1. Propiedades de la Presión Hidrostática.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "1. Propiedades de la Presión Hidrostática."

Transcripción

1 Tema. Hidrostática. ropiedades de la resión Hidrostática.. Ecuación fundamental de la Hidrostática.. resión Hidrostática en los líquidos. Ecuación de equilibrio de los líquidos pesados. ota pieométrica. 4. Superficie de nivel en los líquidos pesados. 5. Variación de la presión con la profundidad. Diagrama de presiones. 6. resiones sobre superficies planas: ) álculo del valor de la presión total ) Determinación del centro de presión ) asos más frecuentes en la práctica 4) resión total sobre una pared plana rectangular con líquido a ambos lados Ya vimos en el tema que la Hidrostática es la parte de la Hidráulica que estudia el equilibrio de los líquidos en estado de reposo. En estas circunstancias, al ser nulo el gradiente de velocidad, no eisten esfueros cortantes (tangenciales), por lo que no eiste viscosidad, comportándose el líquido como perfecto. or tanto, pueden obtenerse sus leyes de forma analítica, no siendo necesario recurrir a la eperimentación para corregir las ecuaciones con coeficientes que ajusten la teoría a la realidad. ropiedades de la resión Hidrostática. La presión es la fuera que se ejerce por unidad de superficie. or lo tanto, vendrá definida por su módulo o intensidad y por su dirección, siendo evidente el sentido en que actúa (acia el cuerpo considerado). A continuación vamos a estudiar las dos propiedades que la definen.

2 . Relativa a su dirección: En una masa líquida en equilibrio, la presión idrostática en cualquiera de sus puntos debe ser normal (perpendicular) al elemento plano sobre el que actúa. Si no fuera así, eistiría una componente tangencial que rompería el equilibrio. F S siendo: F: Fuera uniformemente repartida, o bien, fuera media que actúa sobre s S: Superficie Si s se ace infinitamente pequeña, entonces se define la presión: lim ds 0 df ds. Relativa a su intensidad: En un punto de una masa líquida eiste la misma presión idrostática en todas las direcciones, es decir, la presión es independiente de la inclinación de la superficie sobre la que actúa. onsideremos un volumen elemental de líquido en reposo en forma de tetraedro OAB, según muestra la figura.. y d dy O d A B y Figura..

3 Las fueras que actúan son: Fueras másicas, es decir, las fueras eteriores que actúan sobre la masa del elemento líquido. Se deben a la gravedad, dependen del peso del elemento considerado, y por tanto son proporcionales al producto de las tres dimensiones ( d dy d), es decir, al volumen. El empuje sobre cada una de las caras del tetraedro, debido a las presiones ejercidas por el resto del líquido. omo FS, la fuera total que actúa sobre cada cara será (Fig...): ara AB SAB ara BO X SBO ara AO Y SAO ara AOB Z SAOB Estableciendo la ecuación de equilibrio de las fueras de presión intervinientes y proyectándolas sobre el eje OX se obtiene: S S AB 44 BO cos(p, ) p 44 s BO X S BO Luego S cos(, ) por tratarse de superficies infinitesimales AB Análogamente, proyectando sobre los ejes OY y OZ, se obtiene: S S AB 44 cos(p, y) 44 s AO AB 44 AOB Y cos(, ) 44 s Z S AO AOB Y Z on lo que se demuestra que, con independencia de la inclinación del elemento de superficie, las presiones unitarias son iguales. y

4 . Ecuación fundamental de la Hidrostática. Es la ecuación de equilibrio de una masa líquida. onsideremos dentro de un líquido en reposo un elemento de volumen infinitesimal en forma de paralelepípedo rectangular, de aristas paralelas a los ejes coordenados, como muestra la figura.. d D F A B d E y dy y Figura.. El paralelepípedo está sometido a las fueras eteriores o másicas, aplicada la resultante en su centro de gravedad (cdg), es decir, el peso propio, y a las presiones sobre sus caras eteriores o empuje ejercidas por el líquido circundante. Obsérvese que las presiones sobre las caras que forman el triedro que pasa por A son iguales (), según se demostró en el apartado anterior. Las condiciones de equilibrio del paralelepípedo se plantean igualando a cero la suma de todas las fueras que actúan sobre él, proyectándolas sobre 4

5 cada uno de los ejes. (, y, ) serían las componentes de la resultante de las fueras eteriores según los tres ejes. royecciones sobre OX: omponentes de las fueras eteriores ρ d dy d 44 volumen 678 s resión total sobre la cara AD dy d resión total sobre la cara BEF d dy d Las presiones que actúan sobre las demás caras dan proyecciones nulas sobre el eje OX. royecciones sobre OX 0 ρ d dy d dy d d dy d 0 d dy d ρ d dy d dy d dy d d dy d ρ d dy d dy d Simplificando se obtiene: ρ [] Operando de igual modo sobre los ejes OY y OZ, las condiciones de equilibrio serían, respectivamente: y ρ y ρ [] [] 5

6 Multiplicando las ecuaciones [], [] y [] por d, dy y d, respectivamente, y sumándolas, se obtiene: d dy d ρ ( d y dy d) y El primer miembro es una ecuación diferencial total, con lo que se puede poner de la forma: d ρ ( d y dy d) Esta ecuación se conoce como Ecuación de equilibrio de una masa líquida o Ecuación Fundamental de la Hidrostática. Las superficies de nivel son aquellas que tienen la misma presión en todos sus puntos, por lo que al ser cte, d 0, quedando la ecuación fundamental de la forma: ( d y dy d) 0 Que es la ecuación diferencial de las superficies de nivel o equipotenciales.. resión Hidrostática en los líquidos. Ecuación de equilibrio de los líquidos en reposo. ota pieométrica. En un líquido en reposo, la única fuera eterior que actúa es la de la gravedad. Si tomamos los ejes OX y OY paralelos a la superficie libre del líquido y OZ vertical y dirigido acia arriba, como muestra la figura.., las componentes de aquella fuera para cualquier líquido incompresible de densidad ρ serán: 0 y 0 -g 6

7 Superficie libre O 0 M 0 ( 0 ) 0 y 0 M () y y Figura.. La ecuación fundamental de la Hidrostática quedaría: d ρ (0 d 0 dy g d) d ρ g d ; y puesto que γ ρ g d γ d Integrando la ecuación desde una cota 0, en la que la presión es 0, asta una cota de presión, como se esquematia en la figura.4., se obtiene: Z 0 ( 0 ) Z () y Figura.4. p d γ d γ p d γ ( ) [4] 7

8 La ecuación [4] indica que la diferencia de presión entre dos puntos de un líquido en equilibrio es igual al peso de una columna del mismo líquido de sección unidad y altura la diferencia de cotas entre ambos puntos. Normalmente el origen de las se sitúa en la superficie libre del líquido, de tal forma que 0, siendo la profundidad del líquido. Entonces, según la ecuación [4]: 0 γ Y cuando el origen de presiones está en la superficie libre ( 0 0): γ La ecuación [4] también puede ponerse de la forma: γ γ γ 0 0 cte Altura o cota pieométrica γ γ Ecuación que indica que en un líquido incompresible es constante la suma de la altura geométrica o de posición y de la presión unitaria dividida por el peso específico. El cociente γ, de dimensiones una longitud denominada altura de presión (tema, conceptos), representa la altura de la columna de líquido de peso específico γ capa de producir la presión. 8

