TEMA 16. TRANSDUCTORES DE TEMPERATURA

Tamaño: px
Comenzar la demostración a partir de la página:

Download "TEMA 16. TRANSDUCTORES DE TEMPERATURA"

Transcripción

1 TEMA 6. TRANSDUCTORES DE TEMPERATURA Dr. Juan José González de la Rosa. Área de Electrónica. Dpto. de Ingeniería de Sistemas y Automática, Tecnología Electrónica y Electrónica. Grupo de Investigación en Aplicada y Técnicas de Formación. INTRODUCCIÓN Este capítulo estudia los transductores de temperatura más extendidos en los equipos electrónicos de medida. Después de describir brevemente el concepto de temperatura y los efectos parásitos asociados a la masa térmica, se realiza un estudio comparativo de los transductores de temperatura resistivos, haciendo énfasis en sus coeficientes de temperatura y los errores asociados a los hilos de conexión al equipo de medida. Por último, se analizan los circuitos integrados lineales y los termopares. Los primeros se emplean en aplicaciones que requieran condiciones de linealidad, bajo consumo y precisión. Los segundos, aunque con un principio físico sencillo, requieren configuraciones de medida que aseguren un temperatura de referencia y eviten la formación de termopares parásitos. Por tanto, se realiza un tratamiento que va desde la generalidad hasta la especialización del circuito integrado y el termopar, abordando la problemática de la conexión del transductor al circuito de medida. Se analizan los transductores de temperatura bajo una perspectiva comparativa y con énfasis en los circuitos de tratamiento de su señal eléctrica.. Temperatura La temperatura es una de las magnitudes físicas que se miden con mayor frecuencia. Son numerosos los tipos de sensores que se han desarrollado a tal fin, entre los que trataremos los detectores de temperatura resistivos, los termistores, los circuitos integrados lineales y los termopares. La selección de cada dispositivo dependerá de la adecuación de sus características estáticas y dinámicas a la aplicación que lo requiere..2 Masa térmica y transferencia parásita de calor (termal shunting) El encapsulado, las conexiones y otros componentes físicos del sensor de temperatura hacen que cuando el transductor entre en contacto con el medio, absorba calor de él; alterando consecuentemente la temperatura del medio objeto de medida. A este proceso se le denomina transferencia parásita de calor ( termal shunting ). La transferencia parásita se minimiza empleando sensores con la menor masa posible. En general esto supone un compromiso en la elección del dispositivo de medida. Así por ejemplo, los termopares tienen mucha menor masa térmica que los RTDs, sin embargo son menos precisos. En general, los transductores de temperatura resistivos son más propensos al calentamiento por efecto Joule cuanto menor es su masa. En general, los transductores de temperatura de menor masa son más frágiles y susceptibles de ser afectados por cualquier agente externo. de

2 2 DETECTORES DE TEMPERATURA RESISTIOS (RTD) 2. Características y principio operativo Los detectores de temperatura resistivos (RTD; Resistive Temperature Detector) son los sensores de temperatura más estables y precisos. Su rango de medida es menor que el del termopar, abarcando de 200 ºC a 800 ºC. Por ejemplo, el RTD de platino es el más estable y preciso detector de temperatura en el rango 0500 ºC. El material de fabricación hace variar el rango de medida respecto del anterior pero no de forma apreciable. En consecuencia, estos transductores se emplean en aplicaciones que requieren alta precisión y repetibilidad, como control de calidad de alimentos y aplicaciones farmacéuticas. La precisión suele expresarse como un porcentaje de la resistencia nominal a una temperatura dada. Por ejemplo, la IEC especifica un RTD de clase B como 00 Ω ± 0,2 % a 0 ºC. Sin embargo, la calibración debe llevarse a cabo a dos temperaturas suficientemente espaciadas en el rango de operación del sensor. El principio operativo del RTD consiste en que la resistencia de la mayoría de los metales aumenta con la temperatura. Un metal apto para aplicaciones con el RTD debería poseer las siguientes características: Elevada resistividad, con el fin de economizar material. Cambio en la resistividad con la temperatura adecuado a la resolución deseada, y lineal para simplificar el mecanismo de conversión. Propiedades mecánicas que hacen el dispositivo fiable. La mayoría de los RTD son de platino porque, además de verificar las anteriores características, es un material muy resistente a la contaminación y sus propiedades se mantienen a muy largo plazo. 2.2 Configuraciones de medida A diferencia de los termopares, los RTD s no necesitan una referencia para su conexión a una unidad de medida. A pesar, de que parece fácil su conexión a un multímetro hay que considerar que no se trata de medir la resistencia simplemente y luego convertir a temperatura, sino que se requiere la adopción de medidas para mediciones de baja resistencia Método de dos hilos: Errores Al tratarse de un transductor de muy baja resistencia, la conexión con dos hilos a un multímetro lleva asociada un error debido a las resistencias de los hilos de conexión. Por ejemplo, una Pt00 conectada a un multímetro con dos cables de resistencia de Ω produce el error de temperatura siguiente: International Electrotechnical Commission 2 de

3 2 Ω 2 Ω Error 5,948 5 ºC % Ω 0, Ω 0, Ω ºC Ω ºC Esto hace que tradicionalmente formen parte de un puente de Wheatstone con un método de tres hilos y excitación de tensión, o una configuración de cuatro hilos con excitación de corriente Puente de Wheatstone con el método de los tres hilos La figura muestra la configuración de un puente de Wheatstone en la que tienen lugar los errores de hilos de conexión comentados antes. La tensión medida en el multímetro es: m R cc 2 La tensión R se mide en realidad en una resistencia suma de la del RTD y la de los hilos de conexión. R ref R cc R ref m R Fig.. Puente de Wheatstone y errores por hilos de conexión. Para minimizar el error se emplea la configuración de tres hilos de la figura 2, en la que se reduce a la mitad la resistencia parásita de los hilos. R ref R cc m R ref I0 R Fig. 2. Puente de Wheatstone empleando configuración de tres hilos. 3 de

4 La siguiente expresión permite obtener la resistencia del RTD en función del resto de los parámetros del circuito: R T cc m ( R R ) hilo Rhilo cc 2 2 m Para obtenerla basta con calcular la tensión R y luego aplicar mrcc/2. Como se observa, esta configuración tampoco elimina el error de hilos de conexión. A tal fin se emplea la configuración de cuatro hilos Método de los cuatros hilos La figura 3 muestra la configuración de medida de cuatro hilos, que consigue eliminar el error asociado a los hilos de conexión. Como se aprecia, se emplea una fuente de corriente de polarización en lugar de una fuente de tensión. Por tanto, el valor del RTD es: R T I m T Para minimizar los errores por autocalentamiento la corriente por el RTD no debe superar ma. En consecuencia, la tensión medida no debe superar 0,0 en una Pt 00. I cc m I0 I T Fig. 3. Configuración de medida basada en el método de los cuatro hilos. 2.3 Calentamiento por efecto Joule El calentamiento por efecto Joule es un problema inherente a todo transductor resistivo. Aunque la cantidad de calor disipada suele ser pequeña, suele ser apreciable incluso en aplicaciones de medio y alto nivel. Este autocalentamiento producido por la corriente de polarización del sensor suele agravarse por las corrientes inducidas por fuentes de interferencias. El autocalentamiento viene dado por el coeficiente de disipación térmica. Por ejemplo, si se disipan 2,5 mw en una Pt00 como consecuencia de una corriente de 5 ma, el error cometido resulta: 4 de

