Conceptos básicos de Geometría
|
|
|
- Francisco Javier Toledo Belmonte
- hace 9 años
- Vistas:
Transcripción
1 Conceptos básicos de geometría La geometría trata de la medición y de las propiedades de puntos, líneas, ángulos, planos y sólidos, así como de las relaciones que guardan entre sí. A continuación veremos algunos conceptos relacionados con la geometría. Segmento: es aquella parte de una línea recta que queda entre dos puntos señalados sobre ella. Rayo o media línea: es aquella parte de una línea recta que queda a algún lado de un punto (el extremo) señalado sobre ella. Ángulo: cuando dos rayos se intersectan en sus extremos. El punto de intersección se conoce con el nombre de vértice del ángulo. Unidades de medición de los ángulos.- las unidades de uso común para medir los ángulos son el radián y el grado. La medida de un ángulo es la cantidad de unidades de medición que contiene. El grado: es una unidad de medida cuyo símbolo es º. Por consiguiente hay 360º en una revolución completa. En el sistema internacional de medidas, la unidad de medida angular es el radián. Los ángulos se pueden dividir en diferentes tipologías tomando como base los grados que tienen. Así, podemos distinguir entre cuatro tipos de ángulos. Clases de ángulos Ángulo recto: está formado por el cruce de dos rectas perpendiculares que forman la cuarta parte de una revolución, es decir, 90º. Página 1
2 Ángulo obtuso: un ángulo obtuso tiene una abertura mayor a la del ángulo recto, concretamente 180º. Ángulo agudo: un ángulo agudo tiene una abertura menor a la del ángulo recto. Ángulo plano: es aquel cuyos lados son semirrectas opuestas, además el ángulo es la mitad de una revolución, o sea, 180º. Los polígonos Un polígono es una figura plana y cerrada formada por tres o más segmentos de línea unidos en sus extremos. Estas figuras pueden dividirse en dos variantes: Polígonos regulares: son aquellos que tienen todos sus lados y ángulos congruentes. Además, todo polígono regular está inscrito en una circunferencia. Polígono irregular: son aquellos que no tienen todos sus lados y ángulos iguales. Clases de polígonos Los triángulos: son unos polígonos que tienen tres lados, que se unen en los vértices, y tres ángulos. Los triángulos se pueden clasificar por dos aspectos: Por sus lados: Escaleno: sus lados y sus ángulos no son congruentes. Isósceles: es un tipo de triángulo que tiene dos lados iguales. Los ángulos opuestos a estos lados iguales serán iguales. Página 2
3 Equilátero: es un triángulo que tiene sus tres lados iguales y sus ángulos también son iguales. Por sus ángulos: Acutángulo: un triángulo acutángulo tiene sus tres ángulos agudos. Obtusángulo: este tipo de triángulo tiene un ángulo obtuso y dos agudos. El lado opuesto al ángulo obtuso será de mayor longitud. Rectángulo: es aquel triángulo que tiene un ángulo recto y dos agudos. El lado opuesto al ángulo recto se llama hipotenusa y los otros dos lados se llaman catetos. Para calcular cuánto mide la hipotenusa se aplica el Teorema de Pitágoras que consiste en que la hipotenusa es igual a la suma de los cuadrados de los otros dos lados (catetos). Fórmula: a 2 + b 2 = c 2 Ejemplo: un triángulo rectángulo tiene catetos de 5 y 4 unidades de longitud. H 2 = = = 41 H = 41 = c 2 + c 2. Página 3
4 Cuadriláteros: Un cuadrilátero es un polígono que tiene cuatro lados y cuatro ángulos. Los lados de un cuadrilátero pueden ser consecutivos u opuestos. De acuerdo a la igualdad o al paralelismo de sus lados podemos clasificarlos en: Según paralelismo: Trapecio: El trapecio es un polígono de cuatro lados, pero sus cuatro ángulos son distintos de 90º. Paralelogramo: El paralelogramo es un polígono de cuatro lados paralelos dos a dos. Rectángulo: El rectángulo es un polígono de cuatro lados, iguales dos a dos. Sus cuatro ángulos son de 90 grados cada uno. Según la igualdad: Romboide: tiene dos pares de lados consecutivos iguales. Rombo: El rombo es un polígono de cuatro lados iguales, pero sus cuatro ángulos son distintos de 90ª. Página 4
5 La suma de todos los ángulos interiores de todo cuadrilátero es de 360º. El cuadrado puede situarse en ambas categorías. Página 5
6 Cómo calcular el perímetro de las figuras planas Se denomina perímetro de una figura plana a la suma de las longitudes de sus lados. De este modo, el perímetro de un triángulo cuyos lados miden 5 cm, 6 cm y 10 cm es de =21 cm. Para calcular el perímetro es necesario conocer la longitud de todos los lados de la figura. Se acostumbra a representar la mitad del perímetro de una figura con la letra p. Perímetro = 2 p Área del rectángulo: como en un rectángulo los lados son iguales dos a dos, obtenemos la siguiente fórmula: Perímetro = 2. p = b+b+h+h= 2 b + 2 h Perímetro de los polígonos regulares: como en los polígonos regulares todos los lados son iguales obtendremos las siguientes fórmulas: Triángulo equilátero perímetro = c + c + c = 3 c Cuadrado perímetro = c + c + c + c = 4 c Pentágono perímetro = c + c + c + c + c = 5 c El área de las figuras planas El área de una figura es la porción del plano que cubre. Para medir las superficies se utiliza como unidad de medida el cuadrado cuyo lado es de longitud 1. Área del rectángulo: es el área más sencilla para calcular. Es el resultado de multiplicar la longitud de sus lados o también, como se dice habitualmente, se obtiene multiplicando la base (b) por la altura (h). Fórmula: Área del rectángulo = base * altura = b * h Área del paralelogramo: Si consideramos el paralelogramo ABCD. La base AB desde C y D se hacen perpendiculares sobre la base AB. Los triángulos ADM y BCN son iguales. Por tanto, el área del paralelogramo ABCD es la misma que la del rectángulo MNCD. Observamos que las dos figuras tienen la misma base y la misma Página 6