9 4. Superficie de nivel en líquidos pesados. La altura o cota pieométrica cte indica que si en cada punto γ de un líquido en reposo se levanta un segmento vertical representativo de la altura de presión en ese punto (Fig..5.), los etremos de dicos segmentos se contienen en un mismo plano oriontal, el plano de carga idrostático relativo, que si se prescinde de la presión atmosférica, coincide con la superficie libre del líquido. Superficie libre del líquido γ γ γ 4 lano de referencia Figura.5. Es evidente que en los líquidos en reposo todas las superficies de nivel son planos oriontales. ara demostrarlo, partimos de la Ecuación de Equilibrio de los líquidos en reposo deducida anteriormente. d γ d En la superficie de nivel, por su propia definición, todas las presiones son iguales, luego al ser constante, d 0. k γ d 0 γ d γ cte k cte γ Ecuación que representa a un plano paralelo a la superficie libre del líquido. 9

10 5. Variación de la presión con la profundidad. Diagrama de presiones La presión en un punto de una masa líquida es igual a la presión atmosférica más el peso de la columna de líquido de altura igual a la distancia entre dico punto y la superficie libre del líquido. lano de carga absoluto O θ 0 γ lano de carga relativo resiones (kg/cm ) θ 0 γ Altura (m) 0 γ Figura.6. La ecuación 0 γ corresponde a una recta, luego indica la variación lineal de la presión con la profundidad del líquido, cuya representación, tomando como eje oriontal las presiones y como eje vertical las profundidades, proporciona el diagrama de presiones (Fig..6.). or regla general, en la práctica se miden las presiones manométricas o relativas, quedando la epresión anterior reducida a γ, que es la ecuación de una recta que pasa por el origen y forma un ángulo θ con la vertical, de manera que: tg θ γ 0

11 6. resiones sobre superficies planas. on frecuencia, un buen aprovecamiento del agua (agrícola, idroeléctrico, etc.) precisa que sea almacenada para su uso posterior. ara proceder al cálculo de estas estructuras de almacenamiento, el ingeniero debe situar y calcular las fueras que van a actuar sobre las paredes. ualquier pared plana que contenga un líquido (muros, compuertas, depósitos, etc) soporta, en cada uno de sus puntos, una presión que a sido definida como la altura de la superficie libre del líquido al punto considerado, siempre que se trate de recipientes abiertos, que es el caso más frecuente en aplicaciones idrostáticas. or tanto, todas las fueras de presión paralelas, cuya magnitud y dirección se conocen, tendrán una resultante,, que representa el empuje del líquido sobre una superficie plana determinada, cuyo valor y punto de aplicación vamos a determinar. Figura álculo del valor de la presión total. Suponemos una pared inclinada que contiene un líquido y que forma con su superficie libre un ángulo θ, tal como muestra la figura.8., y en ella un elemento diferencial de superficie dω.

12 ε Superficie libre del líquido β θ dw ared α Figura.8. β Traa del plano que forma la superficie libre de un líquido α Traa de una pared plana finita que contiene el líquido (ambas traas respecto al plano del papel) Las traas de ambos planos forman un ángulo cualquiera θ. dω Superficie elemental sumergida, de cota, a una distancia de la traa de ambos planos, ε. La presión que actúa con intensidad uniforme sobre dω es: d dω γ dω d γ ( sen θ) dω La fuera de presión total, p, que actúa sobre la cara de una superficie plana finita será la integral en toda el área ω, puesto que todos los elementos de fuera son paralelos. γ sen θ dω γ sen θ dω [5] ω ω ω dω es el momento estático del área ω respecto a la traa Si es el cdg de dica área, su abcisa valdrá:

13 ω dω dω w ω ω ω d w d w Sustituyendo en [5] quedará: γ sen θ ω γ Z ω ω ω ω La presión total que ejerce un líquido sobre una superficie plana es el producto del área por la presión idrostática que actúa sobre su centro de gravedad. 6.. Determinación del centro de presión (cdp). θ Superficie libre Figura.9. Eje de simetría (pared) La fuera de presión resultante,, cuyo valor se a obtenido en el punto anterior, tiene su aplicación en el centro de presión ( c, y c, c ), como se muestra en la figura.9.

14 ara determinar este punto bastará normalmente, en la práctica, con determinar la coordenada c. ara ello se toman momentos a lo largo del eje de simetría. c d A su ve, d dω γ dω, luego: c como c γ dω γ sen θ γ dω sen θ dω γ sen θ dω La integral dω representa el momento de inercia del área ω respecto a la traa ε, por lo que, aplicando el teorema de Steiner: dω I ω Luego γ sen θ ( I ω) c c γ sen θ ( I ω) γ sen θ ( I ω) γ sen θ ω Ya que Total unitaria ω unitaria γ γ sen θ Si, entonces γ sen θ c ( I ω) ω c I ω 4

15 on lo que se demuestra que el centro de presión está por debajo del centro de gravedad. Si fuera necesario calcular las coordenadas y c, c, las ecuaciones a utiliar serían análogas a las utiliadas para la determinación de c. y c c y γ dω γ γ dω γ y dω dω 6.. asos más frecuentes en la práctica. rimer caso: ared rectangular inclinada El muro (Fig..0) tiene una pared inclinada rectangular que contiene un líquido, de profundidad BD. La recta AB es el eje de simetría de la pared rectangular y contiene el cdg y el cdp. AD representa el diagrama de presión idrostática considerando el líquido de γ (Recordar que p γ ). A θ D / θ B Figura.0. La presión total del líquido sobre la pared, suponiendo que su ancura es b, será: ω γ ω γ sen θ ω 5

16 El cdg coincidirá con en el centro geométrico de la pared. Si AB y ω b Entonces: γ sen θ b γ b sen θ Es el peso del prisma de base y altura b. Esta presión resultante estaría aplicada en: c c I ω b b Segundo caso: ared rectangular vertical A 90º B Figura.. D Es un caso particular del anterior con θ 90º, por lo que sen θ. 6

17 γ b La presión idrostática sobre el elemento de pared AB equivale al peso del prisma de líquido de base triangular ABD y altura b, aplicado en, siendo c. Tercer caso: ared rectangular sumergida e inclinada ε θ d d b b Figura.. La pared rectangular, de superficie ω b, está sumergida a una distancia d de la superficie libre del líquido. Es el caso de una compuerta rectangular (Fig..). La presión total que actúa sobre ella será: ω γ p ω γ sen θ d b γ sen θ 44 ω γ sen θ d b 44 uarto caso: ared rectangular sumergida y vertical 7

18 d aso particular del anterior con θ 90º, por lo que sen θ. ω γ γ d b ω γ ω γ d b Quinto caso: ared circular sumergida e inclinada ε ε θ d d r Figura.. ω γ ω γ sen θ ω siendo: Luego: d r ω π r γ sen θ (d r) π r El cdp estará situado en: 8

