Los números naturales y enteros en el 80X86 y en LAN

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Los números naturales y enteros en el 80X86 y en LAN"

Transcripción

1 Los números naturales y enteros en el 80X86 y en LAN 1. Los números naturales en el 80X86/TASM Representación Sistema de representación En el 80X86 (y en la mayoría de los procesadores), los números naturales se representan en sistema binario. Es importante dominar los algoritmos para pasar de decimal a binario y de binario a decimal. Rango de la representación Si se utilizan n bits para representar los números naturales, entonces pueden representarse todos los números dentro del rango: [0,2 n -1] Tamaño de los números naturales en el 80X86 Pueden tener 8, 16 y 32 bits. En TASM, los naturales se declaran así: A db 7 ; número natural de 8 bits, con valor inicial 7. B dw 10 ; número natural de 16 bits, con valor inicial 10 C dd 23 ; número natural de 32 bits, con valor inicial 23. Operaciones con números naturales La suma La suma de números naturales se realiza con la instrucción ADD, que admite operandos de tamaño byte, word o dobleword. La suma produce desbordamiento cuando el valor resultante de la suma se sale del rango de representación (que depende del tamaño de los operandos). Después de sumar, la instrucción ADD copia en el bit CF (carry flag) de la palabra de estado el valor del acarreo que se produce al sumar los bits de más peso. Consultando el bit CF después de la suma sabremos si se produjo desbordamiento. La instrucción ADD también actualiza el bit ZF (zero flag), poniéndolo a 1 si el resultado es 0. La resta La resta de números naturales se realiza con la instrucción SUB, que admite operandos de tamaño byte, word o dobleword. La resta produce desbordamiento cuando el valor substraendo es mayor que el minuendo (el resultado de la resta es un número negativo). Después de restar, la instrucción SUB copia en el bit CF (carry flag) de la palabra de estado el valor del acarreo que se produce al restar los bits de más peso. Consultando el bit CF después de la resta sabremos si se produjo desbordamiento. La instrucción SUB también actualiza el bit ZF (zero flag), poniéndolo a 1 si el resultado es 0. Comparación Dos números naturales pueden compararse mediante la instrucción CMP, que admite operandos de tamaño byte, word o dobleword. La instrucción CMP funciona exactamente igual que SUB pero no deja el resultada de la resta en ningún sitio. Por tanto, lo importante de esta operación es el valor de los bits de condición CF y ZF. Normalmente, en un programa en ensamblador, después de una instrucción CMP encontraremos una de salto condicional. Saltos condicionales Las instrucciones de salto condicional hacen que el procesador salte en función de los valores de los bits de condición. Después de una operación con números naturales, podemos usar los siguientes saltos condicionales: Después de una comparación JE o JZ (salta si ZF=1) Salta si son iguales JA (salta si ZF=0 y CF=0) Salta si el primero es mayor que el segundo JAE (salta si CF = 0) Salta si el primero es mayor o igual que el segundo JB (salta si CF = 1) Salta si el primero es menor que el segundo JBE (salta si CF = 1 o ZF = 1) Salta si el primero es menor o igual que el segundo

2 Después de una suma o resta JC (salta si CF = 1) Salta si la operación produjo desbordamiento También existen todas las instrucciones correspondientes a la condición negada. Por ejemplo, después de una comparación de dos números, JNAE salta si el primero no es mayor o igual que el segundo. La instrucción con la condición negada se escribe con una N después de la J. Otras operaciones El lenguaje máquina del 80X86 ofrece otras instrucciones para realizar operaciones aritméticas con números naturales. A continuación se presenta una lista. Los detalles de las instrucciones deben consultarse en el manual. ADC sumar con acarreo DEC restar 1 DIV división de naturales (calcula el cociente y el resto). INC sumar 1 MOVZX extender el tamaño del operando, que es un número natural MUL multiplicar números naturales. SBB restar con acarreo Recordar que los productos y divisiones por números que son potencia de 2 pueden realizarse mediante instrucciones de desplazamiento, que son más rápidas. 2. Los números enteros en el 80X86/TASM Representación Sistema de representación En el 80X86, y en la mayoría de los procesadores, los números enteros se representan en complemento a 2. Si el número entero a representar es X, entonces: Si X >= 0, entonces se representa en binario Si X < 0, entonces Se toma la representación en binario de X (que es un número positivo) Se cambian todos los 0 por 1 y todos los 1 por 0 Se suma 1 Rango de la representación Si se utilizan n bits para la representación, entonces pueden representarse todos los números enteros que hay en el rango: [-2 n-1,2 n-1-1] El número 2 n-1 se representa con la combinación 100 0, y el 2 n-1-1 se representa con la combinación Un ejemplo con n=4: Combinación Número Combinación Número Observar que la representación de un número positivo siempre tiene un 0 a la izquierda, mientras que la de un número negativo siempre tiene un 1 a la izquierda. Tamaño de los números enteros en el 80X86 Pueden tener 8, 16 y 32 bits. En TASM, los naturales se declaran así:

3 A B db dw ; número entero de 8 bits, con valor inicial -7. ; número entero de 16 bits, con valor inicial 10 C dd -23 ; número entero de 32 bits, con valor inicial -23. Operaciones Extensión de signo Si tenemos un número entero representado con un número determinado de bits podemos obtener su representación con un número mayor de bits añadiendo por la izquierda tantas veces como sea necesario una copia del bit de más peso de la representación original. Esta operación se puede realizar con la instrucción MOVSX opd, opf, que mueve el operando de la fuente (opf) al destino (opd), ampliando en tamaño del operando fuente tanto como sea necesario para alcanzar el tamaño del destino. Cambio de signo Dada la representación del número entero X, podemos obtener la representación del X de la siguiente forma: Cambiar todos los 0 por 1 y todos los 1 por 0, en la representación de X Sumar 1 al resultado Esta operación puede realizarse con la instrucción NEG op, que cambia el signo del número entero almacenado en op. Suma El algoritmo para sumar número enteros es el mismo que para sumar naturales. Por tanto, puede usarse la instrucción ADD. En este caso, también puede producirse desbordamiento (el resultado de la suma se sale de rango). Sin embargo, ahora el bit CF no nos sirve para detectar la situación de desbordamiento. La condición que refleja una situación de desbordamiento es: Los dos sumandos tienen el mismo signo y éste es diferente del signo del resultado El procesador refleja la situación de desbordamiento activando el bit OF (overflow flag), en la palabra de estado. Además, el bit de más peso del resultado lo copia en el bit SF (sign flag). Por supuesto, también actualiza los bits CF y ZF, tal y como se ha descrito para el caso de los naturales. Resta El algoritmo para restar enteros es el mismo que para restar naturales. Por tanto, puede usarse la instrucción SUB. En este caso, la situación de desbordamiento es la siguiente: El signo del substraendo es el mismo que el del resultado, pero diferente del signo del minuendo. El procesador refleja la situación de desbordamiento activando el bit OF. Comparación Los números enteros pueden compararse mediante la instrucción CMP, exactamente igual que los número naturales. Sin embargo, ahora lo importante es la información que queda en los bits OF y SF, que es la que se usará en la instrucción de salto condicional que, normalmente, aparecerá inmediatamente después de la comparación. Saltos condicionales Después de una operación con números enteros, podemos usar los siguientes saltos condicionales: Después de una comparación JE o JZ (salta si ZF = 1) Salta si son iguales JG (salta si ZF = 0 y SF = OF) Salta si el primero es mayor que el segundo JGE (salta si SF = OF) Salta si el primero es mayor o igual que el segundo JL (salta si SF <> OF) Salta si el primero es menor que el segundo JLE (salta si ZF = 1 y SF <> OF) Salta si el primero es menor o igual que el segundo Después de una suma o resta JO (salta si OF = 1) Salta si la operación produjo desbordamiento JS (salta si SF = 1) Salta si el resultado es negativo