7 altura. Este proceso nos permite afirmar que el área de un paralelogramo es, también, el producto de su base por su altura. Fórmula: Área del paralelogramo = base * altura = b * h Área del cuadrado: en un cuadrado la base y la altura son iguales a su lado y por tanto: Fórmula: Área del cuadrado de lado c = lado 2 = c 2 Área del triángulo: consideremos un triángulo cualquiera ABC, de base AB. Dibujemos una paralela a AB que pase por C y una paralela a AC que pase por B. Éstas se encuentran en un punto D. Los triángulos ABC y BCD serán iguales. Por tanto, la superficie del paralelogramo ABCD será el doble del área del triángulo ABC. Fórmula: Área del paralelogramo ABCD = 2 área del triángulo ABC O bien, Área del triángulo ABC = área del paralelogramo : 2 Como la base y la altura del paralelogramo son la base y la altura del triángulo obtendremos: Fórmula: Área del triángulo = base por altura dividido por 2 = b * h / 2 El área de las figuras planas Continuamos viendo cómo se calcula el área de las figuras planas. Veamos: Para calcular el área de otros polígonos se dibujan las diagonales necesarias con el fin de que queden descompuestos en triángulos; después se calcula el área de estos triángulos y se suman los valores obtenidos. Área = AT 1 + AT 2 + AT 3 + AT 4 + AT 5. Área del rombo: en el rombo, las dos diagonales, d y D, lo descomponen en cuatro triángulos iguales que tienen como base la mitad de una diagonal (base = b = d : 2 y como altura la mitad de la otra diagonal (altura = h = D : 2). La superficie de cada uno de los triángulos será: Página 7
8 A = (base. altura) / 2 = (d/2)*(d/2) / 2 = d * D / 8 Y, en consecuencia, el área del rombo será el área de uno de estos triángulos multiplicada por 4: Área del rombo = 4 * área del triángulo = 4 * (d * D) / 8 = (d * D) / 2 Área del trapecio: considera un trapecio ABCD de base AB. Se acostumbra a denominar bases a los lados paralelos del trapecio. El lado más grande de los dos será la base mayor, que representaremos por B, y el otro la base menor, que representaremos con b. La diagonal divide el trapecio en dos triángulos: ABC, de base AB, y ACD, de base DC. Ambos triángulos tienen la misma altura que el trapecio. El área del trapecio será la suma de las áreas de los dos triángulos. El triángulo ABC tiene como base la mayor del trapecio y su altura es la del trapecio; el triángulo ACD tiene como base la menor del trapecio y su altura es la del trapecio. Área del trapecio = (B h) : 2 + (b h) : 2 = (B h + b h) 2 = (B + b) h : 2 = (B + b : 2) h Fórmula que se suele enunciar así: el área del trapecio es igual al resultado de multiplicar la semisuma de las bases por la altura. Área de los polígonos regulares: consideremos diversos polígonos regulares, como un triángulo equilátero, un cuadrado, un hexágono regular o un octógono regular. Todos ellos tienen un centro definido. Si unimos dicho centro con los vértices de cada uno de los polígonos, se descompondrán en tantos triángulos como lados tiene. Todos los triángulos resultantes de la descomposición son iguales y tienen como base un lado (c), y su altura es la apotema del polígono (a). El área de estos triángulos será: Fórmula: Área del triángulo = (c a) : 2 Por lo tanto, el área del polígono regular será el resultado de multiplicar esta área por el número de triángulos que se han formado. A (polígono) = número de lados área del triángulo. Área polígono regular de n lados = n (c a :2) = (n c a) : 2 = ((n c) : 2) a Cn es el perímetro del polígono y, como ya hemos dicho que se acostumbra a representar con la p la mitad del perímetro (semiperímetro), tendremos que (c n) : 2 = p, y podemos formular: Área del polígono regular = semiperímetro por apotema = p a Página 8
9 La circunferencia y el círculo La circunferencia es una línea curva cerrada, cuyos puntos tienen la propiedad de equidistar de otro punto llamado centro. El término equidistar significa que están a la misma distancia. Los puntos de la circunferencia y los que se encuentran dentro de ella forman una superficie llamada círculo. Principales elementos de la circunferencia.- A continuación le explicamos las partes que conforman una circunferencia. Radio: es el segmento que une el punto centro con cualquier punto de la circunferencia. El radio permite nombrar a la circunferencia y lo identificamos con la letra r. Diámetro: segmento que une dos puntos de la circunferencia, pasando por el punto centro. El diámetro equivale a la medida de dos radios. Cuerda: es un trazo que une dos puntos de la circunferencia. Arco: es una parte o subconjunto de la circunferencia, limitada por dos puntos de ella. Cómo calcular la longitud de una circunferencia Los matemáticos griegos decidieron indicar, con una letra de su alfabeto, el número de veces que la circunferencia contiene su propio diámetro. La letra escogida fue la letra π. Del número π, se conocen muchas cifras (tiene infinitas). Como las primeras son 3, pero normalmente consideramos como valor de π 3,14. Fórmula: Longitud de la circunferencia = π. diámetro Como el diámetro es el radio multiplicado por dos (d= 2r), se suele escribir: Página 9
10 Perímetro de la circunferencia = π * diámetro = π * 2 * r = 2 * π * r El área del círculo se calcula de la siguiente forma: Recordemos: A ( polígono regular) = semiperímetro. apotema. Como el perímetro del círculo es 2 π r, el semiperímetro será π r, y la apotema será el mismo radio del círculo; por lo tanto: A (círculo) = (π * r) * r = π * r 2 = π * r 2 Página 10
11 Resumen de fórmulas FIGURA PERÍMETRO AREAS P = 4 a A = a 2 A = d 2 / 2 P = 2 (a+b) A = a b P = 4 a A = a. h = (e + f) / 2 E y f son diagonales P = 2 (a + b) A = a h P = a + b + c + d A = (a + c) / 2 h P = 2 π r A = π r 2 Página 11
Geometría básica Autor: Noelia Torres Costa
Geometría básica Autor: Noelia Torres Costa 1 Presentación del curso La Geometría es una de las ramas de las Matemáticas más atractivas para estudiar. Aunque no lo parezca, todo nuestro entorno está lleno
1.- Punto: Intersección de dos rectas. No tiene dimensiones (ni largo, ni ancho, ni alto).