19 c I ω d r π D I 64 ω π r 4 ( r) π 64 π r 4 4 c c d r r d r 4 π r 4 4 ( d r) π r ( d r) Seto caso: ared circular sumergida y vertical aso particular del anterior con θ 90º, por lo que sen θ. p γ (d r) π r resión total sobre una pared plana rectangular con líquido a ambos lados. Supongamos una pared rectangular que contiene por ambas caras un líquido de peso específico γ (Fig..4). En este caso, sobre la misma pared se ejercen dos presiones idrostáticas paralelas de sentido contrario. Se trata de determinar la presión resultante p y su punto de aplicación. A A A / / B B 9

20 0 Figura.4. Si y son las profundidades respectivas del agua, la presión a cada lado de la pared (caso de paredes rectangulares verticales) será: b γ b γ uesto que se trata de fueras paralelas y de sentido contrario, la resultante será su diferencia: ( ) b γ ara determinar, se toman momentos respecto a B: B B B B B Sustituyendo los valores de,, B y B, se obtiene: ( ) b b B b γ γ γ B ( ) ( ) ( ) ( )

21 ( ) ( ) B B Que demuestra que el punto de aplicación de la fuera de presión resultante se encuentra por encima del punto, punto de aplicación de la presión. La presión total sobre la pared viene representada por el prisma de presiones de base A A B B y de altura b.

Definición de vectores

Definición de vectores Definición de vectores Un vector es todo segmento de recta dirigido en el espacio. Cada vector posee unas características que son: Origen: O también denominado Punto de aplicación. Es el punto exacto sobre

Más detalles

Nivelación de Matemática MTHA UNLP 1. Vectores

Nivelación de Matemática MTHA UNLP 1. Vectores Nivelación de Matemática MTHA UNLP 1 1. Definiciones básicas Vectores 1.1. Magnitudes escalares y vectoriales. Hay magnitudes que quedan determinadas dando un solo número real: su medida. Por ejemplo:

Más detalles

Segundo de Bachillerato Geometría en el espacio

Segundo de Bachillerato Geometría en el espacio Segundo de Bachillerato Geometría en el espacio Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid 204-205. Coordenadas de un vector En el conjunto de los vectores libres del espacio el concepto

Más detalles

Sistemas de vectores deslizantes

Sistemas de vectores deslizantes Capítulo 1 Sistemas de vectores deslizantes 1.1. Vectores. Álgebra vectorial. En Física, se denomina magnitud fsica (o simplemente, magnitud) a todo aquello que es susceptible de ser cuantificado o medido

Más detalles

Vectores: Producto escalar y vectorial

Vectores: Producto escalar y vectorial Nivelación de Matemática MTHA UNLP 1 Vectores: Producto escalar y vectorial Versores fundamentales Dado un sistema de coordenadas ortogonales, se considera sobre cada uno de los ejes y coincidiendo con

Más detalles

3.1 DEFINICIÓN. Figura Nº 1. Vector

3.1 DEFINICIÓN. Figura Nº 1. Vector 3.1 DEFINICIÓN Un vector (A) una magnitud física caracterizable mediante un módulo y una dirección (u orientación) en el espacio. Todo vector debe tener un origen marcado (M) con un punto y un final marcado

Más detalles

CAMPO ELÉCTRICO FCA 10 ANDALUCÍA

CAMPO ELÉCTRICO FCA 10 ANDALUCÍA CMO LÉCTRICO FC 0 NDLUCÍ. a) xplique la relación entre campo y potencial electrostáticos. b) Una partícula cargada se mueve espontáneamente hacia puntos en los que el potencial electrostático es mayor.

Más detalles

Muchas veces hemos visto un juego de billar y no nos percatamos de los movimientos de las bolas (ver gráfico 8). Gráfico 8

Muchas veces hemos visto un juego de billar y no nos percatamos de los movimientos de las bolas (ver gráfico 8). Gráfico 8 Esta semana estudiaremos la definición de vectores y su aplicabilidad a muchas situaciones, particularmente a las relacionadas con el movimiento. Por otro lado, se podrán establecer las características

Más detalles

Geometría analítica. Impreso por Juan Carlos Vila Vilariño Centro I.E.S. PASTORIZA

Geometría analítica. Impreso por Juan Carlos Vila Vilariño Centro I.E.S. PASTORIZA Conoce los vectores, sus componentes y las operaciones que se pueden realizar con ellos. Aprende cómo se representan las rectas y sus posiciones relativas. Impreso por Juan Carlos Vila Vilariño Centro

Más detalles

Tema 1. VECTORES (EN EL PLANO Y EN EL ESPACIO)

Tema 1. VECTORES (EN EL PLANO Y EN EL ESPACIO) Vectores Tema. VECTORES (EN EL PLANO Y EN EL ESPACIO Definición de espacio vectorial Un conjunto E es un espacio vectorial si en él se definen dos operaciones, una interna (suma y otra externa (producto

Más detalles

Capítulo II. Movimiento plano. Capítulo II Movimiento plano

Capítulo II. Movimiento plano. Capítulo II Movimiento plano inemática y Dinámica de Máquinas. II. spectos generales del movimiento plano apítulo II Movimiento plano inemática y Dinámica de Máquinas. II. spectos generales del movimiento plano apítulo II Movimiento

Más detalles

Dinámica. Fuerza es lo que produce cualquier cambio en la velocidad de un objeto. Una fuerza es lo que causa una aceleración

Dinámica. Fuerza es lo que produce cualquier cambio en la velocidad de un objeto. Una fuerza es lo que causa una aceleración Tema 4 Dinámica Fuerza Fuerza es lo que produce cualquier cambio en la velocidad de un objeto Una fuerza es lo que causa una aceleración La fuerza neta es la suma de todas las fuerzas que actúan sobre

Más detalles

TEMA II.6. Variación de la Presión con la Elevación. Dr. Juan Pablo Torres-Papaqui

TEMA II.6. Variación de la Presión con la Elevación. Dr. Juan Pablo Torres-Papaqui TEMA II.6 Variación de la Presión con la Elevación Dr. Juan Pablo Torres-Papaqui Departamento de Astronomía Universidad de Guanajuato DA-UG (México) papaqui@astro.ugto.mx División de Ciencias Naturales

Más detalles

Vectores en el espacio

Vectores en el espacio Vectores en el espacio Un sistema de coordenadas tridimensional se construye trazando un eje Z, perpendicular en el origen de coordenadas a los ejes X e Y. Cada punto viene determinado por tres coordenadas

Más detalles

PROBLEMAS MÉTRICOS. Página 183 REFLEXIONA Y RESUELVE. Diagonal de un ortoedro. Distancia entre dos puntos. Distancia de un punto a una recta

PROBLEMAS MÉTRICOS. Página 183 REFLEXIONA Y RESUELVE. Diagonal de un ortoedro. Distancia entre dos puntos. Distancia de un punto a una recta PROBLEMAS MÉTRICOS Página 3 REFLEXIONA Y RESUELVE Diagonal de un ortoedro Halla la diagonal de los ortoedros cuyas dimensiones son las siguientes: I) a =, b =, c = II) a = 4, b =, c = 3 III) a =, b = 4,

Más detalles

Hallar gráfica y analíticamente la resultante de los siguientes desplazamientos: hacia el Noroeste), B. (35 m Sur)