5 mw º C 2 [ 0, kω ( 5) ( ma) ] mw º C 2,5 mw Conversión de resistencia a temperatura 2,5 º C Existen programas de ordenador que convierten la resistencia medida en temperatura. Pero este método no es válido para aplicaciones en tiempo real. A tal fin se emplea el desarrollo polinómico de Callendaran Dusen: 2 3 [ A T B T C ( ) ] R0 T 00 Para temperaturas superiores a 0 ºC, C0, y la ecuación queda: 2 [ A T B ] R0 T Para una Pt00, esta expresión es aproximadamente lineal hasta aproximadamente 500 ºC, punto de comienzo del comportamiento parabólico, como indica la figura 4. (Ω) 00 Fig. 4. rva del RTD. 500 T (ºC) 3 TERMISTORES 3. Características y principio de operación El término proviene del inglés thermistor (thermally sensitive resistor), y es un transductor de temperatura resistivo (componente semiconductor pasivo) de alta resistencia que se emplea con mucha frecuencia en aplicaciones de adquisición de datos. Su coeficiente de temperatura puede ser positivo (PTC; Positive Temperature Coefficient) o negativo (NTC; Negative Temperature Coefficient); estos últimos se emplean con mayor frecuencia. Pueden fabricar se pequeños tamaños y de una amplia gama de valores resistivos; sin embargo, están sujetos a errores por autocalentamiento. En término medio, su coeficiente de temperatura es notablemente mayor que el de los RTD s. En 5 de

6 consecuencia, el error de los hilos de conexión no es significativo y basta una configuración de medida de dos hilos; no siendo necesaria técnica especial alguna como amplificadores de alta ganancia o configuraciones de tres o cuatro hilos para ofrecer alta precisión. A pesar de estas ventajas, existen inconvenientes. Su rango de medida es menor en término medio que el de los RTD s y termopares (50 ºC a 50 ºC), debido a que son poco lineales; aunque hay excepciones (algunos superan los 300 ºC). En consecuencia, a diferencia de los RTD que son de propósito general, se emplean en aplicaciones que requieren medidas sensibles sobre un rango pequeño de temperatura. 3.2 Configuración de medida Se utiliza una configuración tradicional de dos hilos (conexión de una resistencia a un multímetro de alta impedancia), inyectando el instrumento una intensidad constante. Por ejemplo, en un termistor de 5 kω con un coeficiente de temperatura de CT0,04 %/ºC, su sensibilidad vale: Ω S 5000 Ω 0,04 Ω º C 200 Ω º C El error asociado a los hilos de conexión resulta poco significativo: 2 Ω Ω 200 ºC 0,0 ºC 3.3 Conversión de resistencia a temperatura La ecuación de SteinhartHart se obtiene de las curvas experimentales de termistores, y resulta una buena aproximación a su comportamiento: T A B ln ( R ) C [ ln ( )] 3 T Donde T se expresa en ºK; y las constantes A, B y C dependen del fabricante del dispositivo. 4 CIRCUITOS INTEGRADOS LINEALES COMO SENSORES DE TEMPERATURA En general, estos dispositivos se comercializan en encapsulados de dos o tres terminales, con alimentaciones en el rango de 530 CC. La salida que suministran es proporcional a la temperatura. La figura 5 muestra un ejemplo de estos circuitos (modelado por una fuente de corriente), con un coeficiente de corriente de µa/ºc. 6 de

7 AD 590 µ A/ºC cc 5 00 Ω 960 Ω m Fig. 5. Configuración de medida con circuito integrado lineal detector de temperatura. Como la corriente por el AD 590 es nula a 0 ºC, también lo es la salida m. El potenciómetro se ajusta para conseguir un coeficiente de tensión de salida de m/ºc. La salida normalmente se transfiere a un circuito aislador para evitar los efectos de carga. El rango de funcionamiento abarca desde 50 a 50 ºC y se emplean en aplicaciones donde la temperatura varía en un rango menor que los RTD s. A su linealidad se deben añadir como ventajas su pequeño coste, precisión a temperatura ambiente, su salida de tensión apreciable y el pequeño autocalentamiento. Esto último es consecuencia de su reducido consumo de potencia (7500 µw). 5 TERMOPARES 5. Principio de operación y características Los termopares son probablemente los sensores de temperatura más extendidos (industria y laboratorios). Se emplean en situaciones de adquisición masiva de datos, muchos datos por muchos canales; en equipos para el control de procesos y medidas automáticas. Incluso se puede disponer de tarjetas y multímetros que incluyen la opción de medida con termopar entre sus posibilidades de operación. A pesar de lo extendido de su empleo, no es sencillo lograr el correcto manejo de transductor, debido a que existen muchos tipos de termopares y sus datos requieren tratamiento para obtener resultados válidos. El principio operativo del termopar reside en el efecto Seebeck. A principios del siglo XIX (82) Thomas Seebeck descubrió que la unión de dos metales distintos genera un potencial (una corriente continua si el circuito es cerrado) función de la temperatura a la que se somete la unión. La figura 2 muestra la generción de correitne ene este circuito cerrado. Un termopar consta de dos aleaciones unidas por un extremo, que constituye el punto sensible del transductor. 7 de

8 Metal A Metal A Metal B Fig. 6. El efecto Seebeck. Si el circuito se abre, como indica la figura 7, la tensión en abierto se denomina tensión Seebeck. Metal A v AB Metal B Fig. 7. Tensión Seebec, en circuito abierto. Para pequeños cambios de temperatura, la relación entre esta tensión vab y la temperatura es aproximadamente lineal; la constante de proporcionalidad es el coeficiente Seebeck, α, que depende de las aleaciones que constituyen el termopar: v AB α T En los termopares reales α es función de la temperatura; pero a efectos prácticos no se considera su dependencia. 5.2 Configuraciones de medida No se puede medir directamente la tensión Seebeck con un multímetro porque las pinzas del instrumento originan termopares parásitos que enmascaran la medida. Consideremos por ejemplo un termopar tipo T, cobre/constantan; como indica la figura 8 se conecta a un multímetro. En condiciones ideales, la lectura en el multímetro digital correspondería sólo a la fuerza termoelectromotriz. En la práctica, sin embrago aparecen dos tensiones térmicas adicionales, 2 y 3. Ya que la unión 3 es /, 3 0; pero 2 permanece. 8 de