4 También existen todas las instrucciones correspondientes a la condición negada. Por ejemplo, después de una comparación de dos números, JNGE salta si el primero no es mayor o igual que el segundo. La instrucción con la condición negada se escribe con una N después de la J. Otras operaciones El lenguaje máquina del 80X86 ofrece otras instrucciones para realizar operaciones aritméticas con números enteros. Algunas ya se han visto al hablar de los números naturales (las instrucciones son las mismas). A continuación se presentan las que son específicas para los enteros. Los detalles de las instrucciones deben consultarse en el manual. IDIV IMUL división de enteros (calcula el cociente y el resto). multiplicar números enteros. Recordar que los productos y divisiones por números que son potencia de 2 pueden realizarse mediante instrucciones de desplazamiento, que son más rápidas. 3 Consideraciones adicionales Los bits de condición Cuando el procesador ejecuta las instrucciones ADD, SUB o CMP, no sabe si los operandos son naturales o enteros. No lo necesita para calcular los bits del resultado y lo bits CF, ZF, SF y OF, según se ha descrito en los apartados anteriores. Es el programador el que sabe si se trabaja con naturales o enteros, y, por tanto, deberá elegir las instrucciones adecuadas para interpretar los resultados de la operación. Algoritmo para la resta En realidad, la instrucción SUB hace la resta según el siguiente algoritmo: Cambia el signo del substraendo Suma el resultado obtenido con el minuendo De esta forma, con un hardware simple (sólo un sumador), el procesador puede realizar sumas y restas de naturales y enteros. Esta es la razón fundamental por la que los computadores usan complemento a 2 para representar enteros. Ahora bien, al realizar la resta según el algoritmo anterior el bit CF se calcula mal. Para que todo sea correcto, hay que invertir el valor del bit CF antes de almacenarlo en la palabra de estado 4 Los números naturales y enteros en lenguaje de alto nivel En nuestro lenguaje de alto nivel (al igual que ocurre en la mayoría no existe el tipo de datos número natural, y se trabaja siempre con números enteros, que se representan en complemento a 2. Los números enteros pueden ser de tamaños diferentes: byte short int long 8 bits 16 bits 32 bits 64 bits Normalmente, trabajaremos con el formato int (32 bits). Los operadores que consideraremos son los siguientes: + - suma resta * producto / % cociente de la división entera resto de la división entera

5 Ejercicios Problema 1 Suponed los siguientes valores iniciales de los registros: AL = E2h BL = 9Ah a) Indicar el valor del AL y de los bits de condición después de ejecutar la instrucción ADD AL,BL AL = ZF= CF= OF= SF= b) Suponiendo que los dos bytes sumados son números naturales, determinar si el resultado es correcto, a la vista del valor de los bits de condición. Verificar la respuesta convirtiendo los números a decimal y haciendo la suma. c) Suponiendo que los dos bytes sumados son números enteros, determinar si el resultado es correcto, a la vista del valor de los bits de condición. Verificar la respuesta convirtiendo los números a decimal y haciendo la suma. Problema 2 Suponed los siguientes valores iniciales de los registros: AL = 6Dh BL = F2h d) Indicar el valor del AL y de los bits de condición después de ejecutar la instrucción SUB AL,BL AL = ZF= CF= OF= SF= e) Suponiendo que los dos bytes sumados son números naturales, determinar si el resultado es correcto, a la vista del valor de los bits de condición. Verificar la respuesta convirtiendo los números a decimal y haciendo la suma. f) Suponiendo que los dos bytes sumados son números enteros, determinar si el resultado es correcto, a la vista del valor de los bits de condición. Verificar la respuesta convirtiendo los números a decimal y haciendo la suma. Problema 3 Suponer que se declara la constante N EQU 35, y que tenemos el código siguiente: MOV CL,0 Bucle: - - ; código que no usa el CL - - INC CL CMP CL,N JL Bucle Hemos comprobado que el código funciona correctamente (el bucle da 35 vueltas). Sin embargo, hemos cambiado el valor de la constante, haciendo N EQU 140, y el bucle ha fallado (el cuerpo del bucle sólo se ejecuta una vez). Dónde está el fallo?. Cómo puede eliminarse el error?