1.- Punto: Intersección de dos rectas. No tiene dimensiones (ni largo, ni ancho, ni alto). 6.- Espacio: Conjunto de puntos con tres dimensiones: largo, ancho y alto. Es infinito, sin límites. 2.- Recta:
UNIDAD 10. FIGURAS PLANAS: POLÍGONOS CIRCUNFERENCIA Y CÍRCULO
UNIDAD 10. FIGURAS PLANAS: POLÍGONOS CIRCUNFERENCIA Y CÍRCULO 1. POLÍGONOS: DEFINÍCIÓN, ELEMENTOS Y CLASIFICACIÓN. 2. POLÍGONOS REGULARES E IRREGULARES. 3. TRIÁNGULOS Y CUADRILÁTEROS: CLASIFICACIÓN. 4.
POLIGONOS. Nº DE LADOS NOMBRE 3 Triángulos 4 Cuadriláteros 5 Pentágonos 6 Hexágonos 7 Heptágonos 8 Octógonos 9 Eneágonos 10 Decágonos
1 POLIGONO POLIGONOS Polígono es la superficie plana limitada por una línea poligonal cerrada. Lados Vértices Polígono regular es el que tiene todos sus lados y ángulos iguales, mientras que polígono irregular
Tema 5: Polígonos. Mediatriz de un segmento : Es la recta perpendicular trazada en su punto medio.
Tema 5: Polígonos 5.1 Elementos Fundamentales de Geometría Mediatriz de un segmento : Es la recta perpendicular trazada en su punto medio. A P * B Cualquier punto P de la mediatriz equidista de los extremos
CORRECCIÓN DE ACTIVIDADES GEOMETRÍA LINEAL
CORRECCIÓN DE ACTIVIDADES GEOMETRÍA LINEAL *. Responde a las siguientes preguntas en tu cuaderno. a) Qué es una recta? Dibújala. Recta: sucesión infinita de puntos (no tiene principio ni fin). Las rectas
Polígonos y circunferencia
826464 _ 055-070.qxd 12/2/07 09:22 Página 55 Polígonos y circunferencia INTRODUCCIÓN RESUMEN DE LA UNIDAD Nos introducimos en el estudio de los polígonos, recordando contenidos trabajados por los alumnos
Segmento : porción de recta comprendida entre dos de sus puntos, llamados extremos.
ÍNDICE Elementos fundamentales Ángulos Triángulos y cuadriláteros Áreas y volúmenes Poliedros ELEMENTOS FUNDAMENTALES DE GEOMETRÍA Conceptos fundamentales Punto Recta Plano Semirecta : porción de recta
FIGURAS PLANAS. Esto es un segmento: Esto es una línea poligonal abierta, formada por la unión de varios segmentos:
FIGURAS PLANAS Esto es un segmento: Esto es una línea poligonal abierta, formada por la unión de varios segmentos: Y esto, una línea poligonal cerrada en la que se unen el extremo inicial del primer segmento
Created with novapdf Printer (www.novapdf.com)
GEOMETRÍA LONGITUDES Longitud de la circunferencia Es una línea curva cerrada que equidistan todos sus puntos del centro. Radio Centro: punto situado a igual distancia de todos los puntos de la circunferencia.
Sistemas de Representación y Dibujo Técnico Año 2015. Geometría Básica
EL PUNTO Geometría Básica El punto es la entidad geométrica más pequeña y finita. Se puede definir por intersección de 2 rectas. En un plano, se puede definir por medio de 2 coordenadas. En el espacio,
UNIDAD IV ÁREAS DE FIGURAS PLANAS
UNIDAD IV ÁREAS DE FIGURAS PLANAS COMPETENCIAS E INDICADORES DE DESEMPEÑO Identifica las áreas de figuras planas, volumen y superficie. CONCEPTOS DE PERÍMETRO Y AREA DE UNA FIGURA PLANA Se llama perímetro
1. Polígonos. 1.1 Definición
1.1 Definición 1. Polígonos Es toda figura plana, cerrada, limitada por un número finito de lados rectos. De acuerdo al número de lados, los más utilizados se clasifican en: Triángulos 3 lados Cuadriláteros
GEOMETRÍA Y TRIGONOMETRÍA
GEOMETRÍA Y TRIGONOMETRÍA 1 Conceptos básicos 1. Una figura geométrica es un conjunto de puntos. 2. Puntos colineales son cualesquiera puntos que están exactamente en una recta. 3. La distancia entre un
Las Figuras Planas. Vértice. Ángulo. Diagonal. Lado. Los polígonos. El Polígono. CEPA Carmen Conde Abellán Matemáticas II
Las Figuras Planas Melilla Los polígonos Te has fijado alguna vez en el metro que usan los carpinteros? Está formado por segmentos de madera que se pliegan con facilidad. Este instrumento tiene forma de
Boletín de Actividades. Figuras Planas: Polígonos, Circunferencia y Círculo. Áreas y Perímetros de figuras complejas.
Boletín de Actividades. Figuras Planas: Polígonos, Circunferencia y Círculo. Áreas y Perímetros de figuras complejas. 1.- Escribe el nombre de las siguientes líneas. 2.- Qué ángulos forman dos rectas perpendiculares?