9 DMM H U 2 L C U C U 2 U Fig. 8. Problemática de conexión de un termopar a un multímetro: Formación de termouniones parásitas. Por tanto, para determinar la temperatura de interés es necesario calcular previamente la temperatura de la unión U2. En efecto, como las dos uniones son /C: α ( T ) 2 T2 La unión U2 se denomina de referencia, y si permanece a 0 ºC la tensión es directamente proporcional a la temperatura de interés. Por ello, una solución para eliminar T2 consiste en introducir la unión de referencia en un baño de hielo con el fin de conseguir la exactitud de los 0 ºC del punto de hielo, referencia que se emplea para confeccionar las tablas de los termopares. La figura 9 muestra una configuración de un termopar Fe/C (tipo J) conectado al multímetro con el fin de plantear una situación con más uniones parásitas. DMM Fe H U 4 Fe C L U 2 U Baño de hielo T REF 0 º 3 4 U 4 Fe Fe U Fig. 9. Problemática de conexión de un termopar a un multímetro: Formación de termouniones parásitas. El hierro del terminal bajo del multímetro se origina por medio de la conexión Este circuito consigue plantear situaciones de medida precisas, ya que las tensiones de los termopares parásitos, que son idénticos, se compensan. Sin embargo, si los dos terminales del panel frontal están a distintas temperaturas, 3 y 4 no coinciden. En estas situaciones, se emplea un bloque isotérmico que mantiene a las uniones U3 y U4 a la misma temperatura. La temperatura absoluta del bloque isotérmico no tiene relevancia ya que, como indica la figura 9, las uniones 3 y 4 se sitúan en oposición, y sus fuerzas termoelectromotrices se compensan. Este bloque es un aislante eléctrico pero un buen conductor de calor. En esta situación se cumple: 9 de

10 ( T T ) T α REF α El circuito definitivo se obtiene por eliminación del baño de hielo, situando las uniones 3 y 4 y la de referencia en el mismo bloque isotérmico a la temperatura TREF. En consecuencia, se verifica la relación: α ( T ) T REF La configuración definitiva se muestra en la figura 0. En ella se aprecian las tres uniones a la misma temperatura. 3 Fe Fe 4 C U Bloque isotérmico, T REF U 4 U REF Fig. 0. Configuración definitiva con tres uniones en el mismo bloque isotérmico. Empleando la ley de la aleación intermedia a las uniones 4 y de referencia, la configuración equivalente se obtiene por eliminación del metal intermedio (Fe). En consecuencia, se elimina un termopar y el circuito que resulta lo componen el termopar superior (U3: /Fe) y el inferior (U4: /C); estas dos uniones están a la temperatura de referencia. La figura muestra el circuito resultante. Bloque isotérmico, T REF 3 Fe REF C U 4 Fig.. Configuración resultante de eliminar el metal intermedio. Seguimos llamando a la unión inferior U4 aunque no es la misma que la de la figura 0, obviamente. Resulta la misma expresión: U α ( T ) T REF ya que las uniones 3 y 4 de la figura 0 generan tensiones que se compensan y en realidad queda la tensión en la unión Fe/C, cuyo coeficiente es α. El siguiente paso consiste en calcular la temperatura del bloque isotérmico empleando un termistor. El problema consiste en obtener T. En esta situación como: 0 de

11 REF se mide la resistencia del termistor, y a partir de ella se calcula la temperatura de referencia que, a su vez, se convierte a la tensión de referencia. Por otra parte, el multímetro digital medirá. 5.3 Linealización La relación de proporcionalidad entre la tensión y la temperatura es una aproximación. De hecho, la mayoría de los termopares se alejan de la linealidad. arios son los procedimientos que permiten obtener la temperatura a partir de la tensión medida. El más común consiste en una combinación de aproximación lineal por tramos y el empleo de tablas. Por ejemplo, para un termopar tipo J con la unión de referencia a 25 ºC, la tensión de la tabla es ref,09 m (punto frío) y la unión de medida (punto caliente). 5,278 m. En consecuencia, la lectura del multímetro es: REF 5,278,09 4, 249 ( m ) En la práctica, a partir de esta medida se obtiene la temperatura de interés en la unión caliente T. REFERENCIAS [] AGILENT TECHNOLOGIES (200). Practical Temperature Measurements. Application Note 290. [2] COOPER, W.D. & HELFRICK, A.D. (99). Moderna y Técnicas de Medición. PrenticeHall Hispanoamericana. [3] NORTON, H.N. (987). Handbook of Transducers. Prentice Hall, Englewood Cliffs, New Jersey. [4] PALLÁS ARENY, R. (987). Transductores y Acondicionadores de Señal. Marcombo, Boixareu Editores. [5] WOLF, S. y SMITH, R.F.M. (992). Guía para Mediciones Electrónicas y Prácticas de Laboratorio. Edición ampliada y actualizada. PrenticeHall Hispanoamericana. México, etc. de

Termometría - sensores de temperatura

Termometría - sensores de temperatura Termometría - sensores de temperatura Objetivo En este experimento queremos estudiar las características básicas de algunos termómetros usuales y realizar una calibración de alguno de ellos. También se

Más detalles

SENSORES VARIABLES, ESTRATEGIA Y ACONDICIONAMIENTO

SENSORES VARIABLES, ESTRATEGIA Y ACONDICIONAMIENTO SENSORES VARIABLES, ESTRATEGIA Y ACONDICIONAMIENTO TIPOS DE SENSORES Según la magnitud eléctrica Según la conversión Según naturaleza de la señal PASIVOS Resistivos Inductivos Capacitivos Ópticos Ultrasónicos

Más detalles

0.1 Ejercicios sobre sensores de temperatura

0.1 Ejercicios sobre sensores de temperatura 0.1 Ejercicios sobre sensores de temperatura Ítemes de calicación falsa-verdadera 1. La temperatura es una magnitud que cuantica la energía total de un cuerpo. 2. La radiación térmica es una forma de transporte

Más detalles

TEMA 4: SENSORES GENERADORES

TEMA 4: SENSORES GENERADORES TEM 4: SENSORES GENERDORES ibliografía: Sensores y acondicionadores de señal Pallás reny, R. Marcombo, 1994 Instrumentación electrónica moderna y técnicas de medición Cooper, W.D. y otro Prentice-Hall,

Más detalles

Area de Tecnología Electrónica. Universidad de Burgos

Area de Tecnología Electrónica. Universidad de Burgos 7.- SENSORES GENERADORES 7.1.- TERMOPARES Cuando se somete a la unión de dos metales distintos a una temperatura distinta del cero absoluto, se genera una diferencia de potencial entre sus extremos e AB

Más detalles

SENSORES DE TEMPERATURA (Industriales)

SENSORES DE TEMPERATURA (Industriales) SENSORES DE TEMPERATURA (Industriales) Alumnos: Alejandro Arenas Alejandro Dávila Profesor: Msc. Orlando Philco A. Qué son los sensores? Un sensor es un dispositivo diseñado para recibir información de

Más detalles

Amplificadores diferenciales, de instrumentación y de puente

Amplificadores diferenciales, de instrumentación y de puente 3 mplificadores diferenciales, de instrumentación y de puente 3. Introducción En este capítulo se estudian los circuitos amplificadores diferenciales, de instrumentación y de puente. La aplicación de estos

Más detalles

Medición de Temperatura por Medios Eléctricos

Medición de Temperatura por Medios Eléctricos Medición de Temperatura por Medios Eléctricos Las mediciones de diferentes magnitudes no eléctricas (presión, temperatura, deformación, etc.) por medios eléctricos, permite aplicar todas las ventajas de