6 Problema 4 Suponer que en EAX y EBX hay direcciones de memoria (es decir, un desplazamiento que el procesador sumará al número de segmento*16 para obtener la dirección física). Escribir el código necesario para incrementar el registro ECX en caso de que la dirección contenida en EAX sea mayor que la contenida en EBX. Problema 5 Suponer que EDX =0. Cuál será el valor de ese registro cuando acabe la ejecución del siguiente bucle? Bucle: ADD DL,3 JNO Bucle Problema 6 Suponer que en un programa JAVA tenemos las variables: int a,b,c; Traducir a TASM, usando el menor número de instrucciones posible, la siguiente sentencia JAVA: if (a >= b+1) { a = a-b+3; else a = a+b+c } Problema 7 Suponer que en un programa JAVA tenemos las variables: int a,b,c; Ejercicios avanzados Traducir a TASM, usando el menor número de instrucciones posible, la siguiente sentencia JAVA: if (a%4 > 2) { a = b/c; else a = b*c+3 } Problema 8 Suponer que en un programa JAVA tenemos las variables: long a,b,c; Traducir a TASM, usando el menor número de instrucciones posible, la siguiente sentencia JAVA: a = b + c;

Instrucciones del microprocesador

Instrucciones del microprocesador Instrucciones del microprocesador Formato de las Instrucciones Las líneas de instrucciones se integran de 4 campos. [Identificador]: Se utiliza par etiquetar a las intrucciones donde se realizara el salto,nombre

Más detalles

El Diseño de un Lenguaje Máquina

El Diseño de un Lenguaje Máquina Arquitectura de Ordenadores Juego de Instrucciones del Procesador Intel Pentium Abelardo Pardo abel@it.uc3m.es Universidad Carlos III de Madrid Departamento de Ingeniería Telemática El Diseño de un Lenguaje

Más detalles

Registros Arquitectura x86. M. en C. Erika Vilches

Registros Arquitectura x86. M. en C. Erika Vilches Registros Arquitectura x86 M. en C. Erika Vilches Registro Area especial de almacenamiento de alta velocidad dentro del CPU Registros del procesador x86 Registros de datos de propósito general Registros

Más detalles

Tema 1. Fundamentos del lenguaje ensamblador

Tema 1. Fundamentos del lenguaje ensamblador Tema 1. Fundamentos del lenguaje ensamblador Laboratorio de Estructura y Organización de Computadores Grados en Ingeniería Informática e Ingeniería de Computadores Curso 2012-2013 Índice Estructura del

Más detalles

Resumen de las instrucciones del 8086/8088

Resumen de las instrucciones del 8086/8088 Resumen de las instrucciones del 8086/8088 En este capítulo se hace un resumen de las instrucciones del 8086/8088. Estas instrucciones se encuentran explicadas más detalladamente en otro capítulo. Se puede

Más detalles

Intel 8086 modelo básico (primera parte) Registros:

Intel 8086 modelo básico (primera parte) Registros: Intel 8086 modelo básico (primera parte) Registros: Uso general: AX, BX, CX, DX, SI, DI, BP. Uso con direccionamento especial: SP, IP. Registros de segmento: CS, SS, DS, ES. Modelo de los registros: 20

Más detalles

adreça lògicacontingut (en hexadecimal) dels 8 bytes a partir de l adreça lògica

adreça lògicacontingut (en hexadecimal) dels 8 bytes a partir de l adreça lògica Solución al Problema 1 a) Suponer los siguientes contenidos de memoria: adreça lògicacontingut (en hexadecimal) dels 8 bytes a partir de l adreça lògica 0020h:0008h FC 00 1A 23 19 00 20 00 0020h:0010h

Más detalles

ESTRUCTURA Y ORGANIZACIÓN DE COMPUTADORES

ESTRUCTURA Y ORGANIZACIÓN DE COMPUTADORES Instrucciones del 8088/8086. Instrucciones de trasferencia de datos. MOV MOV destino, origen Transfiere un byte o una palabra desde el operando origen al operando destino. PUSH PUSH origen Decrementa el

Más detalles

Examen de teoría (5 puntos)

Examen de teoría (5 puntos) Examen de Estructura de Computadores. Septiembre de 25 Bien: Mal: No contestadas: Examen de teoría (5 puntos) El examen constará de dos partes: El examen tendrá una duración total de 2 horas. La nota final

Más detalles

Instrucciones Aritméticas

Instrucciones Aritméticas 1 Instrucciones Aritméticas Facultad: Estudios Tecnologicos. Escuela: Electrónica Asignatura: Microprocesadores Objetivo General Analizar la forma en que se ejecutan algunas instrucciones aritméticas y

Más detalles

Instrucción De Salto Incondicional

Instrucción De Salto Incondicional INSTRUCCIONES DE CONTROL DE FLUJO Los programas que se han desarrollado hasta ahora se ejecutan en forma secuencial, esto es, el programa inicia su ejecución con la primera instrucción y continúa de arriba

Más detalles

Tema 4. Fundamentos del ensamblador

Tema 4. Fundamentos del ensamblador Tema 4. Fundamentos del ensamblador Laboratorio de Estructura de Computadores I. T. Informática de Gestión / Sistemas Curso 2008-2009 Transparencia: 2 / 30 Índice Filosofía de programación Organigramas

Más detalles

Práctica 3 - Arquitectura del CPU

Práctica 3 - Arquitectura del CPU Práctica 3 - Arquitectura del CPU Organización del Computador 1 Primer cuatrimestre de 2012 Ejercicio 1 A partir de cada uno de los siguientes vuelcos parciales de memoria y estados del procesador, realizar

Más detalles

ITT-327-T Microprocesadores

ITT-327-T Microprocesadores ITT-327-T Microprocesadores Lenguaje de Programación Ensamblador. Set de Instrucciones del 8088/8086. El set de instrucciones de un microprocesador define las operaciones básicas que el programador puede

Más detalles

Trabajo Práctico Nro 3: Assembler

Trabajo Práctico Nro 3: Assembler Año 28 Banderas Nombre Estado = Estado = 1 Desbordamiento: Indica cuando el resultado de una operación con NV-No hubo OV-Desborde signo a excedido la capacidad del up. desborde Dirección: Controla la selección

Más detalles

Programación de IA-32 Modo Real

Programación de IA-32 Modo Real Programación de IA-32 Modo Real Control del flujo de la ejecución Erwin Meza Vega IA-32 Modo real (1/2) Acceso sólo a características limitadas del procesador Se comporta como un 8086 muy rápido Uso de

Más detalles

Examen de teoría (5 puntos)

Examen de teoría (5 puntos) Bien: Mal: No contestadas: Examen de teoría (5 puntos) El examen tendrá una duración total de 2 horas. El examen constará de dos partes: teoría y problemas. La nota final será la suma de las dos partes

Más detalles

Práctica 3: Programación en ASM Orga 1

Práctica 3: Programación en ASM Orga 1 Ignacio Eguinoa Organización del Computador I DC - UBA Segundo Cuatrimestre de 2015 Generaciones de lenguajes 1G: Lenguaje de máquina(código binario de operaciones) 2G: Lenguaje Ensamblador(Assembly) (Textual

Más detalles

PRÁCTICA # 2. 0 Direcciones 1 Dirección 2 Direcciones 3 Direcciones

PRÁCTICA # 2. 0 Direcciones 1 Dirección 2 Direcciones 3 Direcciones UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE CIENCIAS ESCUELA DE COMPUTACIÓN UNIDAD DOCENTE DE REDES, ARQUITECTURA Y SISTEMAS ORGANIZACIÓN Y ESTRUCTURA DEL COMPUTADOR I PRÁCTICA # 2 1. Escriba programas

Más detalles

Conceptos de Arquitectura de Computadoras Curso 2015

Conceptos de Arquitectura de Computadoras Curso 2015 PRACTICA 1 Assembly, Instrucciones, Programas, Subrutinas y Simulador MSX88 Objetivos: que el alumno Domine las instrucciones básicas del lenguaje assembly del MSX88. Utilice los diferentes modos de direccionamiento.