11-A-1/8. Nombre: Es un conjunto de segmentos unidos, formando diversos ángulos. Pueden ser:
11-A-1/8 Geometría (polígonos) Líneas poligonales. Es un conjunto de segmentos unidos, formando diversos ángulos. Pueden ser: Abierta Cerrada El trozo de plano que hay dentro de una línea poligonal cerrada,
7. TRIÁNGULOS Y CIRCUNFERENCIAS
7. TRIÁNGULOS Y CIRCUNFERENCIAS Triángulos Los triángulos son figuras planas, polígonos formados por tres lados. Los podemos clasificar fijándonos en sus lados o como son sus ángulos. Los triángulos según
Lección 17: Polígonos básicos
Lección 17: Polígonos básicos Un polígono es una figura cerrada formada por segmentos de recta que no se cruzan entre sí. Los segmentos se llaman lados del polígono. Los polígonos pueden ser convexos,
1º ESO GEOMETRÍA PLANA: ÁNGULOS Y TRIÁNGULOS
1º ESO GEOMETRÍA PLANA: ÁNGULOS Y TRIÁNGULOS 1.- ÁNGULOS Un ángulo es la porción de plano limitada por dos semirrectas o rayos que tienen el mismo origen. Los lados del ángulo son las semirrectas que lo
GEOMETRÍA. 1. Líneas y ángulos. Partimos de la existencia de infinitos puntos cuyo conjunto llamamos ESPACIO.
1. Líneas y ángulos Partimos de la existencia de infinitos puntos cuyo conjunto llamamos ESPACIO. Los puntos del espacio se consideran agrupados en conjuntos parciales de infinitos puntos llamados PLANOS.
TRIÁNGULOS. TEOREMA DE PITÁGORAS.
TRIÁNGULOS. TEOREMA DE PITÁGORAS. Un triángulo ABC es la figura geométrica del plano formada por 3 segmentos llamados lados cuyos extremos se cortan a en 3 puntos llamados vértices. Los vértices se escriben
B7 Cuadriláteros. Geometría plana
Geometría plana B7 Cuadriláteros Cuadrilátero es un polígono de cuatro lados. Lados opuestos son los que no tienen punto común. Ejemplo AB y CD, AD y BC. Lados contiguos son los que tienen un extremo común.
AREA Y PERIMETRO DE LAS FIGURAS GEOMETRICAS
AREA Y PERIMETRO DE LAS FIGURAS GEOMETRICAS Figura geométrica Consiste de una línea o de un conjunto de líneas que representarán un objeto dado. Polígono Es una poligonal cerrada (el origen del primer
Figuras Planas. 100 Ejercicios para practicar con soluciones. 1 Comprueba si los siguientes ángulos son complementarios: a) 72 + 35.
Figuras Planas. 100 Ejercicios para practicar con soluciones 1 Comprueba si los siguientes ángulos son complementarios: a) 7º y 35 b) 6º y 64º a) 7 + 35 = 107 90 No son complementarios. b) 6 + 64 = 90
8. Elementos de geometría plana
8. Elementos de geometría plana 1. Elementos básicos de la geometría 2. Ángulos 2.1. El sistema sexagesimal 2.1.1. Suma de ángulos 2.1.2. Resta de ángulos 2.1.3. Multiplicar por un número 2.1.4. Dividir
RESUMEN GEOMETRÍA SAINT MARY SCHOOL. PROF. JUAN K. BOLAÑOS M. Geometría Elemental
Geometría Elemental Punto Sólo tiene posición. No posee longitud, anchura ni espesor. Se representa por un. Se designa por medio de una letra mayúscula colocada cerca del punto gráfico. Línea recta Es
1. ESQUEMA - RESUMEN Página 2. 2. EJERCICIOS DE INICIACIÓN Página 8. 3. EJERCICIOS DE DESARROLLO Página 20. 5. EJERCICIOS DE REFUERZO Página 36
1. ESQUEMA - RESUMEN Página 2 2. EJERCICIOS DE INICIACIÓN Página 8 3. EJERCICIOS DE DESARROLLO Página 20 5. EJERCICIOS DE REFUERZO Página 36 1 1. ESQUEMA - RESUMEN Página 1.1. POLÍGONOS 2 1.2. TRIÁNGULOS
LOS POLÍGONOS, PROPIEDADES Y CONSTRUCCIONES. 1. DEFINICIÓN Y TIPOS DE POLÍGONOS. DEFINICIÓN. ELEMENTOS GENERALES DE UN POLÍGONO.
LOS POLÍGONOS, PROPIEDADES Y CONSTRUCCIONES. 1. DEFINICIÓN Y TIPOS DE POLÍGONOS. DEFINICIÓN. Polígono es la superficie plana limitada por una línea poligonal cerrada. Línea poligonal es la figura formada
5. POLÍGONOS. 5.1 Definición y notación de polígonos
5. POLÍGONOS 5.1 Definición y notación de polígonos Un polígono es una figura geométrica limitada por segmentos de recta denominados lados, donde el extremo de un segmento es el origen del otro. E D Etimológicamente,
13Soluciones a los ejercicios y problemas PÁGINA 250
PÁGINA 50 Pág. 1 Á REAS Y PERÍMETROS DE FIGURAS SENCILLAS Halla el área y el perímetro de las figuras coloreadas de los siguientes ejercicios: 1 a) b) 5 dm 4 cm cm 5 cm 8 cm a) 5 = 5 dm b) 8 = 8 cm P =
PERÍMETROS Y ÁREAS DE FIGURAS PLANAS UNIDADE 13 1º ESO Halla la superficie y el perímetro del recinto marrón:
PERÍMETROS Y ÁREAS DE FIGURAS PLANAS UNIDADE 13 1º ESO Halla la superficie y el perímetro del recinto marrón: Calcula el perímetro y el área de esta figura: Calcula el perímetro y el área de esta figura:
SUBRAYE LA RESPUESTA CORRECTA EN CADA PREGUNTA.