Más detalles

Medida de temperaturas (II)

Medida de temperaturas (II) Medida de temperaturas (II) Ingeniero de Introducción Tipos de termómetros Termómetros resistivos Descripción Curvas de respuesta Medidas Contenido Termópares y Circuitos Integrados Leyes básicas de termopares

Más detalles

Medición de temperatura

Medición de temperatura Medición de temperatura Termómetro El termómetro de vidrio consta de un depósito de vidrio que contiene, por ejemplo, mercurio, que al calentarse se expande y sube en el tubo capilar. El rango de temperatura

Más detalles

Sistemas de Medición. Unidad II: Sensores y Acondicionadores de Señal

Sistemas de Medición. Unidad II: Sensores y Acondicionadores de Señal Unidad II: Sensores y Acondicionadores de Señal Presentado por: Ing. Alvaro Antonio Gaitán Encargado de Cátedra FEC-UNI 11 de mayo de 2015 Ing. Electrónica Objetivos de la Unidad II Ejemplificar las diferentes

Más detalles

05/06 TRANSDUCTORES GENERADORES. Juan A. Montiel-Nelson

05/06 TRANSDUCTORES GENERADORES. Juan A. Montiel-Nelson 05/06 TRANSDUCTORES GENERADORES Juan A. Montiel-Nelson Escuela Técnica Superior de Ingenieros de Telecomunicación Universidad de Las Palmas de Gran Canaria Índice Introducción a los. Termopares. Piezoeléctricos.

Más detalles

PRACTICA 9. SENSORES DE TEMPERATURA II. TERMISTOR NTC

PRACTICA 9. SENSORES DE TEMPERATURA II. TERMISTOR NTC INSTRUMENTACION ELECTRONICA PRACTICAS OBLIGATORIAS PRACTICA 9. SENSORES DE TEMPERATURA II. TERMISTOR NTC OBJETIVOS Estudio de termistores NTC. INSTRUMENTACION - Fuente de Alimentación Estabilizada. - Termómetro

Más detalles

Podemos plantear un sencillo esquema de alarma como el de la figura: V REF 3600( ) T

Podemos plantear un sencillo esquema de alarma como el de la figura: V REF 3600( ) T Lección 4. MEDIDA DE LA EMPEAUA. Diseñe un sistema de alarma de temperatura utilizando una NC. Deberá activarse cuando la temperatura ascienda por encima de ºC con una exactitud de ºC. Datos: B36K, kω@5ºc,

Más detalles

Puente de Wheatstone Alimentado por Fuente de Tensión

Puente de Wheatstone Alimentado por Fuente de Tensión Puente de Wheatstone Alimentado por Fuente de Tensión 1 Contenido 1. Introducción. 2. El puente de Wheatstone. 3. Configuraciones. 4. Análisis de las configuraciones. Configuración con un solo elemento

Más detalles

Sensores generadores SENSORES GENERADORES

Sensores generadores SENSORES GENERADORES Sensores generadores SENSORES GENERADORES Definición: Sensores generadores son aquellos que generan una señal eléctrica a partir de la magnitud que miden, sin necesidad de una alimentación eléctrica. Tipos:

Más detalles

SENSORES DE TEMPERATURA

SENSORES DE TEMPERATURA SENSORES DE TEMPERATURA SENSORES Termómetro bimetálico Termómetros de bulbo y capilar Termómetros de resistencia Sondas Termistores Termocuplas Pirómetros TERMÓMETRO BIMETÁLICO Su principio de funcionamiento

Más detalles

Mediciones. Sensores, transductores y transmisores

Mediciones. Sensores, transductores y transmisores Mediciones La medición es uno de los vínculos entre el proceso a ser controlado y el sistema de control. Mediante la medición el sistema de control puede detectar si las variables que deben controladas

Más detalles

SENSORES Y ACONDICIONADORES DE SEÑAL por PALLAS ARENY Editorial Marcombo

SENSORES Y ACONDICIONADORES DE SEÑAL por PALLAS ARENY Editorial Marcombo SENSORES Y ACONDICIONADORES DE SEÑAL por PALLAS ARENY Editorial Marcombo 1. Introducción a los sistemas de medida 1.1. Conceptos generales y terminología 1.1.1. Sistemas de medida 1.1.2. Transductores,

Más detalles

Transductores TALLER DE TECNOLOGÍA IV: INSTRUMENTACIÓN. GUIA No. 2 TRANSDUCTORES

Transductores TALLER DE TECNOLOGÍA IV: INSTRUMENTACIÓN. GUIA No. 2 TRANSDUCTORES TALLER DE TECNOLOGÍA IV: INSTRUMENTACIÓN GUIA No. 2 TRANSDUCTORES Prof. Ander J. Miranda. Un transductor es un dispositivo capaz de transformar o convertir un determinado tipo de energía de entrada, en

Más detalles

Tema 5 Instrumentación

Tema 5 Instrumentación Control de Procesos Químicos Tema 5 Instrumentación Medida de Temperatura Medida de Presión Se utiliza alguno de estos fenómenos para medir la temperatura: Medida de Temperatura a) Variación de volumen

Más detalles

SENSORES DE TEMPERATURA

SENSORES DE TEMPERATURA SENSORES DE TEMPERATURA SENSORES Termómetro bimetálico Termómetros de bulbo y capilar Termómetros de resistencia Sondas Termistores Termocuplas Pirómetros TERMÓMETRO BIMETÁLICO Su principio de funcionamiento

Más detalles

INSTRUMENTACION TEMARIO

INSTRUMENTACION TEMARIO INSTRUMENTACION TEMARIO 1. Introducción a la toma de medidas en sistemas físicos 2. Sensores y Transductores 3. Acondicionamiento de la señal: amplificación, normalización y filtrado 4. Sistemas de adquisición

Más detalles

Sistema de calibración para un

Sistema de calibración para un Sistema de calibración para un instrumento de medición de temperatura PT100 Daniel Eduardo Ávila Velandia Ingeniería Electrónica, Maestría En Ingeniería Mecatrónica, Universidad Militar Nueva Granada.

Más detalles

Laboratorio de Fundamentos Físicos de la Ingeniería LEY DE OHM

Laboratorio de Fundamentos Físicos de la Ingeniería LEY DE OHM Departamento de Física Aplicada E.T.S. Ingeniería Industrial U.C.L.M. Laboratorio de Fundamentos Físicos de la Ingeniería LEY DE OHM El objetivo fundamental de esta práctica es el conocimiento experimental

Más detalles

Termodinámica I: implementación de un sensor de temperatura con un termistor. Versión 2.0

Termodinámica I: implementación de un sensor de temperatura con un termistor. Versión 2.0 Termodinámica I: implementación de un sensor de temperatura con un termistor. Versión 2.0 Héctor Cruz Ramírez 1 Instituto de Ciencias Nucleares, UNAM 1 hector.cruz@ciencias.unam.mx enero 2017 Índice 1.