Más detalles

Seguimiento. Organización del Computador I. Gustavo Cairo Carlos A. Di Pietro Carolina Lang. 1 er Cuatrimestre de 2016

Seguimiento. Organización del Computador I. Gustavo Cairo Carlos A. Di Pietro Carolina Lang. 1 er Cuatrimestre de 2016 La Máquina ORGA1: Arquitectura y Seguimiento Organización del Computador I Gustavo Cairo Carlos A. Di Pietro Carolina Lang Departamento de Computación - FCEyN UBA 1 er Cuatrimestre de 2016 Outline Arquitectura

Más detalles

Lógica Computacional. Aritmética binaria

Lógica Computacional. Aritmética binaria Lógica Computacional Aritmética binaria Aritmética binaria - Suma Para sumar dos (o más) números en sistema binario seguimos el mismo procedimiento que para sistema decimal, teniendo en cuenta que: 1 +

Más detalles

Circuitos electrónicos digitales

Circuitos electrónicos digitales Circuitos electrónicos digitales Universidad de Sevilla Tema 6 Unidades aritméticas y lógicas Índice Introducción Aritmética binaria Circuitos sumadores básicos Sumador de n bits Sumador/Restador Unidad

Más detalles

Objetivo. Introducción. Tema: GENERACION DE CODIGO. Compiladores, Guía 11 1

Objetivo. Introducción. Tema: GENERACION DE CODIGO. Compiladores, Guía 11 1 Compiladores, Guía 11 1 Tema: GENERACION DE CODIGO. Facultad : Ingeniería Escuela :Computación Asignatura:Compiladores Objetivo Reconocer las diferentes instrucciones para la generación de código.ensamblador

Más detalles

Se detecta cuando el resultado requiera n+1 bits siendo que la representación solo utiliza n bits.

Se detecta cuando el resultado requiera n+1 bits siendo que la representación solo utiliza n bits. La multiplicación y la división se tratan sin dificultad operando por un lado con las magnitudes y por otro con los signos. Existe la posibilidad de desbordamiento (overflow) en estas operaciones. Se detecta

Más detalles

Práctica 1. Introducción a la programación en ensamblador

Práctica 1. Introducción a la programación en ensamblador Práctica 1 Introducción a la programación en ensamblador 1. Generalidades 2. Introducción 3. Cuestiones 1. Generalidades El desarrollo de las prácticas consistirá en una breve introducción del tema por

Más detalles

MATEMÁTICAS PARA LA COMPUTACIÓN CAPÍTULO 1. SISTEMAS NUMÉRICOS

MATEMÁTICAS PARA LA COMPUTACIÓN CAPÍTULO 1. SISTEMAS NUMÉRICOS MATEMÁTICAS PARA LA COMPUTACIÓN CAPÍTULO 1. SISTEMAS NUMÉRICOS SUMA DE DOS CANTIDADES EN COMPLEMENTO A 2. AUTOR: JOSÉ ALFREDO JIMÉNEZ MURILLO AVC APOYO VIRTUAL PARA EL CONOCIMIENTO SUMA DE DOS CANTIDADES

Más detalles

Guía de ejercicios # 8 Flags y Saltos

Guía de ejercicios # 8 Flags y Saltos Guía de ejercicios # 8 Flags y Saltos Organización de Computadoras 2018 UNQ Los objetivos de esta práctica son: Comprender qué son y para qué se utilizan los Flags. Conocer qué operaciones modifican los

Más detalles

Arquitectura (Procesador familia 80 x 86 )

Arquitectura (Procesador familia 80 x 86 ) Arquitectura (Procesador familia 80 x 86 ) Diseño de operación Basada en la arquitectura Von Newman Memoria CPU asignadas direcciones I / O BUS: Es un canal de comunicaciones Bus de direcciones: Contiene

Más detalles

Sistemas numéricos -números negativos- Taller de programación

Sistemas numéricos -números negativos- Taller de programación Sistemas numéricos -números negativos- Taller de programación I semestre, 2016 Números negativos Temas Números binarios negativos Problema: cómo representar números negativos en un mecanismo computacional?

Más detalles

Examen de teoría (5 puntos)

Examen de teoría (5 puntos) Bien: Mal: No contestadas: Examen de teoría (5 puntos) El examen constará de dos partes: 1ª parte: Test, con una puntuación de 5 puntos y 30 minutos de tiempo 2ª parte: Ejercicios prácticos, con una puntuación

Más detalles

Computación 1. Representación Interna de Números

Computación 1. Representación Interna de Números Computación 1 Representación Interna de Números Contenido Representación de Enteros Sin Signo Representación de Enteros Con Signo con magnitud y signo exceso a M Complemento a 1 Números Enteros Representación

Más detalles

MICROPOCESADOR NOTAS DE CURSO (Versión 2.1)

MICROPOCESADOR NOTAS DE CURSO (Versión 2.1) MICROPOCESADOR 8086 NOTAS DE CURSO (Versión 2.1) Arquitectura de Computadores 2 Facultad de Ingeniería ÍNDICE DIRECCIONAMIENTO DE MEMORIA... 2 MODOS DE DIRECCIONAMIENTO... 3 REGISTRO... 3 VALOR o INMEDIATO...

Más detalles

Examen de teoría (5 puntos)

Examen de teoría (5 puntos) Examen de Estructura de Computadores. 4 de Septiembre de 24 Bien: Mal: No contestadas: Examen de teoría (5 puntos) El examen constará de dos partes: ª parte: Test, con una puntuación de 5 puntos y 3 minutos

Más detalles

Práctica 1 - Representación de la información

Práctica 1 - Representación de la información Práctica 1 - Representación de la información Organización del Computador 1 Primer Cuatrimestre 2014 Ejercicio 1 a) Utilizando el método del cociente, expresar en bases 2, 3 y 5 los números 33, 100 y 1023.