CUADERNILLO DE GEOMETRIA I.- SUBRAYE LA RESPUESTA CORRECTA EN CADA PREGUNTA. 1.- SON LOS TRIÁNGULOS QUE TIENEN TODOS LOS ÁNGULOS IGUALES. A) EQUILÁTERO B) ACUTÁNGULO C) ISÓSCELES D) ESCALENO E) RECTÁNGULO
1.- ÁNGULOS Y TRIÁNGULOS
OBJETIVOS MÍNIMOS DE LAS UNIDADES 10 y 11 1.- Usar el teorema de Pitágoras para determinar la medida desconocida en figuras geométricas en casos muy simples.- Determinar el área de figuras geométricas
Propiedades y clasificación de triángulos
MT-22 Clase Propiedades y clasificación de triángulos Síntesis de la clase Ángulos Polígonos convexos Clasificación de ángulos Relaciones angulares Regulares Irregulares 0º < Agudo < 90 Recto = 90 90º
PERÍMETROS Y ÁREAS DE FIGURAS PLANAS UNIDADE 13 1º ESO 1 ) Halla la superficie y el perímetro del recinto marrón:
PERÍMETROS Y ÁREAS DE FIGURAS PLANAS UNIDADE 13 1º ESO 1 ) Halla la superficie y el perímetro del recinto marrón: 2 ) Calcula el perímetro y el área de esta figura: 3 ) Calcula el perímetro y el área de
Ángulos. Semejanza. ABE ˆ, ACE ˆ o ADE ˆ son ángulos inscritos en la. n 2 180º. En la circunferencia:
GEOMETRÍA Ángulos En la circunferencia: ABE ˆ, ACE ˆ o ADE ˆ son ángulos inscritos en la circunferencia y son todos iguales. AOE ˆ es el ángulo central correspondiente y su medida es dos veces la medida
Los Ángulos. 2. Cómo pueden ser los ángulos? Definir cada uno. Nulos: Si su medida es Cero. Ej.
Los Ángulos 1. Qué es un ángulo y su notación? Son dos rayos cualesquiera que determinan dos regiones del plano. Su notación: Para nombrar los ángulos, utilizaremos los símbolos
UNIDAD I. ÁNGULOS, TRIÁNGILOS, POLÍGONOS Y CIRCUNFERENCIA. Tema. Triángulos
UNIDAD I. ÁNGULOS, TRIÁNGILOS, POLÍGONOS Y CIRCUNFERENCIA Tema. Triángulos TRIÁNGULOS Así como nuestro alrededor está lleno de objetos que nos ejemplifican claramente el concepto de ángulo, también existen
Trigonometría y problemas métricos
Trigonometría y problemas métricos 1) En un triángulo rectángulo, los catetos miden 6 y 8 centímetros. Calcula la medida de la altura sobre la hipotenusa y la distancia desde su pie hasta los extremos.
13 LONGITUDES Y ÁREAS
EJERCICIOS PROPUESTOS 1.1 Calcula el perímetro de las siguientes figuras., cm cm cm a) p,5 8 5 1 b) p 9 cm 1. Halla el perímetro de estas figuras. a) Un cuadrado de 6 centímetros de lado. b) Un triángulo
Trigonometría, figuras planas
El polígono Un polígono es una figura plana limitada por tres o más segmentos. El perímetro de un polígono es igual a la suma de las longitudes de sus lados. El perímetro de una circunferencia se llama
A = 180-90 - 62 = 28. 8 GEOMETRíA DEL PLA 8 = 720-145 - 125-105 - 130-160 = 55. b) 720 = 90: ~ B- 110 + 8+ 150 + 90 = 440 + 28 ==> B = 140 C
8 GEOMETRíA DEL PLA EJERCCOS PROPUESTOS Calcula la medida del ángulo que falta en cada figura. a) b) a) En un triángulo, la suma de las medidas de sus ángulos es 180, A = 180-90 - 6 = 8 El ángulo mide
SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD
Pág. 1 PÁGINA 255 EJERCICIOS Construcciones y ejes de simetría 1 a) Halla el ángulo central de un octógono regular. b) Dibuja un octógono regular inscrito en una circunferencia de 5 cm de radio, construyendo
AREAS DE FIGURAS PLANAS. Si en la figura siguiente cada cuadrado tuviese un centímetro de lado
AREAS DE FIGURAS PLANAS 1 CONCEPTOS DE PERÍMETRO Y AREA DE UNA FIGURA PLANA Se llama perímetro de una figura plana a la longitud del orde de la figura. Se llama área de una figura plana a la medida de
EXAMEN GEOMETRÍA. 5. Halla el perímetro y el área de un triángulo isósceles cuyos lados miden 5, 5 y 8 cms., respectivamente.
1. Supongamos una circunferencia de radio 90/ð cms. y un ángulo cuyo vértice coincida con el centro de la circunferencia. Halla: a) La longitud de arco de circunferencia que abarca un ángulo de 501. b)
Guia PSU Matemática IV Medio PERÍMETROS, ÁREAS Y VOLÚMENES
PERÍMETROS, ÁREAS Y VOLÚMENES Antes de entrar al análisis de fórmulas referente al perímetro, área y volumen de figuras geométricas, repasemos estos temas y efectuemos ejercicios pertinentes Llamamos área
Ejercicios Resueltos
Ejercicios Resueltos ANGULOS 1. Si el complemento de ángulo x es x, Cuál es el valor de x en grados? x + x = 90 3x = 90 x = 90 /3 x = 30. Si el suplemento del ángulo x es 5x, Cuál es el valor de x? 5x+x=
I.E.S VICENTE ALEIXANDRE BARBATE
1. Calcula el área y el perímetro de estas figuras:. Un sector circular mide 80 y tiene 10 de radio. Cuál es su área y su perímetro? 3. El área de la zona sombreada es de 35. Cuál es la superficie del
RAZONES TRIGONOMÉTRICAS
RAZONES TRIGONOMÉTRICAS Razones trigonométricas de los ángulos de un triángulo rectángulo eran esas relaciones entre los lados de dicho triángulo rectángulo. Seno: Se define el seno del ángulo como el
Perímetro de un polígono regular: Si la longitud de un lado es y hay cantidad de lados en un polígono regular entonces el perímetro es.