Más detalles

Termoconvertidores: Qué se necesita para hacer mediciones de tensión en c.a. con mediana y alta exactitud? Sara Campos

Termoconvertidores: Qué se necesita para hacer mediciones de tensión en c.a. con mediana y alta exactitud? Sara Campos Termoconvertidores: Qué se necesita para hacer mediciones de tensión en a. con mediana y alta exactitud? Sara Campos Metrología Eléctrica División de Mediciones Electromagnéticas Contenido Introducción

Más detalles

Física 2 Biólogos y Geólogos. Termometría-Sensores de temperatura

Física 2 Biólogos y Geólogos. Termometría-Sensores de temperatura Física 2 Biólogos y Geólogos Curso de Verano 2007 Guía de laboratorio N 8 Termometría-Sensores de temperatura Objetivos Estudiar las características básicas de diferentes termómetros y sensores de temperatura.

Más detalles

UNIVERSIDAD TECNOLÓGICA DE PEREIRA

UNIVERSIDAD TECNOLÓGICA DE PEREIRA I IDENTIFICACIÓN ASIGNATURA CÓDIGO REQUISITOS INSTRUMENTACION Y MEDIDAS MC533 HORAS ACOMP. DOCENTE (HAD) 2 HORAS DE PRÁCTICA (HLAB) 2 HORAS TRABAJO INDEP. (HTI) 5 HORAS TOTALES SEMANALES (HTS) 9 CRÉDITOS

Más detalles

TERMISTORES. Características y aplicaciones

TERMISTORES. Características y aplicaciones TERMISTORES Características y aplicaciones DEFINICIóN El termistor es un tipo de transductor pasivo, sensible a la temperatura y que experimenta un gran cambio en la resistencia eléctrica cuando está sujeto

Más detalles

INTRODUCCIÓN: TERMÓMETROS A CALIBRAR: Termómetro de mercurio

INTRODUCCIÓN: TERMÓMETROS A CALIBRAR: Termómetro de mercurio FISICA GENERAL II 2013 Guía de Trabajo Practico N o 1 Calibración de termómetros INTRODUCCIÓN: La temperatura es una magnitud que toma el mismo valor en dos sistemas que son puestos en contacto térmico

Más detalles

Departamento de Ciencias de la Ingeniería y Mecánica PERIODO er Examen de Instrumentación Industrial Mecánica NRC de diciembre del 2018

Departamento de Ciencias de la Ingeniería y Mecánica PERIODO er Examen de Instrumentación Industrial Mecánica NRC de diciembre del 2018 Departamento de Ciencias de la Ingeniería y Mecánica PERIODO 201811 3er Examen de Instrumentación Industrial Mecánica NRC 5584 5 de diciembre del 2018 Nombre: INSTRUCCIONES En el siguiente cuestionario,

Más detalles

DL 3155E10R. R e g u l a c i. ó n. C o n t. Bloques funcionales. Bloques funcionales. Argumentos teóricos. Argumentos teóricos

DL 3155E10R. R e g u l a c i. ó n. C o n t. Bloques funcionales. Bloques funcionales. Argumentos teóricos. Argumentos teóricos Motores de corriente continua Generadores Circuitos para el control de los motores en CC Motores de corriente alternada Circuitos para el control de los motores en CA Motores paso-paso Circuitos para el

Más detalles

APLICACIÓN DE LA LEY DE OHM (I) Comprobación experimental de las leyes de Kirchhoff. Estudio experimental de la resistividad de conductores metálicos.

APLICACIÓN DE LA LEY DE OHM (I) Comprobación experimental de las leyes de Kirchhoff. Estudio experimental de la resistividad de conductores metálicos. APLICACIÓN DE LA LEY DE OHM (I) MEDIDA DE ESISTENCIAS / PUENTE DE WHEATSTONE / MEDIDA DE LA ESISTIVIDAD 1. OBJETIVO Comprobación experimental de las leyes de Kirchhoff. Estudio experimental de la resistividad

Más detalles

DEPARTAMENTO DE CIENCIAS DE LA ENERGIA Y MECANICA Laboratorio de Instrumentación Industrial Mecánica Laboratorio de Instrumentación Mecatrónica 2

DEPARTAMENTO DE CIENCIAS DE LA ENERGIA Y MECANICA Laboratorio de Instrumentación Industrial Mecánica Laboratorio de Instrumentación Mecatrónica 2 1. Tema: Medición de temperatura en un recinto cerrado. 2. Objetivos: 3. Teoría. a. Entender el diseño, operación y funcionamiento de los dispositivos de medición de temperatura. Termistores NTC. Son resistencias

Más detalles

Medida de temperaturas (I)

Medida de temperaturas (I) Medida de temperaturas (I) Ingeniero de Contenido Introducción Tipos de termómetros Termómetros resistivos Descripción Curvas de respuesta Medidas Termópares y Circuitos Integrados Ingeniero de Temperatura

Más detalles

Introducción a la Electrónica

Introducción a la Electrónica Unidad 7: Sensores 7.1 Introducción 7.2 Sensado de Temperatura 7.3 Sensado de deformación, fuerza, presión y peso 7.4 Sensado de posición, velocidad y aceleración 7.5 Conexionado de los sistemas de sensado

Más detalles

SENSORES DE TEMPERATURA

SENSORES DE TEMPERATURA UNIDAD 3 SENSORES DE TEMPERATURA INTRODUCCIÓN Cuando tratamos con sistemas termodinámicos (algo muy usual en la especialidad de Automotores), podemos definir sus estados de equilibrio a partir de propiedades

Más detalles

EFECTO SEEBECK. E=S ab T 2 T 1

EFECTO SEEBECK. E=S ab T 2 T 1 TERMOPAR TERMOPAR Un termopar se compone de dos hilos de diferentes metales unidos en sus extremos formando un circuito. Un extremo es la junta caliente o de medición y el otro la de referencia o junta

Más detalles

Para la medida de temperatura se precisa de un contacto directo entre la parte a medir y el instrumento de medida.

Para la medida de temperatura se precisa de un contacto directo entre la parte a medir y el instrumento de medida. TUTORIAL TERMOPARES Desde luego que uno de los grandes retos del mantenimiento como función empresarial es el control y medida de la temperatura. La causa, se trata de una variable que nos permite detectar

Más detalles

LABORATORIO DE INSTRUMENTACIÓN ELECTRÓNICA PRÁCTICA N 7

LABORATORIO DE INSTRUMENTACIÓN ELECTRÓNICA PRÁCTICA N 7 ESCUELA POLITÉCNICA NACIONAL Campus Politécnico "J. Rubén Orellana R." FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA Carrera de Ingeniería Electrónica y Control Carrera de Ingeniería Electrónica y Telecomunicaciones

Más detalles

Electrónica Industrial Sensores: Termoacopladores Prof. Pablo E. Castillo C.