Más detalles

5.2. Sistemas de codificación en binario

5.2. Sistemas de codificación en binario 5.2. Sistemas de codificación en binario 5.2.1. Sistemas numéricos posicionales [ Wakerly 2.1 pág. 26] 5.2.2. Números octales y hexadecimales [ Wakerly 2.2 pág. 27] 5.2.3. Conversión general de sistemas

Más detalles

El equivalente en decimal V de un número binario se puede conocer usando la siguiente formula: n 1 d i {0,1}

El equivalente en decimal V de un número binario se puede conocer usando la siguiente formula: n 1 d i {0,1} Apuntes de Arquitectura de Computadoras Por M. C. Miguelangel Fraga Aguilar Repaso 1- Representaciones numéricas Números sin Signo. En las computadoras modernas se representa a los números usando el sistema

Más detalles

Ejercicios del Tema 3. Fundamentos de la programación en ensamblador

Ejercicios del Tema 3. Fundamentos de la programación en ensamblador Ejercicios del Tema 3. Fundamentos de la programación en ensamblador Ejercicio 1. Escriba un programa en ensamblador del MIPS 32 para calcular la suma de los 100 primeros números naturales. El programa

Más detalles

INFORMÁTICA INDUSTRIAL. 3º INGENIERÍA TÉCNICA ELECTRÓNICA PRÁCTICA 1: ESTRUCTURA INTERNA DE UNA CPU.

INFORMÁTICA INDUSTRIAL. 3º INGENIERÍA TÉCNICA ELECTRÓNICA PRÁCTICA 1: ESTRUCTURA INTERNA DE UNA CPU. INFORMÁTICA INDUSTRIAL. 3º INGENIERÍA TÉCNICA ELECTRÓNICA PRÁCTICA 1: ESTRUCTURA INTERNA DE UNA CPU. OBJETIVOS: En esta práctica se pretende que el alumno aprenda la estructura y funcionamiento de un procesador

Más detalles

Tema: Lenguaje ensamblador embebido

Tema: Lenguaje ensamblador embebido Compiladores. Guía 10 1 Facultad: Ingeniería Escuela: Computación Asignatura: Compiladores Tema: Lenguaje ensamblador embebido Contenido En esta guía se presenta una breve introducción a las estructuras

Más detalles

LOGICA DIGITAL ARITMETICA DE COMPUTADORAS ASPECTOS FUNDAMENTALES 1. FORMA DE REPRESENTAR LOS NUMEROS ( FORMATO BINARIO)

LOGICA DIGITAL ARITMETICA DE COMPUTADORAS ASPECTOS FUNDAMENTALES 1. FORMA DE REPRESENTAR LOS NUMEROS ( FORMATO BINARIO) LOGICA DIGITAL ARITMETICA DE COMPUTADORAS ASPECTOS FUNDAMENTALES 1. FORMA DE REPRESENTAR LOS NUMEROS ( FORMATO BINARIO) 2. ALGORITMOS UTILIZADOS PARA REALIZAR LAS OPERACIONES BASICAS (SUMA, RESTA, MULTIPLICACION

Más detalles

Tema 4. Lenguaje máquina y lenguaje ensamblador

Tema 4. Lenguaje máquina y lenguaje ensamblador Enunciados de problemas Tema 4. Lenguaje máquina y lenguaje ensamblador Estructura de Computadores I. T. Informática de Gestión / Sistemas Curso 2008-2009 Tema 4: Hoja: 2 / 28 Tema 4: Hoja: 3 / 28 Base

Más detalles

Ejercicios del Tema 3. Fundamentos de la programación en ensamblador

Ejercicios del Tema 3. Fundamentos de la programación en ensamblador Ejercicios del Tema 3. Fundamentos de la programación en ensamblador Ejercicio 1. Dada la siguiente expresión de un lenguaje de alto nivel int a = 6; int b = 7; int c = 3; int d; d = (a+b) * (a+b); Indique

Más detalles

Universidad Euskal Herriko del País Vasco Unibertsitatea Arquitectura de Computadores I Sistema de memoria 1

Universidad Euskal Herriko del País Vasco Unibertsitatea Arquitectura de Computadores I Sistema de memoria 1 Arquitectura I Sistema de memoria 1 1. En un espacio de direcciones de 64 Kbytes deben colocarse los s de memoria que se indican. Suponer que el direccionamiento de la memoria se hace al byte. Dibujar

Más detalles

(2) Unidad 2. Modelo de Programación del 80x86 de Intel SISTEMAS BASADOS EN MICROPROCESADORES. Grado en Ingeniería Informática EPS - UAM

(2) Unidad 2. Modelo de Programación del 80x86 de Intel SISTEMAS BASADOS EN MICROPROCESADORES. Grado en Ingeniería Informática EPS - UAM (2) Unidad 2 Modelo de Programación del 80x86 de Intel SISTEMAS BASADOS EN MICROPROCESADORES Grado en Ingeniería Informática EPS - UAM (2) Índice 2. Modelo de programación del 80x86 de Intel. 2.1. Familia

Más detalles

HOJA DE PROBLEMAS 2. SISTEMA BINARIO DE REPRESENTACIÓN NUMÉRICA. 1. Convertir los siguientes números binarios a sus equivalentes decimales: a.

HOJA DE PROBLEMAS 2. SISTEMA BINARIO DE REPRESENTACIÓN NUMÉRICA. 1. Convertir los siguientes números binarios a sus equivalentes decimales: a. Universidad Rey Juan Carlos Grado en Ingeniería de Computadores Tecnología de Computadores HOJA DE PROBLEMAS 2. SISTEMA BINARIO DE REPRESENTACIÓN NUMÉRICA 1. Convertir los siguientes números binarios a

Más detalles

Examen de teoría (5 puntos)

Examen de teoría (5 puntos) Bien: Mal: No contestadas: Examen de teoría (5 puntos) El examen constará de dos partes: 1ª parte: Test, con una puntuación de 5 puntos y 40 minutos de tiempo 2ª parte: Ejercicios prácticos, con una puntuación

Más detalles

Organización de Computadoras

Organización de Computadoras Organización de Computadoras SEMANA 8 UNIVERSIDAD NACIONAL DE QUILMES Qué vimos? Notación científica Punto flotante Idea Interpretación Mantisa fraccionaria vs mantisa entera Resolución Normalización Bit