Materia: Matemática de Séptimo Tema: Área de Polígonos Qué pasa si te piden que encuentres la distancia del Pentágono en Arlington, VA? El Pentágono, que también alberga el Departamento de Defensa de EE.UU.,
8. Si Â, Ê e Î son los ángulos de un triángulo, completa en tu cuaderno la siguiente tabla:
5. Clasifica según sus lados los siguientes triángulos: a) Equilátero. b) Escaleno. c) Isósceles. 6. Clasifica según sus ángulos los siguientes triángulos: a) Acutángulo. b) Obtusángulo. c) Rectángulo.
PREUNIVERSITARIO POPULAR FRAGMENTOS COMUNES MATEMÁTICA
Geometría La palabra geometría tiene sus raíces en la composición de las palabras geo que significa tierra, y la palabra metrein que significa medida, por lo tanto en su significado más literal es medida
7.1.2. Cuadriláteros cóncavos y convexos. 7.1.3. Cuadriláteros idénticos, iguales y semejantes.
7. CUADRILÁTEROS 7.1. CARACTERÍSTICAS GENERALES Un cuadrilátero ABCD es una figura plana limitada por cuatro lados y cuatro vértices. Puede ser cóncavo o convexo, inscriptible o circunscriptible. La denominación
PRUEBA GEOMETRÍA CDI 2015
Portal Fuenterrebollo PRUEBA GEOMETRÍA CDI 015 1. Una cruz compuesta por cinco cuadrados iguales está inscrita en un cuadrado. Si el área de la cruz es de 5 cm. Cuál es, en cm, el área del cuadrado? 5
Clasificación de triángulos: Un triángulo es un polígono de tres lados. Un triángulo está determinado por:
Un triángulo es un polígono de tres lados. Un triángulo está determinado por: 1. Tres segmentos de recta que se denominan lados. 2. Tres puntos no alineados que se llaman vértices. Los vértices se escriben
SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD
Pág. 1 PÁGINA 241 EJERCICIOS Clasificación. Propiedades 1 Observa el siguiente diagrama: cuadriláteros 4 rectángulos trapecios rombos 2 1 3 5 paralelogramos 6 Qué figura geométrica corresponde al recinto?
MATEMÁTICAS 1º DE ESO
MATEMÁTICAS 1º DE ESO LOE TEMA XII: POLIEDROS Y CUERPOS DE REDONDOS Poliedros. o Elementos de un poliedro y desarrollo plano. Prismas. o Elementos y tipos de prismas. Pirámides. o Elementos y tipos de
Unidad didáctica sobre lugares geométricos y figuras planas
Marzo de 2008, Número 13, páginas 129-143 ISSN: 1815-0640 Coordinado por Agustín Carrillo de Albornoz Unidad didáctica sobre lugares geométricos y figuras planas Introducción En esta unidad didáctica se
Fundación Uno. Ejercicio Reto. ENCUENTRO # 50 TEMA: Triángulos.Cuadriláteros.Circunferencia. Propiedades. CONTENIDOS:
ENCUENTRO # 50 TEMA: Triángulos.Cuadriláteros.Circunferencia. Propiedades. CONTENIDOS: 1. Triángulos.Rectas notables. Propiedades. 2. Cuadriláteros. Propiedades. 3. Polígonos. Propiedades. 4. Circunferencia.
EJERCICIOS RESUELTOS MÍNIMOS 3º ESO TEMA 8 PROBLEMAS MÉTRICOS DEL PLANO
EJERCICIOS RESUELTOS MÍNIMOS 3º ESO TEMA 8 PROBLEMAS MÉTRICOS DEL PLANO Ejercicio nº 1.- Calcula la medida de los ángulos desconocidos: a) b) a) A ˆ = 180 35 = 145 Por ser opuestos por el vértice: Bˆ =
2º ESO CAPÍTULO 6: LONGITUDES Y ÁREAS
º ESO CAPÍTULO 6: LONGITUDES Y ÁREAS Revisores: Javier Rodrigo y Raquel Hernández 110 Longitudes y áreas. º de ESO Índice 1. TEOREMA DE PITÁGORAS. PERÍMETROS Y ÁREAS DE POLÍGONOS.1. ÁREA DEL CUADRADO Y
GEOMETRÍA DEL TRIÁNGULO
GEOMETRÍA DEL TRIÁNGULO ROCÍO MÉNDEZ MENDOZA 1.- Las Matemáticas en Educación Primaria Las Matemáticas son un conjunto de saberes asociados en una primera aproximación a los números y las formas, que van
TEMA 2. DIBUJO TÉCNICO
TEMA 2. DIBUJO TÉCNICO 1.PARALELISMO Y PERPENDICULARIDAD Dos rectas son paralelas cuando mantienen siempre la misma distancia entre ellas y nunca llegan a unirse. Dos rectas son perpendiculares cuando
1.- 3.- Las áreas de dos polígonos semejantes son 121 cm 2 y 324 cm 2. Si el perímetro del primero es 44 cm, cuál es el perímetro del segundo?
olegio-laret 1.- 10m 7m 30m SMINRIO MTMÁTIS l dibujo presenta un método aproximado para medir la anchura de un río sin necesidad más que de tomar medidas en una orilla. Situándonos en el punto hemos realizado
Manual de teoría: Geometría Matemática Bachillerato
Manual de teoría: Geometría Matemática Bachillerato Realizado por José Pablo Flores Zúñiga Geometría: José Pablo Flores Zúñiga Página 1 Contenido: 3) Geometría 3.1 Círculo y Circunferencia 3. Polígonos
Unidad didáctica 3. Cálculo de superficies y volúmenes
Unidad didáctica. Cálculo de superficies y volúmenes.1 Cálculo de superficies. En el presente apartado se estudiarán las superficies, perímetros y relaciones geométricas más importantes de las principales
El segmento, parte de una recta comprendida entre dos puntos. Mediatriz: recta perpendicular que corta un segmento en su punto medio.
