energía calorífica consiste
2. SEÑALES Y SISTEMAS DISCRETOS EN EL TIEMPO. Una señal puede ser definida como una portadora física de información. Por ejemplo,
2. SEÑALES Y SISTEMAS DISCRETOS EN EL TIEMPO Una señal puede ser definida como una portadora física de información. Por ejemplo, las señales de audio son variaciones en la presión del aire llevando consigo