Más detalles

Introducción al simulador

Introducción al simulador Departamento de Automática 1 / 17 Índice Proyecciones de dispositivos de entrada/salida Registros Instrucciones 2 / 17 Arquitectura del simulador Sitio web https://parraman.github.io/asm-simulator/ Proyecto

Más detalles

Organización de computadoras. Clase 6. Universidad Nacional de Quilmes. Lic. Martínez Federico

Organización de computadoras. Clase 6. Universidad Nacional de Quilmes. Lic. Martínez Federico Organización de computadoras Clase 6 Universidad Nacional de Quilmes Lic. Martínez Federico Qué vimos? Pila Push Pop Modularizar Reusar Call y Ret Q5 Qué vimos? JMP y CALL no son lo mismo? NO Qué hay para

Más detalles

EXAMEN ORDINARIO DE ORGANIZACIÓN DE COMPUTADORES

EXAMEN ORDINARIO DE ORGANIZACIÓN DE COMPUTADORES 11 de febrero de 2010 16h. Escuela Técnica Superior de Ingeniería Informática Camino del Cementerio s/n. 47011 Valladolid EXAMEN ORDINARIO DE ORGANIZACIÓN DE COMPUTADORES NOTA: Los alumnos con las prácticas

Más detalles

Organización de computadoras. Clase 8. Universidad Nacional de Quilmes. Lic. Martínez Federico

Organización de computadoras. Clase 8. Universidad Nacional de Quilmes. Lic. Martínez Federico Organización de computadoras Clase 8 Universidad Nacional de Quilmes Lic. Martínez Federico El Parcial Dónde estábamos? Limitaciones de Q3 Y ahora? Y ahora? Limitaciones de Q3 Flags: Qué? Cómo? Para qué?

Más detalles

Números con y sin signo Suma y resta Operaciones Lógicas Construyendo una ALU Multiplicación División Punto Flotante

Números con y sin signo Suma y resta Operaciones Lógicas Construyendo una ALU Multiplicación División Punto Flotante /3/22 rquitectura de Computadoras Primavera 22 Números con sin signo Suma resta Operaciones Lógicas Construendo una LU Multiplicación División Punto Flotante 2 Los números son representados en base 2 Cada

Más detalles

Representación de números enteros: el convenio exceso Z

Representación de números enteros: el convenio exceso Z Representación de números enteros: el convenio exceso Z Apellidos, nombre Martí Campoy, Antonio (amarti@disca.upv.es) Departamento Centro Informàtica de Sistemes i Computadors Escola Tècnica Superior d

Más detalles

Representación digital de la información

Representación digital de la información Tema 1: Representación digital de la información Fundamentos de computadores José Manuel Mendías Cuadros Dpto. Arquitectura de Computadores y Automática Universidad Complutense de Madrid 2 Introducción

Más detalles

PROGRAMACIÓN EN ASSEMBLER SIMULADOR MSX88

PROGRAMACIÓN EN ASSEMBLER SIMULADOR MSX88 PROGRAMACIÓN EN ASSEMBLER SIMULADOR MSX88 REPASO CONCEPTO DE PROGRAMA ANTES se tenían sistemas cableados Datos Secuencia de funciones aritmético/lógicas Resultados Programación en hardware: cuando cambiamos

Más detalles

Aritmética de Enteros y

Aritmética de Enteros y 1 Aritmética de Enteros y Flotantes 2013 Transversal de Programación Básica Proyecto Curricular de Ingeniería de Sistemas 2 1. Introduccion La aritmética de enteros es aritmética modular en complemento

Más detalles

UNIDAD I CONCEPTOS GENERALES. Conceptos Generales Microprocesadores Otoño 2011

UNIDAD I CONCEPTOS GENERALES. Conceptos Generales Microprocesadores Otoño 2011 1 UNIDAD I CONCEPTOS GENERALES Fall 2011 Conceptos Generales Microprocesadores Otoño 2011 Contenido 2 Introducción Arquitectura generalizada de una computadora Componentes de una computadora Conjunto de

Más detalles

PROCESAMIENTO DE LOS DATOS. Procesamiento de datos ascii a binario y de binario a ascii

PROCESAMIENTO DE LOS DATOS. Procesamiento de datos ascii a binario y de binario a ascii PROCESAMIENTO DE LOS DATOS Procesamiento de datos ascii a binario y de binario a ascii En ensamblador el tipo de dato es un carácter, por lo tanto es necesario procesar este dato y convertir de su correspondiente

Más detalles

RELACIÓN DE PROBLEMAS DE LÓGICA PROGRAMADA (TEMA 4)

RELACIÓN DE PROBLEMAS DE LÓGICA PROGRAMADA (TEMA 4) RELACIÓN DE PROBLEMAS DE LÓGICA PROGRAMADA (TEMA 4) 1) Se ha escrito el programa adjunto en lenguaje ensamblador del microprocesador 8085. Sabiendo que se encuentra almacenado a partir de la posición 2000H

Más detalles

Comparaciones en lenguaje ensamblador

Comparaciones en lenguaje ensamblador Comparaciones en lenguaje ensamblador Objetivo: Entender cómo se realizan las comparaciones de datos en lenguaje ensamblador En lenguaje ensamblador no existe la instrucción IF como se trabaja en otros

Más detalles

Práctica 3 - Aritmética del Computador

Práctica 3 - Aritmética del Computador Práctica 3 - ritmética del Computador Organización del Computador 1 Verano 2014 Ejercicio 1 a. 3174 (8) 0522 (8) b. 4165 (8) 1654 (8) i) Cuánto es +, si representan enteros sin signo de 12-bits en base

Más detalles

Práctica 4. Organización del Computador 1 12 de septiembre de Algunas consideraciones preliminares:

Práctica 4. Organización del Computador 1 12 de septiembre de Algunas consideraciones preliminares: Práctica 4 Organización del Computador 1 12 de septiembre de 2005 Algunas consideraciones preliminares: Donde aparece xxxxxxxx quiere decir que el valor correcto ya está en esa dirección de memoria Todos

Más detalles

Computación I Representación Interna Curso 2011

Computación I Representación Interna Curso 2011 Computación I Representación Interna Curso 2011 Facultad de Ingeniería Universidad de la República Temario Representación de Números Enteros Representación de Punto Fijo Enteros sin signo Binarios puros

Más detalles

Sistemas Digitales. Pablo Abad Pablo Prieto Torralbo. Tema 2. Números Naturales y Enteros. Departamento de Ingeniería Informá2ca y Electrónica

Sistemas Digitales. Pablo Abad Pablo Prieto Torralbo. Tema 2. Números Naturales y Enteros. Departamento de Ingeniería Informá2ca y Electrónica Sistemas Digitales Tema 2. Números Naturales y Enteros «Digital Design and Computer Architecture» (Harris & Harris). Chapter 1 (1.3 1.4) Pablo Abad Pablo Prieto Torralbo Departamento de Ingeniería Informá2ca

Más detalles

Relación de Problemas I

Relación de Problemas I Relación de Problemas I 352) $1'5e6 52/'È1 $5$1'$ 1. Realizar el cálculo del tiempo que transcurre durante la ejecución del bloque de instrucciones sombreado, en función del contenido de los registros

Más detalles

Tema 2: EL TIPO DE DATOS ENTERO. INSTRUCCIÓN DE ASIGNACIÓN Y DE COMPOSICIÓN SECUENCIAL

Tema 2: EL TIPO DE DATOS ENTERO. INSTRUCCIÓN DE ASIGNACIÓN Y DE COMPOSICIÓN SECUENCIAL Tema 2: EL TIPO DE DATOS ENTERO. INSTRUCCIÓN DE ASIGNACIÓN Y DE COMPOSICIÓN SECUENCIAL Cualquier duda sobre el contenido de este tema se puede enviar al foro TEORIA2. 2.1.- El tipo de datos entero (byte,

Más detalles

Examen de Laboratorio de Estructura de Computadores Septiembre 2005 I.T. Informática de Sistemas / Gestión Departamento de Automática ATC -

Examen de Laboratorio de Estructura de Computadores Septiembre 2005 I.T. Informática de Sistemas / Gestión Departamento de Automática ATC - Test (3 puntos) Pregunta correcta= 0,3 Pregunta no contestada= 0 Pregunta incorrecta (tipo test)= -0,15 1) Cual de las siguientes afirmaciones es correcta? [_] a) En lenguaje máquina se representan las

Más detalles

Tipos de Datos y Representaciones. Circuitos Digitales, 2º de Ingeniero de Telecomunicación. EITE ULPGC.

Tipos de Datos y Representaciones. Circuitos Digitales, 2º de Ingeniero de Telecomunicación. EITE ULPGC. Tipos de Datos y Representaciones Circuitos Digitales, 2º de Ingeniero de Telecomunicación. EITE ULPGC. Índice 1. Sistemas numéricos posicionales 2. Números octales y hexadecimales 3. Conversiones entre

Más detalles

Aritmética de Enteros

Aritmética de Enteros Aritmética de Enteros La aritmética de los computadores difiere de la aritmética usada por nosotros. La diferencia más importante es que los computadores realizan operaciones con números cuya precisión

Más detalles

Lenguajes de Interfaz

Lenguajes de Interfaz Lenguajes de Interfaz Unidad 1 Introducción al Lenguaje Ensamblador M. C. Miguelangel Fraga Aguilar 1.1 Importancia de la programación en Lenguaje Ensamblador Mejor conocimiento del funcionamiento del

Más detalles

Tema 4. Lenguaje máquina y lenguaje ensamblador

Tema 4. Lenguaje máquina y lenguaje ensamblador Soluciones a los problemas impares Tema 4. Lenguaje máquina y lenguaje ensamblador Estructura de Computadores I. T. Informática de Gestión / Sistemas Curso 2008-2009 Tema 4: Hoja: 2 / 36 Tema 4: Hoja:

Más detalles

Fundamentos de Programación. El Sistema de Numeración Binario. Fundamentos de Programación. Página 02.0 de 44

Fundamentos de Programación. El Sistema de Numeración Binario. Fundamentos de Programación. Página 02.0 de 44 Fundamentos de Programación. El Sistema de Numeración Binario. Fundamentos de Programación. Página 02.0 de 44 Atención! Hay 10 clases de personas: las que entienden el Sistema Binario y las que no. Fundamentos

Más detalles

Universidad Nacional de Ingeniería Arquitectura de Maquinas I. Unidad II: Arquitectura y Programacion de un Microprocesador (80X86)

Universidad Nacional de Ingeniería Arquitectura de Maquinas I. Unidad II: Arquitectura y Programacion de un Microprocesador (80X86) Universidad Nacional de Ingeniería Arquitectura de Maquinas I Unidad II: Arquitectura y Programacion de un Microprocesador (80X86) Arq. de Computadora I Ing. Carlos Ortega H. 1 Interrupciones FUNCIÓN INT

Más detalles

Operaciones lógicas y repetición

Operaciones lógicas y repetición Organización de computadoras Universidad Nacional de Quilmes http:// Repaso Algebra de Boole Memoria principal datos direcciones Unidad Aritmético- Logica (ALU) Unidad de Control de programa (UC) CPU 1

Más detalles

Ingeniería en Computación

Ingeniería en Computación Universidad Autónoma del Estado de México Centro Universitario UAEM Valle de México Ingeniería en Computación Unidad de Aprendizaje: Lenguaje Ensamblador Tema: Sistemas Numéricos E l a b o r ó : D r. en

Más detalles

Titulación: Grado en Ingeniería Informática Asignatura: Fundamentos de Computadores

Titulación: Grado en Ingeniería Informática Asignatura: Fundamentos de Computadores Titulación: Grado en Ingeniería Informática Asignatura: Fundamentos de Computadores Bloque 1: Introducción Tema 2: Sistema binario de representación numérica Pablo Huerta Pellitero ÍNDICE Bibliografía.