Hallar gráfica y analíticamente la resultante de los siguientes desplazamientos: hacia el Noroeste), B. (35 m Sur) VECTORES: OPERACIONES BÁSICAS Hallar gráfica y analíticamente la resultante de los siguientes desplazamientos: hacia el Noroeste), B (0 m Este 30º Norte) y C (35 m Sur) Solución: I.T.I. 94, I.T.T. 05 A

Más detalles

Colegio Las Tablas Tarea de verano Matemáticas 3º ESO

Colegio Las Tablas Tarea de verano Matemáticas 3º ESO Colegio Las Tablas Tarea de verano Matemáticas º ESO Nombre: C o l e g i o L a s T a b l a s Tarea de verano Matemáticas º ESO Resolver la siguiente ecuación: 5 5 6 Multiplicando por el mcm(,,6) = 6 y

Más detalles

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Universidad de Cádiz Departamento de Matemáticas MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Tema 4 La recta en el plano Elaborado por la Profesora Doctora María Teresa

Más detalles

1. Vectores 1.1. Definición de un vector en R2, R3 (Interpretación geométrica), y su generalización en Rn.

1. Vectores 1.1. Definición de un vector en R2, R3 (Interpretación geométrica), y su generalización en Rn. 1. VECTORES INDICE 1.1. Definición de un vector en R 2, R 3 (Interpretación geométrica), y su generalización en R n...2 1.2. Operaciones con vectores y sus propiedades...6 1.3. Producto escalar y vectorial

Más detalles

FUNCIONES CUADRÁTICAS Y RACIONALES

FUNCIONES CUADRÁTICAS Y RACIONALES www.matesronda.net José A. Jiménez Nieto FUNCIONES CUADRÁTICAS Y RACIONALES 1. FUNCIONES CUADRÁTICAS. Representemos, en función de la longitud de la base (), el área (y) de todos los rectángulos de perímetro

Más detalles

DEPARTAMENTO DE GEOMETRIA ANALITICA SEMESTRE 2016-1 SERIE ÁLGEBRA VECTORIAL

DEPARTAMENTO DE GEOMETRIA ANALITICA SEMESTRE 2016-1 SERIE ÁLGEBRA VECTORIAL 1.-Sea C(2, -3, 5) el punto medio del segmento dirigido AB. Empleando álgebra vectorial, determinar las coordenadas de los puntos A y B, si las componentes escalares de AB sobre los ejes coordenados X,

Más detalles

BLOQUE. Geometría. 5. Vectores en el espacio 6. Espacio afín 7. Espacio métrico 8. La esfera

BLOQUE. Geometría. 5. Vectores en el espacio 6. Espacio afín 7. Espacio métrico 8. La esfera LOQUE II Geometría 5. Vectores en el espacio. Espacio afín 7. Espacio métrico. La esfera 5 Vectores en el espacio. Operaciones con ectores Piensa y calcula Z alcula mentalmente la longitud de la diagonal

Más detalles

Funciones de varias variables

Funciones de varias variables Funciones de varias variables Derivadas parciales. El concepto de función derivable no se puede extender de una forma sencilla para funciones de varias variables. Aquí se emplea el concepto de diferencial

Más detalles

1. Producto escalar, métrica y norma asociada

1. Producto escalar, métrica y norma asociada 1. asociada Consideramos el espacio vectorial R n sobre el cuerpo R; escribimos los vectores o puntos de R n, indistintamente, como x = (x 1,..., x n ) = n x i e i i=1 donde e i son los vectores de la

Más detalles

TEORÍA TEMA 9. 2. Definición de ESFUERZOS CARACTERÍSTICOS ( Mf.; Q; N)

TEORÍA TEMA 9. 2. Definición de ESFUERZOS CARACTERÍSTICOS ( Mf.; Q; N) 1. Definición de Viga de alma llena TEORÍA TEMA 9 2. Definición de ESFUERZOS CARACTERÍSTICOS ( Mf.; Q; N) 3. Determinación de los esfuerzos característicos i. Concepto de Polígonos de Presiones ii. Caso

Más detalles

Capítulo 1. Vectores en el plano. 1.1. Introducción

Capítulo 1. Vectores en el plano. 1.1. Introducción Índice general 1. Vectores en el plano 2 1.1. Introducción.................................... 2 1.2. Qué es un vector?................................ 3 1.2.1. Dirección y sentido............................

Más detalles

CÁLCULO PARA LA INGENIERÍA 1

CÁLCULO PARA LA INGENIERÍA 1 CÁLCULO PARA LA INGENIERÍA 1 PROBLEMAS RESUELTOS Tema 3 Derivación de funciones de varias variables 3.1 Derivadas y diferenciales de funciones de varias variables! 1. Derivadas parciales de primer orden.!

Más detalles

1. ESCALARES Y VECTORES

1. ESCALARES Y VECTORES 1. ESCLRES Y VECTORES lgunas magnitudes físicas se especifican por completo mediante un solo número acompañado de su unidad, por ejemplo, el tiempo, la temperatura, la masa, la densidad, etc. Estas magnitudes

Más detalles

Juan Antonio González Mota Profesor de Matemáticas del Colegio Juan XIII Zaidín de Granada

Juan Antonio González Mota Profesor de Matemáticas del Colegio Juan XIII Zaidín de Granada FUNCIONES CONOCIDAS. FUNCIONES LINEALES. Se llaman funciones lineales a aquellas que se representan mediante rectas. Su epresión en forma eplícita es y f ( ) a b. En sentido más estricto, se llaman funciones

Más detalles

LÍMITES Y CONTINUIDAD DE FUNCIONES

LÍMITES Y CONTINUIDAD DE FUNCIONES Capítulo 9 LÍMITES Y CONTINUIDAD DE FUNCIONES 9.. Introducción El concepto de ite en Matemáticas tiene el sentido de lugar hacia el que se dirige una función en un determinado punto o en el infinito. Veamos

Más detalles

De acuerdo con sus características podemos considerar tres tipos de vectores:

De acuerdo con sus características podemos considerar tres tipos de vectores: CÁLCULO VECTORIAL 1. ESCALARES Y VECTORES 1.1.-MAGNITUDES ESCALARES Y VECTORIALES Existen magnitudes físicas cuyas cantidades pueden ser expresadas mediante un número y una unidad. Otras, en cambio, requieren

Más detalles

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Universidad de Cádiz Departamento de Matemáticas MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Tema Representación gráfica de funciones reales de una variable real Elaborado

Más detalles

SOLUCIONES CIRCUNFERENCIA. 1. Ecuación de la circunferencia cuyo centro es el punto (1, 2) y que pasa por el punto (2,3).