Electrónica Industrial Sensores: Termoacopladores Prof. Pablo E. Castillo C. 1 Termo acopladores El dispositivo más común para medir temperaturas de procesos industriales es el termoacoplador. Un termoacoplador es un par de cables de metales diferentes unidos en un lazo completo

Más detalles

Contenido 1. Elementos de un Sistema de Control... 2

Contenido 1. Elementos de un Sistema de Control... 2 Contenido 1. Elementos de un Sistema de Control... 2 2. Transductores... 2 2.1. Transductores de posición.... 3 2.2. Transductores de proximidad... 4 2.3. Transductores de movimiento... 6... 6 2.4. Transductores

Más detalles

APLICACIÓN DE LA LEY DE OHM (II)

APLICACIÓN DE LA LEY DE OHM (II) APLICACIÓN DE LA LEY DE OHM (II) MEDIDA DE ESISTENCIAS / PUENTE DE WHEATSTONE / MEDIDA DE LA ESISTIVIDAD 1. OBJETIVO Comprobación experimental de las leyes de Kirchhoff. Estudio experimental de la resistividad

Más detalles

COMO SELECCIONAR UNA VAINA

COMO SELECCIONAR UNA VAINA COMO SELECCIONAR UNA VAINA Una sonda o un termómetro mecánico utilizan un elemento sensible que necesita protección contra cargas mecánicas o medios agresivos. Para ello se aplican vainas metálicas que

Más detalles

RESUMEN TEMA 12: SISTEMAS AUTOMÁTICOS Y DE CONTROL

RESUMEN TEMA 12: SISTEMAS AUTOMÁTICOS Y DE CONTROL RESUMEN TEMA 12: SISTEMAS AUTOMÁTICOS Y DE CONTROL 1.-INTRODUCCIÓN: Un sistema de control es un conjunto de componentes físicos conectados o relacionados entre sí, de manera que regulen o dirijan una acción

Más detalles

RESISTENCIA Y LEY DE OHM

RESISTENCIA Y LEY DE OHM RESISTENCIA Y LEY DE OHM Objetivos: - Aprender a utilizar el código de colores de la E.I.A. (Electronics Industries Association ) - Aprender a armar algunos circuitos simples en el tablero de pruebas (Protoboard).

Más detalles

Ing. Msc. Luis Carlos Meneses

Ing. Msc. Luis Carlos Meneses Ing. Msc. Luis Carlos Meneses ÍNDICE: Introducción. Transductores de contacto. Fundamentos de radiación. Detectores de radiación. Comparativa Aplicaciones de la Termografía. El Mantenimiento Predictivo

Más detalles

ACONDICIONADORES DE SEÑAL PARA TRANSDUCTORES RESISTIVOS

ACONDICIONADORES DE SEÑAL PARA TRANSDUCTORES RESISTIVOS ACONDICIONADOES DE SEÑAL PAA TANSDUCTOES ESISTIOS Juan A. Montiel-Nelson Escuela Técnica Superior de Ingenieros de Telecomunicación Universidad de Las Palmas de Gran Canaria Indice Medida de esistencias.

Más detalles

MEDIDA DE RESISTENCIAS Puente de Wheatstone

MEDIDA DE RESISTENCIAS Puente de Wheatstone MEDIDA DE ESISTENCIAS Puente de Wheatstone. OBJETIVO Comprobación experimental de las leyes de Kirchhoff. 2. DESAOLLO TEÓICO Leyes de Kirchhoff La primera ley de Kirchhoff, también conocida como ley de

Más detalles

MOTORES DE CORRIENTE CONTÍNUA

MOTORES DE CORRIENTE CONTÍNUA MOTORES DE CORRIENTE CONTÍNUA PRÁCTICA 1 ESTUDIO Y CÁLCULO DE LOS PARÁMETROS DE UN MOTOR DE CC El motor que se va a utilizar en las prácticas que se proponen a continuación es el 2842-012C, de minimotors

Más detalles

APLICACIÓN DE LA LEY DE OHM (II)

APLICACIÓN DE LA LEY DE OHM (II) APLICACIÓN DE LA LEY DE OHM (II) MEDIDA DE RESISTENCIAS / PUENTE DE WHEATSTONE / MEDIDA DE LA RESISTIVIDAD 1. OBJETIVO Comprobación experimental de las leyes de Kirchhoff. Estudio experimental de la resistividad

Más detalles

Termometría Sensores de temperatura

Termometría Sensores de temperatura Termometría Sensores de temperatura Objetivos Estudio de las características básicas de diferentes termómetros y sensores de temperatura y realización de la calibración de alguno de ellos. Uso del termómetro

Más detalles

AADECA Medición de Temperatura Termorresistencias. Ing. Eduardo N. Alvarez & Ing. Sergio J. Longo

AADECA Medición de Temperatura Termorresistencias. Ing. Eduardo N. Alvarez & Ing. Sergio J. Longo AADECA 2007 Medición de Temperatura Termorresistencias Ing. Eduardo N. Alvarez & Ing. Sergio J. Longo Termorresistencias Utilizada usando Pt como elemento primario por primera vez en 1871 por William Siemens

Más detalles

Ing. Alejandra Escobar

Ing. Alejandra Escobar Ing. Alejandra Escobar La medición de temperatura en un proceso industrial es de gran importancia ya que cambios en la temperatura pueden alterar las características del producto final o pueden generar

Más detalles

CORRIENTE ELECTRICA. a) Cuál es la corriente en el alambre? b) Cuál es la magnitud de la velocidad de los electrones en el alambre?

CORRIENTE ELECTRICA. a) Cuál es la corriente en el alambre? b) Cuál es la magnitud de la velocidad de los electrones en el alambre? CORRIENTE ELECTRICA 1) Un alambre de plata de diámetro 2,6mm, transfiere una carga de 420C en 80 minutos. La plata tiene 5,8 x 10 28 electrones libres por metro cúbico. a) Cuál es la corriente en el alambre?

Más detalles

SENSORES Complementos de electrónica analógica I

SENSORES Complementos de electrónica analógica I SENSORES Complementos de electrónica analógica I Qué es un Transductor? Un transductor es un dispositivo que transforma un tipo de variable física (por ejemplo fuerza, presión, temperatura, velocidad,

Más detalles

Circuitos de RF y las Comunicaciones Analógicas. Capítulo VII: Amplificadores de RF de potencia

Circuitos de RF y las Comunicaciones Analógicas. Capítulo VII: Amplificadores de RF de potencia Capítulo VII: Amplificadores de RF de potencia 109 110 7. Amplificadores RF de potencia 7.1 Introducción El amplificador de potencia (PA) es la última etapa de un trasmisor. Tiene la misión de amplificar

Más detalles

TEMA 12: SISTEMAS AUTOMÁTICOS Y DE CONTROL

TEMA 12: SISTEMAS AUTOMÁTICOS Y DE CONTROL TEMA 12: SISTEMAS AUTOMÁTICOS Y DE CONTROL 1.-INTRODUCCIÓN: Un sistema de control es un conjunto de componentes físicos conectados o relacionados entre sí, de manera que regulen o dirijan una acción por

Más detalles

DL 3155E10R. R e g u l a c i. ó n. C o n t. Bloques funcionales. Bloques funcionales. Argumentos teóricos. Argumentos teóricos

DL 3155E10R. R e g u l a c i. ó n. C o n t. Bloques funcionales. Bloques funcionales. Argumentos teóricos. Argumentos teóricos Motores de corriente continua Generadores Circuitos para el control de los motores en CC Motores de corriente alternada Circuitos para el control de los motores en CA Motores paso-paso Circuitos para el

Más detalles

1.1 Introducción... 1 1.2 Características de los instrumentos...6

1.1 Introducción... 1 1.2 Características de los instrumentos...6 Contenido Capítulo 1 Generalidades 1.1 Introducción... 1 1.2 Características de los instrumentos...6 1.2.1 Generalidades... 6 1.2.2 Campo de medida (range)... 6 1.2.3 Alcance (span)... 6 1.2.4 Error...