CONTENIDOS 1º ESO A, B Y C. 2º EVALUACIÓN. Educación Plástica y visual. Pilar Martínez Carnicer. ELEMENTOS FUNDAMENTALES DE LA EXPRESIÓN PLÁSTICA 1. El punto, es el elemento de expresión plástica más simple
I.E PBRO ANTONIO JOSÉ BERNAL LONDOÑO POR: JUAN GUILLERMO BUILES GÓMEZ BASE 4: POLÍGONOS EN GENERAL A. RECONOCIMIENTO DE POLÍGONOS Y SUS ELEMENTOS
I.E PBRO ANTONIO JOSÉ BERNAL LONDOÑO POR: JUAN GUILLERMO BUILES GÓMEZ BASE 4: POLÍGONOS EN GENERAL A. RECONOCIMIENTO DE POLÍGONOS Y SUS ELEMENTOS MATERIALES: FIGURAS GEOMÉTRICAS Y CUERPOS FÍSICOS PLANOS
RELACIONES MÉTRICAS Y ÁREAS EN EL PLANO
RELACIONES MÉTRICAS Y ÁREAS EN EL PLANO 1. LUGARES GEOMÉTRICOS: MEDIATRIZ Y BISECTRIZ Se denomina lugar geométrico a la figura que forman un conjunto de puntos del plano que cumplen una determinada propiedad.
TEMA 8: TEOREMA DE PITÁGORAS. SEMEJANZA. ÁREAS DE FIGURAS PLANAS. 1. Calcula el área de las figuras siguientes: TEOREMA DE PITÁGORAS
TEMA 8: TEOREMA DE PITÁGORAS. SEMEJANZA. ÁREAS DE FIGURAS PLANAS 1. Calcula el área de las figuras siguientes: TEOREMA DE PITÁGORAS En un triángulo rectángulo, los lados menores son los que forman el ángulo
Colegio Universitario Boston. Geometría
34 Conceptos ásicos Triángulo: Se define como la figura geométrica plana, cerrada de tres lados. Triángulo equilátero: Es el triángulo que tiene sus tres lados iguales y sus tres ángulos internos iguales,
Portal Fuenterrebollo Olimpiada Matemáticas Nivel III (3º 4º ESO) OLIMPIADA MATEMÁTICAS NIVEL III (3º - 4º ESO)
Portal Fuenterrebollo Olimpiada Matemáticas Nivel III (º º ESO) OLIMPIADA MATEMÁTICAS NIVEL III (º - º ESO) 6. Encima de un triángulo equilátero de lado cm, colocamos un círculo de cm de radio, haciendo
ELEMENTOS QUE FORMAN UN POLÍGONO
ELEMENTOS QUE FORMAN UN POLÍGONO Los lados son los segmentos que forman el polígono. Los ángulos son las zonas que forman los lados al cortarse. Las diagonales son los segmentos que unen dos vértices no
TRANSFORMACIONES DEL PLANO
PROBLEMAS DE GEOMETRÍA. TRANSFORMACIONES DEL PLANO 1. Un producto de dos simetrías axiales de ejes perpendiculares A qué transformación corresponde? En qué se transforma un segmento vertical? ( ) 2. Cuál
UNIDAD X - GEOMETRIA. Ejercitación
UNIDAD X - GEOMETRIA Programa Analítico Segmentos. Operaciones con segmentos. Ángulos. Clasificación de los ángulos: Complementarios, suplementarios, adyacentes, alternos-internos, opuestos por el vértice.
1. Líneas poligonales. 2. Triángulos. Definición y tipos. Polígonos. Elementos y clasificación
1. Líneas poligonales Definición y tipos. Polígonos Una linea poligonal es un conjunto de segmentos concatenados, (cada uno empieza donde acaba el anterior), y pueden ser: abiertas o cerradas. La superficie
EJERCICIOS. ÁREAS Y VOLÚMENES.
EJERCICIOS. ÁREAS Y VOLÚMENES. Teorema de Tales 1. Sean los triángulos ABC, AB'C'.Calcula el valor desconocido x. 2. Dos triángulos semejantes tienen una superficie de 20cm 2 y 30cm 2 respectivamente.
B8 Polígonos regulares
Geometría plana B8 Polígonos regulares Polígonos equiláteros son los que tienen todos sus lados iguales, como el triángulo equilátero, el rombo y el cuadrado. Polígonos equiángulos son los que tienen todos
1 Indica cuál es el valor de los ángulo Â, Bˆ. en las siguientes figuras: a) b) 2 Calcula los ángulos dados por letras:
1 Indica cuál es el valor de los ángulo Â, Bˆ y Ĉ en las siguientes figuras: a) b) Calcula los ángulos dados por letras: 3 Calcula el valor del ángulo A. 4 Dados los ángulos los mismos. a 45 0 30.y b 6