SOLUCIONES CIRCUNFERENCIA. 1. Ecuación de la circunferencia cuyo centro es el punto (1, 2) y que pasa por el punto (2,3). SOLUCIONES CIRCUNFERENCIA 1. Ecuación de la circunferencia cuyo centro es el punto (1,) y que pasa por el punto (,). Para determinar la ecuación de la circunferencia es necesario conocer el centro y el

Más detalles

Capítulo 6. Aplicaciones de la Integral

Capítulo 6. Aplicaciones de la Integral Capítulo 6 Aplicaciones de la Integral 6. Introducción. En las aplicaciones que desarrollaremos en este capítulo, utilizaremos una variante de la definición de integral la cual es equivalente a la que

Más detalles

PRODUCTO ESCALAR DE DOS VECTORES

PRODUCTO ESCALAR DE DOS VECTORES PRODUCTO ESCALAR DE DOS VECTORES El producto escalar de dos vectores es un número real que resulta al multiplicar el producto de sus módulos por el coseno del ángulo que forman si los vectores son no nulos

Más detalles

, y su resultado es igual a la suma de los productos de las coordenadas correspondientes. Si u = (u 1, u 2 ) y v = (v 1, v 2 ), = u1 v 1 + u 2 v 2

, y su resultado es igual a la suma de los productos de las coordenadas correspondientes. Si u = (u 1, u 2 ) y v = (v 1, v 2 ), = u1 v 1 + u 2 v 2 Los vectores Los vectores Distancia entre dos puntos del plano Dados dos puntos coordenados del plano, P 1 = (x 1, y 1 ) y P = (x, y ), la distancia entre estos dos puntos, d(p 1,P ), se calcula de la

Más detalles

Apoyo para la preparación de los estudios de Ingeniería y Arquitectura Física (Preparación a la Universidad) Unidad 4: Vectores

Apoyo para la preparación de los estudios de Ingeniería y Arquitectura Física (Preparación a la Universidad) Unidad 4: Vectores Apoyo para la preparación de los estudios de Ingeniería y Arquitectura Física (Preparación a la Universidad) Unidad 4: Vectores Universidad Politécnica de Madrid 5 de marzo de 2010 2 4.1. Planificación

Más detalles

La magnitud vectorial mas simple es el desplazamiento (cambio de posición de un punto a otro de una partícula o de un cuerpo)

La magnitud vectorial mas simple es el desplazamiento (cambio de posición de un punto a otro de una partícula o de un cuerpo) Existen ciertas magnitudes que quedan perfectamente determinadas cuando se conoce el nombre de una unidad y el numero de veces que se ha tomado.estas unidades se llaman escalares (tiempo, volumen, longitud,

Más detalles

Unidad V: Integración

Unidad V: Integración Unidad V: Integración 5.1 Introducción La integración es un concepto fundamental de las matemáticas avanzadas, especialmente en los campos del cálculo y del análisis matemático. Básicamente, una integral

Más detalles

APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS DE VACIADO DE TANQUES

APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS DE VACIADO DE TANQUES APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS DE VACIADO DE TANQUES Mucos problemas físicos dependen de alguna manera de la geometría. Uno de ellos es la salida de

Más detalles

Electrotecnia General Tema 8 TEMA 8 CAMPO MAGNÉTICO CREADO POR UNA CORRIENTE O UNA CARGA MÓVIL

Electrotecnia General Tema 8 TEMA 8 CAMPO MAGNÉTICO CREADO POR UNA CORRIENTE O UNA CARGA MÓVIL TEMA 8 CAMPO MAGNÉTICO CREADO POR UNA CORRIENTE O UNA CARGA MÓVIL 8.1. CAMPO MAGNÉTICO CREADO POR UN ELEMENTO DE CORRIENTE Una carga eléctrica en movimiento crea, en el espacio que la rodea, un campo magnético.

Más detalles

1. Funciones y sus gráficas

1. Funciones y sus gráficas FUNCIONES 1. Funciones sus gráficas Función es una relación entre dos variables a las que, en general se les llama e. es la variable independiente. es la variable dependiente. La función asocia a cada

Más detalles

IES Menéndez Tolosa. La Línea de la Concepción. 1 Es posible que un cuerpo se mueva sin que exista fuerza alguna sobre él?

IES Menéndez Tolosa. La Línea de la Concepción. 1 Es posible que un cuerpo se mueva sin que exista fuerza alguna sobre él? IES Menéndez Tolosa. La Línea de la Concepción 1 Es posible que un cuerpo se mueva sin que exista fuerza alguna sobre él? Si. Una consecuencia del principio de la inercia es que puede haber movimiento

Más detalles

TEMA: CAMPO ELÉCTRICO

TEMA: CAMPO ELÉCTRICO TEMA: CAMPO ELÉCTRICO C-J-06 Una carga puntual de valor Q ocupa la posición (0,0) del plano XY en el vacío. En un punto A del eje X el potencial es V = -120 V, y el campo eléctrico es E = -80 i N/C, siendo

Más detalles

requerido). vectoriales, y operan según el Álgebra a continuación. 2.1.2 Vector. dirección. representados.

requerido). vectoriales, y operan según el Álgebra a continuación. 2.1.2 Vector. dirección. representados. 2.1 Vectores. 2.1.1 Introducción. Cuando queremos referirnos al tiempo que demanda un suceso determinado, nos basta con una magnitud (se demoró 3 segundos, saltó durante 1 minuto, volverá el próximo año,

Más detalles

4. LA ENERGÍA POTENCIAL

4. LA ENERGÍA POTENCIAL 4. LA ENERGÍA POTENCIAL La energía potencial en un punto es una magnitud escalar que indica el trabajo realizado por las fuerzas de campo para traer la carga desde el infinito hasta ese punto. Es función

Más detalles

VECTORES. Módulo, dirección y sentido de un vector fijo En un vector fijo se llama módulo del mismo a la longitud del segmento que lo define.

VECTORES. Módulo, dirección y sentido de un vector fijo En un vector fijo se llama módulo del mismo a la longitud del segmento que lo define. VECTORES El estudio de los vectores es uno de tantos conocimientos de las matemáticas que provienen de la física. En esta ciencia se distingue entre magnitudes escalares y magnitudes vectoriales. Se llaman

Más detalles

_ Antología de Física I. Unidad II Vectores. Elaboró: Ing. Víctor H. Alcalá-Octaviano

_ Antología de Física I. Unidad II Vectores. Elaboró: Ing. Víctor H. Alcalá-Octaviano 24 Unidad II Vectores 2.1 Magnitudes escalares y vectoriales Unidad II. VECTORES Para muchas magnitudes físicas basta con indicar su valor para que estén perfectamente definidas y estas son las denominadas

Más detalles

1. Dominio, simetría, puntos de corte y periodicidad

1. Dominio, simetría, puntos de corte y periodicidad Estudio y representación de funciones 1. Dominio, simetría, puntos de corte y periodicidad 1.1. Dominio Al conjunto de valores de x para los cuales está definida la función se le denomina dominio. Se suele

Más detalles

1 Estática Básica Prohibida su reproducción sin autorización. CONCEPTOS DE FISICA MECANICA. Conceptos de Física Mecánica

1 Estática Básica Prohibida su reproducción sin autorización. CONCEPTOS DE FISICA MECANICA. Conceptos de Física Mecánica 1 CONCEPTOS DE FISICA MECANICA Introducción La parte de la física mecánica se puede dividir en tres grandes ramas de acuerdo a lo que estudia cada una de ellas. Así, podemos clasificarlas según lo siguiente:

Más detalles

48 Apuntes de Matemáticas II para preparar el examen de la PAU

48 Apuntes de Matemáticas II para preparar el examen de la PAU 48 Apuntes de Matemáticas II para preparar el eamen de la PAU Unidad. Funciones. Derivabilidad TEMA FUNCIONES.DERIVABILIDAD.. Tasa de variación media. Derivada en un punto. Interpretación.. Tasa de variación

Más detalles

1.4.- D E S I G U A L D A D E S

1.4.- D E S I G U A L D A D E S 1.4.- D E S I G U A L D A D E S OBJETIVO: Que el alumno conozca y maneje las reglas empleadas en la resolución de desigualdades y las use para determinar el conjunto solución de una desigualdad dada y

Más detalles

Unidad 4: Vectores. 4.1 Introducción. 4.2 Vectores: enfoque geométrico

Unidad 4: Vectores. 4.1 Introducción. 4.2 Vectores: enfoque geométrico Unidad 4: Vectores 4.1 Introducción En este capítulo daremos el concepto de vector, el cual es una herramienta fundamental tanto para la física como para la matemática. La historia de los vectores se remonta

Más detalles

EJERCICIOS SOBRE : NÚMEROS ENTEROS

EJERCICIOS SOBRE : NÚMEROS ENTEROS 1.- Magnitudes Absolutas y Relativas: Se denomina magnitud a todo lo que se puede medir cuantitativamente. Ejemplo: peso de un cuerpo, longitud de una cuerda, capacidad de un recipiente, el tiempo que

Más detalles

Resumen TEMA 3: Cinemática del movimiento plano

Resumen TEMA 3: Cinemática del movimiento plano TEM 3: Cinemática del movimiento plano Resumen TEM 3: Cinemática del movimiento plano 1. Condiciones del movimiento plano Definición: un sólido rígido se mueve con un movimiento plano si todos sus puntos

Más detalles

Problemas de Física 1 o Bachillerato

Problemas de Física 1 o Bachillerato Problemas de Física o Bachillerato Principio de conservación de la energía mecánica. Desde una altura h dejamos caer un cuerpo. Hallar en qué punto de su recorrido se cumple E c = 4 E p 2. Desde la parte

Más detalles

Tema 07. LÍMITES Y CONTINUIDAD DE FUNCIONES

Tema 07. LÍMITES Y CONTINUIDAD DE FUNCIONES Tema 07 LÍMITES Y CONTINUIDAD DE FUNCIONES Límite de una función en un punto Vamos a estudiar el comportamiento de las funciones f ( ) g ( ) ENT[ ] h ( ) i ( ) en el punto Para ello, damos a valores próimos

Más detalles

6. VECTORES Y COORDENADAS

6. VECTORES Y COORDENADAS 6. VECTORES Y COORDENADAS Página 1 Traslaciones. Vectores Sistema de referencia. Coordenadas. Punto medio de un segmento Ecuaciones de rectas. Paralelismo. Distancias Página 2 1. TRASLACIONES. VECTORES

Más detalles

COORDENADAS CURVILINEAS

COORDENADAS CURVILINEAS CAPITULO V CALCULO II COORDENADAS CURVILINEAS Un sistema de coordenadas es un conjunto de valores que permiten definir unívocamente la posición de cualquier punto de un espacio geométrico respecto de un

Más detalles

La derivada de y respecto a x es lo que varía y por cada unidad que varía x. Ese valor se designa por dy dx.

La derivada de y respecto a x es lo que varía y por cada unidad que varía x. Ese valor se designa por dy dx. Conceptos de derivada y de diferencial Roberto C. Redondo Melchor, Norberto Redondo Melchor, Félix Redondo Quintela 1 Universidad de Salamanca 18 de agosto de 2012 v1.3: 17 de septiembre de 2012 Aunque

Más detalles

Seminario Universitario Material para estudiantes. Física. Unidad 2. Vectores en el plano. Lic. Fabiana Prodanoff

Seminario Universitario Material para estudiantes. Física. Unidad 2. Vectores en el plano. Lic. Fabiana Prodanoff Seminario Universitario Material para estudiantes Física Unidad 2. Vectores en el plano Lic. Fabiana Prodanoff CONTENIDOS Vectores en el plano. Operaciones con vectores. Suma y producto por un número escalar.

Más detalles

EXAMEN FÍSICA 2º BACHILLERATO TEMA 1: CAMPO GRAVITATORIO

EXAMEN FÍSICA 2º BACHILLERATO TEMA 1: CAMPO GRAVITATORIO INSTRUCCIONES GENERALES Y VALORACIÓN La prueba consiste de dos opciones, A y B, y el alumno deberá optar por una de las opciones y resolver las tres cuestiones y los dos problemas planteados en ella, sin

Más detalles

, o más abreviadamente: f ( x)

, o más abreviadamente: f ( x) TEMA 5: 1. CONCEPTO DE FUNCIÓN Observa los siguientes ejemplos: El precio de una llamada telefónica depende de su duración. El consumo de gasolina de un coche depende de la velocidad del mismo. La factura

Más detalles

a < b y se lee "a es menor que b" (desigualdad estricta) a > b y se lee "a es mayor que b" (desigualdad estricta)

a < b y se lee a es menor que b (desigualdad estricta) a > b y se lee a es mayor que b (desigualdad estricta) Desigualdades Dadas dos rectas que se cortan, llamadas ejes (rectangulares si son perpendiculares, y oblicuos en caso contrario), un punto puede situarse conociendo las distancias del mismo a los ejes,

Más detalles

Universidad de la Frontera. Geometría Anaĺıtica: Departamento de Matemática y Estadística. Cĺınica de Matemática. J. Labrin - G.

Universidad de la Frontera. Geometría Anaĺıtica: Departamento de Matemática y Estadística. Cĺınica de Matemática. J. Labrin - G. Universidad de la Frontera Departamento de Matemática y Estadística Cĺınica de Matemática 1 Geometría Anaĺıtica: J. Labrin - G.Riquelme 1. Los puntos extremos de un segmento son P 1 (2,4) y P 2 (8, 4).

Más detalles

Tema 2. Espacios Vectoriales. 2.1. Introducción

Tema 2. Espacios Vectoriales. 2.1. Introducción Tema 2 Espacios Vectoriales 2.1. Introducción Estamos habituados en diferentes cursos a trabajar con el concepto de vector. Concretamente sabemos que un vector es un segmento orientado caracterizado por

Más detalles

1.- Encontrar los intervalos de crecimiento y decrecimiento de las funciones:

1.- Encontrar los intervalos de crecimiento y decrecimiento de las funciones: F. EJERCICIOS PROPUESTOS. 1.- Encontrar los intervalos de crecimiento y decrecimiento de las funciones: (a) f(x) =x 3 /3+3x 2 /2 10x. Resp.: Crece en (, 5) y en (2, ); decrece en ( 5, 2). (b) f(x) =x 3

Más detalles

164 Ecuaciones diferenciales

164 Ecuaciones diferenciales 64 Ecuaciones diferenciales Ejercicios 3.6. Mecánica. Soluciones en la página 464. Una piedra de cae desde el reposo debido a la gravedad con resistencia despreciable del aire. a. Mediante una ecuación