Más detalles

Teoría de Circuitos - Práctico 1

Teoría de Circuitos - Práctico 1 Teoría de Circuitos - Práctico 1 Circuitos Resistivos 2 do semestre 2018 Ejercicios básicos: 1, 2, 3, 4 Ejercicios recomendados: 5, 6 Ejercicio 1. Hallar bipolos equivalentes 1 a las componentes resistivas

Más detalles

011-4523-4585. de valores a medir. la variación. termocuplas) u oxidación.

011-4523-4585. de valores a medir. la variación. termocuplas) u oxidación. TERMORRESISTENCIAS (RTD) QUE ES UNA RTD? POR QUE UTILIZAR ESTE TIPO DE SENSORES? COMO TRABAJAN? Qué es una RTD? Resistancee Temperature Detectors (RTDs ó termorresistencias) son sensores de temperatura

Más detalles

Tel. 01 (55) (55)

Tel. 01 (55) (55) 7-1 TERMÓMETROS DE RESISTENCIA (RTD s) Los termómetros industriales de resistencia también llamados RTD s 1 son en principio bobinas de alambre enrolladas dentro o alrededor de soportes de material aislante

Más detalles

TIPOS DE TERMOPARES TERMOPARES

TIPOS DE TERMOPARES TERMOPARES TIPOS DE TERMOPARES Para escoger los materiales que forman el termopar se deben tomar en cuenta algunos factores que garanticen su mantenimiento y comercialización. De esta forma se han desarrollado los

Más detalles

Instrumentación Electrónica

Instrumentación Electrónica Práctica de Laboratorio Práctica 4 Medidas de Temperatura Práctica de laboratorio Transductores de temperatura. En esta práctica tomaremos contacto con varios transductores de temperatura, para analizar

Más detalles

Tema 5: Concepto de Temperatura

Tema 5: Concepto de Temperatura Tema 5: Concepto de Temperatura La temperatura es una de las magnitudes mensurables más importantes Históricamente: pasos para definir una escala de Tª Galileo al reconocer que era una magnitud mesurable

Más detalles

Introducción a la Electrónica

Introducción a la Electrónica Introducción a la Electrónica SENSORES 26/11/2009 Introducción a la Electrónica 1 Que es un sensor? Un sensor es un dispositivo que convierte un fenómeno físico a un senal medible (tensión, corriente)

Más detalles

Montaje. Vista frontal. Conmutador S1. Power Rail

Montaje. Vista frontal. Conmutador S1. Power Rail Repetidor para Transductor de temperatura Características Montaje Barrera aislada de 1 canal Alimentación de V CC (carril de alimentación) Resistencia y entrada RTD (Pt100, Pt500, Pt1000) Salida de resistencia

Más detalles

SENSOR CKP(CRANKSHAFT POSITION) Sensor de Posición de Cigüeñal Es un detector magnético o de efecto Hall, el cual envía a la computadora (ECM)

SENSOR CKP(CRANKSHAFT POSITION) Sensor de Posición de Cigüeñal Es un detector magnético o de efecto Hall, el cual envía a la computadora (ECM) SENSOR CKP(CRANKSHAFT POSITION) Sensor de Posición de Cigüeñal Es un detector magnético o de efecto Hall, el cual envía a la computadora (ECM) información sobre la posición del cigüeñal y las RPM del motor.*no

Más detalles

Montaje. Vista frontal. Interruptor S1. Power Rail

Montaje. Vista frontal. Interruptor S1. Power Rail Repetidor para Transductor de temperatura Características Montaje Barrera aislada de 1 canal de 4 V CC (carril de alimentación) Resistencia y entrada RTD (Pt100, Pt500, Pt1000) Salida de resistencia Precisión

Más detalles

PROGRAMA ANALÍTICO DE FÍSICA EXPERIMENTAL II: Año 2009

PROGRAMA ANALÍTICO DE FÍSICA EXPERIMENTAL II: Año 2009 PROGRAMA ANALÍTICO DE FÍSICA EXPERIMENTAL II: Año 2009 UNIDAD I: Breve repaso de Temperatura y Calor. Temperatura. Calor y energía. Temperatura. Propiedades mensurables. Escalas termométricas. Métodos

Más detalles

B Acumuladores de corriente eléctrica

B Acumuladores de corriente eléctrica 1 B Acumuladores de corriente eléctrica Condensadores Distintos tipos de condensadores. 2 3 Configuraciones para acoplar condensadores. Pilas y baterías a) Características de las pilas y baterías: Resistencia

Más detalles

Montaje. Vista frontal. Conmutador S1. Power Rail

Montaje. Vista frontal. Conmutador S1. Power Rail Repetidor para Transductor de temperatura Características Montaje Barrera aislada de 1 canal Alimentacin de V CC (carril de alimentacin) Resistencia y entrada RTD (Pt100, Pt500, Pt1000) Salida de resistencia

Más detalles

Práctica Nº 4 DIODOS Y APLICACIONES

Práctica Nº 4 DIODOS Y APLICACIONES Práctica Nº 4 DIODOS Y APLICACIONES 1.- INTRODUCCION El objetivo Los elementos que conforman un circuito se pueden caracterizar por ser o no lineales, según como sea la relación entre voltaje y corriente

Más detalles

Tema 07: Acondicionamiento. M. en C. Edgardo Adrián Franco Martínez edgardoadrianfrancom

Tema 07: Acondicionamiento. M. en C. Edgardo Adrián Franco Martínez edgardoadrianfrancom Tema 07: Acondicionamiento M. en C. Edgardo Adrián Franco Martínez http://www.eafranco.com edfrancom@ipn.mx @edfrancom edgardoadrianfrancom 1 Contenido Acondicionamiento de una señal Caracterización del

Más detalles

Instrumentación Electrónica UNEXPO

Instrumentación Electrónica UNEXPO Instrumentación Electrónica UNEXPO Evaluación Teoría 70% Examen 1 30% /17 Unidad 1, 2 Examen 2 30% /17 Unidad 3 Examen 3 10% /17 Unidad 4 Práctica 30 % Práctica 1 07% 14/11/2017 Práctica 2 10% 23/01/2018

Más detalles

Universidad Distrital Francisco José De Caldas Facultad de Ingeniería Proyecto curricular de Ingeniería Electrónica.