Más detalles

Tema 3. Operaciones aritméticas y lógicas

Tema 3. Operaciones aritméticas y lógicas Tema 3. Operaciones aritméticas y lógicas Soluciones a los problemas impares Estructura de Computadores I. T. Informática de Gestión / Sistemas Curso 2008-2009 Tema 3: Hoja: 2 / 25 Tema 3: Hoja: 3 / 25

Más detalles

Intel 8086. Arquitectura. Programación en Ensamblador Ing. Marcelo Tosini - 2001

Intel 8086. Arquitectura. Programación en Ensamblador Ing. Marcelo Tosini - 2001 Intel 8086 Arquitectura Características generales Procesador de 16 bits Bus de direcciones de 20 bits : 1 Mbyte Bus de datos interno de 16 bits Bus de datos externo de 16 bits en el 8086 8 bits en el 8088

Más detalles

Tema 1: Representación de los números

Tema 1: Representación de los números 1 Tema 1: Representación de los números Representación de los números Objetivos Sistemas de numeración Decimal Binario Octal y hexadecimal Cambios de base Formas de representación de los números Operaciones

Más detalles

SUMA DESPLAZAMIENTO. Comprobación: = =216. Multiplicar 12 x 18 (resultado 216)

SUMA DESPLAZAMIENTO. Comprobación: = =216. Multiplicar 12 x 18 (resultado 216) SUMA DESPLAZAMIENTO Multiplicar 12 x 18 (resultado 216) 12 01100 18 10010 R1 R2 C R3 R4 COMENTARIOS 0 1100 10010 0 0000 XXXXX Inicio, contador=0 contador=1 0 0000 0XXXX Desplazamiento 01001 Rotación R2

Más detalles

El procesador. Datapath para las instrucciones de brinco

El procesador. Datapath para las instrucciones de brinco El procesador Datapath para las instrucciones de brinco Instrucciones de brinco Dos tipos de instrucciones de brincos: 1. Brinco condicional. beq $t0, $t1, Etiqueta ; if t0 == t1 goto Etiqueta 2. Brinco

Más detalles

Tema 2: Sistemas de numeración

Tema 2: Sistemas de numeración Tema 2: Sistemas de numeración Definiciones Bases de numeración Modos de representación Representaciones numéricas Coma fija (números enteros) Suma-resta en base dos Representaciones alfanuméricas Definiciones

Más detalles

1.2.- EL MICROPROCESADOR.

1.2.- EL MICROPROCESADOR. 1.2.- EL MICROPROCESADOR. El microprocesador es un circuito integrado que contiene algunos o todos los elementos necesarios para conformar una (o más) unidad central de procesamiento UCP, también conocido

Más detalles

https://dac.escet.urjc.es/docencia/etc-sistemas/teoria-cuat1/tema2.pdf

https://dac.escet.urjc.es/docencia/etc-sistemas/teoria-cuat1/tema2.pdf 1.3 Sistemas numéricos 1.3.1. Introducción Un sistema de representación numérica es un lenguaje que consiste en: Un conjunto ordenado de símbolos (dígitos o cifras) y otro de reglas bien definidas para

Más detalles

Expresiones y Operadores

Expresiones y Operadores Lenguaje C Expresiones y Departamento de Electrónica Fundación San Valero básicos: Operador de asignación: = No es del todo equivalente al igual matemático. A la derecha siempre estará el valor a asignar,

Más detalles

ESCUELA POLITÉCNICA NACIONAL

ESCUELA POLITÉCNICA NACIONAL ESCUELA POLITÉCNICA NACIONAL Campus Politécnico "J. Rubén Orellana R." FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA Carrera de Ingeniería Electrónica y Control Carrera de Ingeniería Electrónica y Telecomunicaciones

Más detalles

Problemas propuestos. Construir un multiplexor de 5 entradas a) utilizando puertas lógicas. b) utilizando multiplexores de dos entradas.

Problemas propuestos. Construir un multiplexor de 5 entradas a) utilizando puertas lógicas. b) utilizando multiplexores de dos entradas. Construir un multiplexor de 5 entradas a) utilizando puertas lógicas. b) utilizando multiplexores de dos entradas. Un circuito de desplazamiento en barril ( barrel-shifter ) mueve los datos de entrada

Más detalles

Ejercicios del tema 4. El procesador

Ejercicios del tema 4. El procesador Ejercicios del tema 4. El procesador Estructura del procesador elemental WepSIM Address Bus Data Bus Control Bus C0 Ta Internal Bus RA RB RC LC MAR T9 Memory MRdy BE ADDR DATA R W A31-A0 BE3-BE0 D31-D0

Más detalles

Tema 3. Operaciones aritméticas y lógicas

Tema 3. Operaciones aritméticas y lógicas Enunciados de problemas Tema 3. Operaciones aritméticas y lógicas Estructura de Computadores I. T. Informática de Gestión / Sistemas Curso 2008-2009 Tema 3: Hoja: 2 / 18 Tema 3: Hoja: 3 / 18 Base teórica

Más detalles

Ejercicio. Solución. Banderas. Banderas. Banderas 05/10/2011 UNIDAD 5 2 A PARTE PROGRAMANDO EN EL ENSAMBLADOR DEL Z80

Ejercicio. Solución. Banderas. Banderas. Banderas 05/10/2011 UNIDAD 5 2 A PARTE PROGRAMANDO EN EL ENSAMBLADOR DEL Z80 1 UNIDAD 5 2 A PARTE PROGRAMANDO EN EL ENSAMBLADOR DEL Z80 2 Cargue el numero F2H y 68H en los registros B y C respectivamente Almacene A2H en la locación de memoria 2065H Reste el 68H de F2H (F2H-68H)

Más detalles

TEMA III: OPERACIONES CON LOS DATOS

TEMA III: OPERACIONES CON LOS DATOS CUESTIONES A TRATAR: Cual es la función de la unidad operativa? Es necesaria? Qué tipos de circuitos implementan la unidad operativa? Unidad operativa frente a ALU Qué es una operación de múltiple precisión?

Más detalles

Representación digital de la información

Representación digital de la información Tema 1: Representación digital de la información Fundamentos de computadores José Manuel Mendías Cuadros Dpto. Arquitectura de Computadores y Automática Universidad Complutense de Madrid 2 Introducción

Más detalles

Ejercicios del tema 4. El procesador

Ejercicios del tema 4. El procesador jercicios del tema 4. l procesador jercicio 1. Considere un procesador de 32 bits con una frecuencia de reloj de 500 MHz con la estructura del mostrado en el jercicio 3. La memoria se direcciona por bytes

Más detalles

Acceso Directo a Memoria

Acceso Directo a Memoria Tema 7: Acceso Directo a Memoria 7.1 El concepto Qué es una transferencia por acceso directo a memoria? El modelo de transferencia de información visto en los capítulos anteriores se denomina transferencia

Más detalles

Apuntes de Microcontroladores (Repaso de temas previos)

Apuntes de Microcontroladores (Repaso de temas previos) Apuntes de Microcontroladores (Repaso de temas previos) Por M. C. Miguelangel Fraga Aguilar Enero 2015 Representaciones numéricas En estos apuntes se usara el posfijo b para denotar un número escrito en

Más detalles