Más detalles

Ejercicios de Análisis propuestos en Selectividad

Ejercicios de Análisis propuestos en Selectividad Ejercicios de Análisis propuestos en Selectividad.- Dada la parábola y 4, se considera el triángulo rectángulo T( r ) formado por los ejes coordenados y la tangente a la parábola en el punto de abscisa

Más detalles

21.1.2. TEOREMA DE DETERMINACIÓN DE APLICACIONES LINEALES

21.1.2. TEOREMA DE DETERMINACIÓN DE APLICACIONES LINEALES Aplicaciones lineales. Matriz de una aplicación lineal 2 2. APLICACIONES LINEALES. MATRIZ DE UNA APLICACIÓN LINEAL El efecto que produce el cambio de coordenadas sobre una imagen situada en el plano sugiere

Más detalles

Entonces el trabajo de la fuerza eléctrica es : =F d (positivo porque la carga se desplaza en el sentido en que actúa la fuerza (de A a B)

Entonces el trabajo de la fuerza eléctrica es : =F d (positivo porque la carga se desplaza en el sentido en que actúa la fuerza (de A a B) Consideremos la siguiente situación. Una carga Q que genera un campo eléctrico uniforme, y sobre este campo eléctrico se ubica una carga puntual q.de tal manara que si las cargas son de igual signo la

Más detalles

Juan Antonio González Mota Profesor de Matemáticas del Colegio Juan XIII Zaidín de Granada

Juan Antonio González Mota Profesor de Matemáticas del Colegio Juan XIII Zaidín de Granada FUNCIONES CONTINUAS. La mayor parte de las funciones que manejamos, a nivel elemental, presentan en sus gráficas una propiedad característica que es la continuidad. La continuidad de una función definida

Más detalles

A continuación voy a colocar las fuerzas que intervienen en nuestro problema.

A continuación voy a colocar las fuerzas que intervienen en nuestro problema. ísica EL PLANO INCLINADO Supongamos que tenemos un plano inclinado. Sobre él colocamos un cubo, de manera que se deslice sobre la superficie hasta llegar al plano horizontal. Vamos a suponer que tenemos

Más detalles

Vectores. Las cantidades físicas que estudiaremos en los cursos de física son escalares o vectoriales.

Vectores. Las cantidades físicas que estudiaremos en los cursos de física son escalares o vectoriales. Cantidades vectoriales escalares Vectores Las cantidades físicas que estudiaremos en los cursos de física son escalares o vectoriales. Una cantidad escalar es la que está especificada completamente por

Más detalles

GEOMETRÍA ANALÍTICA EJERCITARIO DE FACULTAD DE INGENIERÍA CURSO PREPARATORIO DE INGENIERÍA (CPI) UNIVERSIDAD NACIONAL DE ASUNCIÓN

GEOMETRÍA ANALÍTICA EJERCITARIO DE FACULTAD DE INGENIERÍA CURSO PREPARATORIO DE INGENIERÍA (CPI) UNIVERSIDAD NACIONAL DE ASUNCIÓN UNIVERSIDAD NACIONAL DE ASUNCIÓN FACULTAD DE INGENIERÍA CURSO PREPARATORIO DE INGENIERÍA (CPI) EJERCITARIO DE GEOMETRÍA ANALÍTICA (ÁLGEBRA VECTORIAL - TEORÍA) AÑO 2014 ÁLGEBRA VECTORIAL - EJERCICIOS TEÓRICOS

Más detalles

GUIAS DE ACTIVIDADES Y TRABAJO PRACTICO Nº 21

GUIAS DE ACTIVIDADES Y TRABAJO PRACTICO Nº 21 SIGNTU: MTEMTI EN IOLOGI DOENTE: LI.GUSTO DOLFO JUEZ GUI DE TJO PTIO Nº ES: POFESODO Y LIENITU EN IOLOGI _PGIN Nº 4_ GUIS DE TIIDDES Y TJO PTIO Nº OJETIOS: Lograr que el lumno: Interprete la información

Más detalles

UNIVERSIDAD NACIONAL DE ASUNCIÓN FACULTAD DE INGENIERÍA CURSO PREPARATORIO DE INGENIERÍA (CPI) EJERCITARIO TEÓRICO DE GEOMETRÍA ANALÍTICA

UNIVERSIDAD NACIONAL DE ASUNCIÓN FACULTAD DE INGENIERÍA CURSO PREPARATORIO DE INGENIERÍA (CPI) EJERCITARIO TEÓRICO DE GEOMETRÍA ANALÍTICA UNIVERSIDAD NACIONAL DE ASUNCIÓN FACULTAD DE INGENIERÍA CURSO PREPARATORIO DE INGENIERÍA (CPI) EJERCITARIO TEÓRICO DE GEOMETRÍA ANALÍTICA AÑO 2014 RECTAS - EJERCICIOS TEÓRICOS 1- Demostrar que la ecuación

Más detalles

VECTORES EN EL PLANO

VECTORES EN EL PLANO VECTORES EN EL PLANO VECTOR: vectores libres Segmento orientado, con un origen y extremo. Módulo: es la longitud del segmento orientado, es un número positivo y su símbolo es a Dirección: es la recta que

Más detalles

Problemas de Campo eléctrico 2º de bachillerato. Física

Problemas de Campo eléctrico 2º de bachillerato. Física Problemas de Campo eléctrico 2º de bachillerato. Física 1. Un electrón, con velocidad inicial 3 10 5 m/s dirigida en el sentido positivo del eje X, penetra en una región donde existe un campo eléctrico

Más detalles

GEOMETRÍA ANALÍTICA GIRO DE LOS EJES

GEOMETRÍA ANALÍTICA GIRO DE LOS EJES GIRO DE LOS EJES CONTENIDO. Ecuaciones de giro. Ejercicios Ya tratamos el procedimiento, mediante el cual, con una translación paralela de ejes, simplificamos las ecuaciones en particular de las curvas

Más detalles

Tema 2 Límites de Funciones

Tema 2 Límites de Funciones Tema 2 Límites de Funciones 2.1.- Definición de Límite Idea de límite de una función en un punto: Sea la función. Si x tiende a 2, a qué valor se aproxima? Construyendo - + una tabla de valores próximos

Más detalles

Teoría Tema 5 Espacios vectoriales

Teoría Tema 5 Espacios vectoriales página 1/14 Teoría Tema 5 Espacios vectoriales Índice de contenido Puntos en 2 y 3 dimensiones...2 Vectores en el plano...5 Suma de vectores...7 Combinación lineal de vectores...8 Sistema generador...10

Más detalles

(a) El triángulo dado se descompone en tres segmentos de recta que parametrizamos de la siguiente forma: (0 t 1); y = 0. { x = 1 t y = t. (0 t 1).

(a) El triángulo dado se descompone en tres segmentos de recta que parametrizamos de la siguiente forma: (0 t 1); y = 0. { x = 1 t y = t. (0 t 1). INTEGRALES DE LÍNEA. 15. alcular las siguientes integrales: (a) (x + y) ds donde es el borde del triángulo con vértices (, ), (1, ), (, 1). (b) x + y ds donde es la circunferencia x + y ax (a > ). (a)

Más detalles

b) Cuántas asíntotas oblicuas y cuántas asíntotas verticales puede tener una función racional cualquiera?. Razónalo. dx x 2 1 x 1 si x >1 x 1 x < 0

b) Cuántas asíntotas oblicuas y cuántas asíntotas verticales puede tener una función racional cualquiera?. Razónalo. dx x 2 1 x 1 si x >1 x 1 x < 0 ANÁLISIS. (Junio 994) a) Encontrar las asíntotas de la curva f () = 2 3 2 4 b) Cuántas asíntotas oblicuas y cuántas asíntotas verticales puede tener una función racional cualquiera?. Razónalo. 2. (Junio

Más detalles

INTERACCIÓN DE UNA CIMENTACIÓN PROFUNDA CON LA ESTRUCTURA

INTERACCIÓN DE UNA CIMENTACIÓN PROFUNDA CON LA ESTRUCTURA INTERACCIÓN DE UNA CIMENTACIÓN PROFUNDA CON LA ESTRUCTURA Fernando MUZÁS LABAD, Doctor Ingeniero de Caminos Canales y Puertos Profesor Titular de Mecánica del Suelo ETSAM RESUMEN En el presente artículo

Más detalles

EL TRIÁNGULO. Recordemos algunas propiedades elementales de los triángulos

EL TRIÁNGULO. Recordemos algunas propiedades elementales de los triángulos EL TRIÁNGULO 1. EL TRIÁNGULO. PRIMERAS PROPIEDADES El triángulo es un polígono que tiene tres lados y tres ángulos. Es, por tanto, el polígono más simple y el conocimiento de sus características y propiedades

Más detalles

TEMA 9 POTENCIA EN SISTEMAS TRIFÁSICOS.

TEMA 9 POTENCIA EN SISTEMAS TRIFÁSICOS. TEMA 9 POTENCIA EN SISTEMAS TRIFÁSICOS. 9.. Potencias en sistemas equilibrados y simétricos en tensiones Un sistema trifásico puede considerarse como circuitos monofásicos, por lo que la potencia total

Más detalles

35 Facultad de Ciencias Universidad de Los Andes Mérida-Venezuela. Potencial Eléctrico

35 Facultad de Ciencias Universidad de Los Andes Mérida-Venezuela. Potencial Eléctrico q 1 q 2 Prof. Félix Aguirre 35 Energía Electrostática Potencial Eléctrico La interacción electrostática es representada muy bien a través de la ley de Coulomb, esto es: mediante fuerzas. Existen, sin embargo,

Más detalles

DERIVADAS. * Definición de derivada. Se llama derivada de la función f en el punto x=a al siguiente límite, si es que existe: lim

DERIVADAS. * Definición de derivada. Se llama derivada de la función f en el punto x=a al siguiente límite, si es que existe: lim DERIVADAS. CONTENIDOS. Recta tangente a una curva en un punto. Idea intuitiva del concepto de derivada de una función en un punto. Función derivada. sucesivas. Reglas de derivación Aplicación de la derivada

Más detalles

4.2 CÓMO SE NOS PRESENTAN LAS FUNCIONES

4.2 CÓMO SE NOS PRESENTAN LAS FUNCIONES Tema 4 Funciones. Características - Matemáticas B 4º E.S.O. 1 TEMA 4 FUNCIONES. CARACTERÍSTICAS 4.1 CONCEPTOS BÁSICOS 3º 4.1.1 DEFINICIONES 3º Una función liga dos variables numéricas a las que, habitualmente,

Más detalles

9 Geometría. analítica. 1. Vectores

9 Geometría. analítica. 1. Vectores 9 Geometría analítica 1. Vectores Dibuja en unos ejes coordenados los vectores que nacen en el origen de coordenadas y tienen sus extremos en los puntos: A(, ), B(, ), C(, ) y D(, ) P I E N S A C A L C

Más detalles

LEYES DE CONSERVACIÓN: ENERGÍA Y MOMENTO

LEYES DE CONSERVACIÓN: ENERGÍA Y MOMENTO LEYES DE CONSERVACIÓN: ENERGÍA Y MOMENTO 1. Trabajo mecánico y energía. El trabajo, tal y como se define físicamente, es una magnitud diferente de lo que se entiende sensorialmente por trabajo. Trabajo

Más detalles

5.3 Esfuerzos y deformaciones producidos por flexión. Puente grúa. 5.3.1 Flexión pura

5.3 Esfuerzos y deformaciones producidos por flexión. Puente grúa. 5.3.1 Flexión pura 5.3 Esfuerzos y deformaciones producidos por flexión Puente grúa 5.3.1 Flexión pura Para cierta disposición de cargas, algunos tramos de los elementos que las soportan están sometidos exclusivamente a

Más detalles

UNIDAD N º 6: Volumen (1ª parte)

UNIDAD N º 6: Volumen (1ª parte) UNIDAD N º 6: Volumen (1ª parte) De manera intuitiva, el volumen de un objeto es el espacio que él ocupa. El procedimiento a seguir para medir el volumen de un objeto dependerá del estado en que se encuentre:

Más detalles

Funciones más usuales 1

Funciones más usuales 1 Funciones más usuales 1 1. La función constante Funciones más usuales La función constante Consideremos la función más sencilla, por ejemplo. La imagen de cualquier número es siempre 2. Si hacemos una

Más detalles

Unidad 5 Estudio gráfico de funciones

Unidad 5 Estudio gráfico de funciones Unidad 5 Estudio gráfico de funciones PÁGINA 84 SOLUCIONES Representar puntos en un eje de coordenadas. 43 Evaluar un polinomio. a) P(-1) = 1 + + 1 1 = 3 b) P(0) = -1 c) P(-) = 8 + 8 + 1 = 17 d) P(1) =

Más detalles

8 Geometría. analítica. 1. Vectores

8 Geometría. analítica. 1. Vectores Geometría analítica 1. Vectores Dibuja en unos ejes coordenados los vectores que nacen en el origen de coordenadas y tienen sus extremos en los puntos: A(, ), B(, ), C(, ) y D(, ) P I E N S A C A L C U

Más detalles

PRISMA OBLICUO > REPRESENTACIÓN Y DESARROLLO POR EL MÉTODO DE LA SECCIÓN NORMAL

PRISMA OBLICUO > REPRESENTACIÓN Y DESARROLLO POR EL MÉTODO DE LA SECCIÓN NORMAL 1. CARACTERÍSTICAS GENERALES DEL PRISMA OBLICUO Desde el punto de vista de la representación en SISTEMA DIÉDRICO, el prisma oblicuo presenta dos características importantes que lo diferencian del prisma

Más detalles

PROBLEMAS DE EQUILIBRIO

PROBLEMAS DE EQUILIBRIO PROBLEMAS DE EQUILIBRIO NIVEL BACHILLERATO Con una honda Curva con peralte Tomar una curva sin volcar Patinador en curva Equilibrio de una puerta Equilibrio de una escalera Columpio Cuerda sobre cilindro

Más detalles

En la siguiente gráfica se muestra una función lineal y lo que representa m y b.

En la siguiente gráfica se muestra una función lineal y lo que representa m y b. FUNCIÓN LINEAL. La función lineal o de primer grado es aquella que se representa gráficamente por medio de una línea recta. Dicha función tiene una ecuación lineal de la forma f()= =m+b, en donde m b son

Más detalles