Universidad Distrital Francisco José De Caldas Facultad de Ingeniería Proyecto curricular de Ingeniería Electrónica. Universidad Distrital Francisco José De Caldas Facultad de Ingeniería Proyecto curricular de Ingeniería Electrónica Sensores térmicos PROBLEMAS SOBRE SENSORES TERMICOS 1. El circuito de la figura 1 dispone

Más detalles

Teoría de circuitos Segundo Parcial

Teoría de circuitos Segundo Parcial Teoría de circuitos Segundo Parcial CUE 13 de julio de 2015 Indicaciones: La prueba tiene una duración total de 3 horas. Cada hoja entregada debe indicar nombre, número de C.I., y número de hoja. La hoja

Más detalles

Departamento de Física Aplicada Universidad de Cantabria. Febrero 28, 2005

Departamento de Física Aplicada Universidad de Cantabria. Febrero 28, 2005 Introducción a la Física Experimental Guía de la experiencia Determinación de la resistencia eléctrica de un conductor lineal. Dependencia de la resistencia eléctrica con la naturaleza del material, las

Más detalles

Aceleración Temperatura Presión Humedad Fuerza Intensidad de luz. Introducción a la Electrónica

Aceleración Temperatura Presión Humedad Fuerza Intensidad de luz. Introducción a la Electrónica Elementos de Sensado Son dispositivos que se utilizan para transformar variables de cualquier tipo en señales eléctricas, de manera de poder procesarlas. Sensores: Posición Distancia Angulo Aceleración

Más detalles

TELECONTROL Y AUTOMATISMOS

TELECONTROL Y AUTOMATISMOS TELECONTROL Y AUTOMATISMOS ACONDIDIONADORES DE SEÑAL 4. Acondicionamiento de Señal. La señal de salida de un sistema de medición en general se debe procesar de una forma adecuada para la siguiente etapa

Más detalles

EJERCICIO 1 EJERCICIO 2

EJERCICIO 1 EJERCICIO 2 EJERCICIO 1 Se miden 0 Volt. en los terminales del diodo de la fig. siguiente, la tensión de la fuente indica +5 Volt. respecto de masa. Qué está mal en el circuito? EJERCICIO 2 En la fig. siguiente la

Más detalles

DEFINICIONES Y CONCEPTOS (SISTEMAS DE PERCEPCIÓN - DTE) Curso

DEFINICIONES Y CONCEPTOS (SISTEMAS DE PERCEPCIÓN - DTE) Curso DEFINICIONES Y CONCEPTOS (SISTEMAS DE PERCEPCIÓN - DTE) Curso 2009-10 1. Generalidades Instrumentación: En general la instrumentación comprende todas las técnicas, equipos y metodología relacionados con

Más detalles

A.- Electrones fluyendo por un buen conductor eléctrico, que ofrece baja resistencia.

A.- Electrones fluyendo por un buen conductor eléctrico, que ofrece baja resistencia. DEPARTAMENTO DE ORIENTACIÓN: TECNOLOGÍA 4E_F Primer trimestre Curso: 2014/2015 TEMA II: ELECTRICIDAD Y ELECTRÓNICA La electrónica forma parte de nuestra vida cotidiana.- Los electrodomésticos, los medios

Más detalles

Variación de la resistencia con la temperatura

Variación de la resistencia con la temperatura Variación de la resistencia con la temperatura Ignacio Arata Francisco Arrufat Pablo Palacios Santiago Folie Ignacioarata@hotmail.com francisco@arrufat.com pablopalacios@uol.com.ar sfolie@alwyasgolfing.com

Más detalles

INSTRUMENTACIÓN. PRÁCTICA 1

INSTRUMENTACIÓN. PRÁCTICA 1 Introducción INSTRUMENTACIÓN. PRÁCTICA 1 Medidas de tensión eléctrica y circuitos potenciométricos Los circuitos potenciométricos se emplean frecuentemente para convertir las variaciones de impedancia

Más detalles

DESARROLLO DE UN DIVISOR RESISTIVO PARA CALIBRACIÓN DE VÓLTMETROS Y NANOVÓLTMETROS EN LOS INTERVALOS DE mv

DESARROLLO DE UN DIVISOR RESISTIVO PARA CALIBRACIÓN DE VÓLTMETROS Y NANOVÓLTMETROS EN LOS INTERVALOS DE mv DESARROLLO DE UN DIISOR RESISTIO PARA CALIBRACIÓN DE ÓLTMETROS Y NANOÓLTMETROS EN LOS INTERALOS DE m David Avilés, Dionisio Hernández, Enrique Navarrete Centro Nacional de Metrología, División de Mediciones

Más detalles

ACONDICIONADORES DE SEÑALES

ACONDICIONADORES DE SEÑALES Acondicionadores de señales de montaje configurables en rieles DIN Serie DRF U Módulos de tensión, corriente, frecuencia, resistencia, potenciómetro, termopar, RTD y de entrada de celdas de carga U Rangos

Más detalles

Montaje. Vista frontal. Conmutador S1. Power Rail

Montaje. Vista frontal. Conmutador S1. Power Rail Repetidor para Transductor de temperatura Características Montaje Barrera aislada de 1 canal Alimentación de V CC (carril de alimentación) Resistencia y entrada RTD (Pt100, Pt500, Pt1000) Salida de resistencia

Más detalles

Montaje en placa protoboard de un circuito detector de oscuridad. 1) Nombre y apellidos: Curso y grupo: 2) Nombre y apellidos: Curso y grupo:

Montaje en placa protoboard de un circuito detector de oscuridad. 1) Nombre y apellidos: Curso y grupo: 2) Nombre y apellidos: Curso y grupo: Montaje en placa protoboard de un circuito detector de oscuridad. Miembros del grupo: 1) 2) 3) 4) 5) 1 PRÁCTICAS DE ELECTRÓNICA ANALÓGICA. PRÁCTICA 1. Montajes en placa protoboard. Medida de magnitudes

Más detalles

Indice. 1 - Introducción a los sistemas de medida. 2 - Sensores resistivos

Indice. 1 - Introducción a los sistemas de medida. 2 - Sensores resistivos Indice 1 - Introducción a los sistemas de medida 1.1 CONCEPTOS GENERALES Y TERMINOLOGÍA 1 1.1.1 Sistemas de medidas 1 1.1.2 Transductores, sensores y accionamientos 1 1.1.3 Acondicionamiento y presentación

Más detalles

Alumno de la Asignatura de Sensores, Transductores y Acondicionadores de Señal (STAS) del curso 00/01,

Alumno de la Asignatura de Sensores, Transductores y Acondicionadores de Señal (STAS) del curso 00/01, CONVOCATORIA ORDINARIA CURSO 2000 2001 SENSORES, TRANSDUCTORES Y ACONDICIONADORES DE SEÑAL Alumno de la Asignatura de Sensores, Transductores y Acondicionadores de Señal (STAS) del curso 00/01, El examen

Más detalles

UNIVERSIDAD LIBRE FACULTAD DE INGENIERÌA DEPARTAMENTO DE CIENCIAS BÁSICAS TEMA: MEDICIONDE RESISTENCIAS Y USO DEL MULTIMETRO.

UNIVERSIDAD LIBRE FACULTAD DE INGENIERÌA DEPARTAMENTO DE CIENCIAS BÁSICAS TEMA: MEDICIONDE RESISTENCIAS Y USO DEL MULTIMETRO. UNIVERSIDAD LIBRE FACULTAD DE INGENIERÌA DEPARTAMENTO DE CIENCIAS BÁSICAS TEMA: MEDICIONDE RESISTENCIAS Y USO DEL MULTIMETRO. OBJETIVOS: 1. Hacer mediciones del valor de la resistencia de varios resistores

Más detalles