12.1. Clasificación de los cuadriláteros según su paralelismo.
12. CUADRILÁTEROS 12.1. Clasificación de los cuadriláteros según su paralelismo. Según la cantidad de pares de lados que sean paralelos, los cuadriláteros se clasifican en tres tipos : Paralelogramos:
Ejercicios de geometría
Ejercicios de geometría Ejercicio nº 1.- Los lados de un triángulo miden 16 cm, 11 cm y 8 cm. Comprueba si es un triángulo rectángulo. Ejercicio nº 2.- Calcula el área y el perímetro de estas figuras:
1 Calcula en la siguiente figura el elemento que falta: 2 Calcula en la siguiente figura el elemento que falta:
1 Calcula en la siguiente figura el elemento que falta: Calcula en la siguiente figura el elemento que falta: Calcula el valor de la diagonal de un ortoedro de aristas cm, 4 cm y 5 cm. 4 Comprueba la fórmula
-. B:... E:... ?A: Isósceles y acutángulo. .~~.-.. Triángulos y paralelogramos. Cómo se clasifican los triángulos PARA EMPEZAR
111. TEOREMA DE PITAGORAS ).~~.-.. Triángulos y paralelogramos ~, PARA EMPEZAR Cómo se clasifican los triángulos Según sus lados: Equilátero Isósceles Escaleno Tiene los tres lados iguales. Tiene dos lados
SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE
Pág. 1 PÁGINA 19 REFLEXIONA Las cajas, los contenedores y la caseta son poliedros. También es un poliedro la figura que forma la caja que pende de la grúa con las cuatro cuerdas que la sostienen. Cuántas
SOLUCIONES MINIMOS 2º ESO TEMA 7 TEOREMA DE PITÁGORAS.SEMEJANZA
SOLUCIONES MINIMOS º ESO TEMA 7 TEOREMA DE PITÁGORAS.SEMEJANZA Ejercicio nº 1.- Los lados de un triángulo miden, respectivamente, 9 cm, 1 cm y 15 cm. Averigua si el triángulo es rectángulo. Según el teorema
Medida de proporcionalidad geométrica
Ámbito Científico y Tecnológico. Módulo Dos. Bloque 6. Tema 5 Medida de proporcionalidad geométrica Educación Secundaria Para Adultos Ámbito Científico y Tecnológico 1 Bloque 6. Tema 5 Medida de proporcionalidad
Tema 10. Geometría plana
Tema 10. Geometría plana Contenido 1. Relaciones angulares... 2 1.1. Ángulos en una circunferencia... 2 1.2. Ángulos opuestos por el vértice... 3 1.3. Ángulos formados por lados paralelos y perpendiculares...
Conceptos Básicos. Las líneas rectas podemos encontrarlas en el doblez de una hoja de papel, en un hilo estirado, en la arista de una puerta, etc.
3. Geometría Desde el jardinero que traza un jardín, el navegante que fija y traza la ruta del próximo viaje, el arquitecto que hace los planos para la construcción de un grandioso edificio, el ingeniero
1. EL TRIÁNGULO. PRIMERAS PROPIEDADES
http://www.cepamarm.es ACFGS - Matemáticas ESG - 11/2011 Pág. 1 de 11 1. EL TRIÁNGULO. PRIMERAS PROPIEDADES El triángulo es un polígono que tiene tres lados y tres ángulos. Es, por tanto, el polígono más
Hoja de problemas nº 7. Introducción a la Geometría
Hoja de problemas nº 7 Introducción a la Geometría 1. Un rectángulo tiene de área 135 u 2 a. Si sus lados miden números enteros, averigua cuáles pueden ser sus dimensiones. b. Cortamos los vértices como
TRIANGULOS. La trigonometría se desarrollo con el fin de relacionar los lados y los ángulos de los triángulos.
TRIANGULOS La trigonometría se desarrollo con el fin de relacionar los lados y los ángulos de los triángulos. CLASIFICACION DE LOS TRIANGULOS Los triángulos se pueden clasificar por la relación entre las
Colegio BOLIVAR. ÁREA DE MATEMÁTICAS Geometría. Lady Arismandy. Cohete - AVANZAR GRADO 8 PRIMER PERIODO
Colegio BOLIVAR ÁREA DE Lady Arismandy Cohete - AVANZAR GRADO 8 PRIMER PERIODO 2008 PRIMER periodo GEOMETRÍA PRESABERES ALGEBRA Aproximación histórica. La historia del origen de la geometría está asociada
Nº caras. Nº vértices
Tipo De Caras (Ángulo Interior) Triángulo Equilátero (60º) Cuadrado (90º) Pentágono (108º) Hexágono (10º) Nº caras por vértice Suma de los ángulos de cada vértice Nº caras Nº vértices Nº aristas C + V
OLIMPIADA COSTARRICENSE DE MATEMÁTICA UNA - UCR - TEC - UNED - MEP - MICIT. Geometría. II Nivel I Eliminatoria
OLIMPID OSTRRIENSE DE MTEMÁTI UN - UR - TE - UNED - MEP - MIIT Geometría II Nivel I Eliminatoria bril, 015 ontenido 1 II Nivel (8 y 9 ) - Geometría 1.1 Presentación.........................................
Unidad 3 Lección 1. Unidad 3 Lección 1 Nombre
Unidad 3 Lección 1 Prueba A 1. Un segmento dibujado desde el centro de un círculo hasta el borde del mismo, se llama un. 2. Todos los radios de un círculo tienen el mismo. 3. Escriba una ecuación que represente
4. GEOMETRÍA // 4.4. ÁREAS Y VOLÚMENES.
4. GEOMETRÍA // 4.4. ÁREAS Y VOLÚMENES. COMPLEMENTOS PARA LA FORMACIÓN DISCIPLINAR EN MATEMÁTICAS. 4.4.1. Áreas de polígonos. El área de un triángulo es Área(ABC) = 1 2 ch = 1 cb sin α 2 Si el triángulo
TEOREMA DE PITÁGORAS. SEMEJANZA. (http://profeblog.es/blog/luismiglesias)
Cuestiones 1. Qué polígonos son semejantes cuando tienen los lados proporcionales? a) Todos. c) Ninguno. b) Los cuadriláteros. d) Los triángulos. 2. La razón entre los perímetros de dos figuras semejantes
8. LA CIRCUNFERENCIA Y EL CÍRCULO. 8.1. La Circunferencia. 8.2. El circulo. Dibujo Técnico La Circunferencia y el círculo
8. LA CIRCUNFERENCIA Y EL CÍRCULO 8.1. La Circunferencia. Una circunferencia es una línea curva, cerrada y plana, cuyos puntos están a la misma distancia de otro interior al que llamamos centro, es decir:
