2.Teoría de Autómatas
|
|
|
- María Rosario Espinoza Silva
- hace 9 años
- Vistas:
Transcripción
1 2.Teoría de Autómatas Araceli Sanchis de Miguel Agapito Ledezma Espino José A. Iglesias Mar<nez Beatriz García Jiménez Juan Manuel Alonso Weber Grado Ingeniería InformáDca Teoría de Autómatas y Lenguajes Formales
2 Introducción Tipos de autómatas Aplicaciones Lenguajes Formales 2
3 Introducción y de6iniciones Se trata de saber qué (y qué no) se puede computar. Y además cómo de rápido, con cuánta memoria y con qué modelo de computación. 3
4 Introducción y de6iniciones Qué se endende por computación? La Teoría de Autómatas se centra en la computación en sí, no en detalles sobre disposidvos de entrada y salida. (Así, no se trata de crear modelos matemádcos para un video juego, por ejemplo). 4
5 Autómata Definición RAE autómata. (Del lat. automăta, t. f. de - tus, y este del gr. αὐτόματος, espontáneo). 1. m. Instrumento o aparato que encierra dentro de sí el mecanismo que le imprime determinados movimientos. 2. m. Máquina que imita la figura y los movimientos de un ser animado. 3. m. coloq. Persona estúpida o excesivamente débil, que se deja dirigir por otra. 5
6 Modelo Matemático Autómata: Modelo MatemáDco de computación. DisposiDvo abstracto con capacidad de computación. Teoría de Autómatas: Abstracción de cualquier Dpo de computador y/o lenguaje de programación. Desglose en sus elementos básicos (Entrada, Estado, Transición, Salidas y elementos auxiliares) 6
7 Introducción Tipos de autómatas Aplicaciones Lenguajes Formales 7
8 Tipos de autómatas Autómatas Finitos (y máquinas secuenciales) Autómatas ProbabilísDcos Autómatas a Pila Células de Mc Culloch- Piks Máquinas de Turing Autómatas Celulares Redes de Neuronas ArDficiales 8
9 Tipos de autómatas Autómatas Finitos (y máquinas secuenciales) Autómatas ProbabilísDcos Autómatas a Pila Células de Mc Culloch- Piks Máquinas de Turing Autómatas Celulares Redes de Neuronas ArDficiales Turing estudió una máquina abstracta con la misma capacidad que los computadores actuales desde el punto de vista de lo que son capaces de hacer. 9
10 Tipos de autómatas Autómatas Finitos (y máquinas secuenciales) Autómatas ProbabilísDcos Autómatas a Pila Células de Mc Culloch- Piks Máquinas de Turing Autómatas Celulares Redes de Neuronas ArDficiales Mayor capacidad de cómputo. 10
11 Autómatas y Algoritmos La máquina de Turing es un modelo matemádco abstracto que formaliza el concepto de algoritmo Todo Autómata puede ser transformado en un algoritmo y a la inversa. Autómata Finito: Off Pulsar On Pulsar 11
12 Autómatas Discretos, continuos e híbridos Criterio: Entradas Suelen ser DISCRETOS: Autómatas Finitos (y máquinas secuenciales) Autómatas a Pila Máquinas de Turing Son DISCRETOS, CONTÍNUOS Y/O HÍBRIDOS: Autómatas Celulares Redes de Neuronas ArDficiales 12
13 Introducción Tipos de autómatas Aplicaciones Lenguajes Formales 13
14 Aplicaciones de los autómatas El Juego de la Vida Ejemplo de un juego implementado usando un autómata celular. Diseñado por el matemádco británico John Conway en El todo es más que la suma de las partes. Las transiciones dependen del número de células vecinas vivas: Una célula muerta con exactamente 3 células vecinas vivas "nace" (al turno siguiente estará viva). Una célula viva con 2 ó 3 células vecinas vivas sigue viva, en otro caso muere o permanece muerta (por "soledad" o "superpoblación"). hkp:// E 14
15 Aplicaciones de los autómatas Comportamiento de robots en la RoboSoccer Autómatas Finitos aplicados en la RoboSoccer (Peter van de Ven) 15
16 Introducción Tipos de autómatas Aplicaciones Lenguajes Formales 16
17 Lenguajes Formales. De6iniciones Símbolo: EnDdad abstracta, realmente no se define (análogo al punto en geometría). Son letras, dígitos, caracteres, etc. Forman parte de un alfabeto. También posible encontrar símbolos formados por varios caracteres, pej: IF, THEN, ELSE,... Alfabeto (Σ): Conjunto finito no vacío de letras o símbolos. Sea a una letra y Σ un alfabeto, si a pertenece a ese alfabeto a Σ Ejemplos: Σ1= {A, B, C,...,Z} alfabeto de las letras mayúsculas Σ2= {0, 1} alfabeto binario Σ3= {IF, THEN, ELSE, BEGIN, END} alfabeto de símbolos para programación. 17
18 Lenguajes Formales. De6iniciones Palabra: toda secuencia finita de símbolos del alfabeto. Σ 1 = {A, B, C,...,Z}; palabras sobre Σ 1 JUAN, ISABEL, etc. Σ 2 = {0, 1}; palabras sobre Σ Σ 3 = {IF, THEN, ELSE, BEGIN, END}; palabras sobre Σ 3 IFTHENELSEEND Notación: se representan por letras minúsculas del final del alfabeto (x, y, z) Ejem: x= JUAN; y= IFTHENELSEEND; z=
19 Lenguajes Formales. De6iniciones Longitud de palabra: número de símbolos que componen una palabra. Se representa por x Ejemplos: Σ 1 = {A, B, C,...,Z}; x = JUAN = 4 y = IFTHENELSEEND =13 Σ 3 = {IF, THEN, ELSE, BEGIN, END}; y = IFTHENELSEEND = 4 Palabra vacía λ: Es aquella palabra cuya longitud es cero Se representa por λ, λ = 0 Sobre cualquier alfabeto es posible construir λ OJO!!!! UDlidad: será el elemento neutro en muchas operaciones (concatenación, etc.) con palabras y lenguajes 19
20 Lenguajes Formales. De6iniciones Universo del discurso, W(Σ): conjunto de todas las palabras que se pueden formar con los símbolos de un alfabeto Σ También se denomina Lenguaje Universal del alfabeto Σ Se representa como W(Σ) Es un conjunto infinito (i.e. número infinito de palabras) Ejemplo: sea Σ 4 = {A,B}, W(Σ 4 ) = {λ, A,B, AA,AB,BA,BB, AAA,...} con un número de palabras COROLARIO: Σ, λ W(Σ) La palabra vacía pertenece a todos los lenguajes universales de todos los alfabetos posibles 20
21 Lenguajes Formales. Operaciones Algunas operaciones importantes con palabras, sobre palabras de un universo del discurso dado: Concatenación de palabras: sean dos palabras x, y tal que x W(Σ), y W(Σ), y sea x = i = l x 1 x 2...x i e y = j = y 1 y 2...y j, se llama concatenación de x con y, a: x y = x 1 x 2...x i y 1 y 2...y i = z, donde z W(Σ) Propiedades de la concatenación: Operación cerrada Propiedad AsociaDva Definiciones: cabeza cola Con elemento neutro No conmutadva longitud de palabra 21
22 Lenguajes Formales. Operaciones Potencia de una palabra: Reducción de la concatenación a los casos que se refieren a una misma palabra potencia i- ésima de una palabra es el resultado de concatenar esa palabra consigo misma i veces La concatenación es asociadva no especificar el orden x i = x x x x ( x i veces) x i = i x (i>0) se cumple: x 1 = x x 1 + i = x x i = x i x (i>0) x j + i = x j x i = x i x j (i, j>0) Si se define x 0 = λ 22
23 Lenguajes Formales. De6iniciones Lenguaje (L): Se denomina lenguaje sobre el alfabeto Σ: a todo subconjunto del lenguaje universal de Σ, L W(Σ) a todo conjunto de palabras sobre un determinado Σ (generado a pardr del alfabeto Σ ) 23
24 Lenguajes Formales Lenguajes Especiales: 1. φ = Lenguaje vacío, φ W(Σ) 2. {λ} = Lenguaje de la palabra vacía se diferencian en el número de palabras (cardinalidad) que los forman C(φ) = 0 mientras que C({λ})=1 se parecen en que φ y {λ} son lenguajes sobre cualquier alfabeto 3. Un alfabeto es uno de los lenguajes generados por el mismo: Σ W(Σ), por ejemplo el chino 24
25 Lenguajes Formales Unión de Lenguajes : Sobre un alfabeto dado Σ Sean L 1 y L 2 definidos sobre el mismo alfabeto Σ, L 1, L 2 W(Σ); se llama unión de dos lenguajes, L 1, L 2 y se representa por L 1 L 2 al lenguaje así definido: L 1 L 2 = { x / x L 1 ó x L 2 } = Es el conjunto formado indisdntamente por palabras de uno u otro de los dos lenguajes (equivale a la suma) L 1 + L 2 = L 1 L 2 25
26 2.Teoría de Autómatas Araceli Sanchis de Miguel Agapito Ledezma Espino José A. Iglesias Mar<nez Beatriz García Jiménez Juan Manuel Alonso Weber Grado Ingeniería InformáDca Teoría de Autómatas y Lenguajes Formales
Tema 2: Lenguajes Formales. Informática Teórica I
Tema 2: Lenguajes Formales Informática Teórica I Teoría de Lenguajes Formales. Bibliografía M. Alfonseca, J. Sancho y M. Martínez. Teoría de Lenguajes, Gramáticas y Autómatas, R.A.E.C., Madrid, (1998).
TEORÍA DE CONJUNTOS A ={ 1, 2, 3, 4, 5, 6 }
TEORÍA DE CONJUNTOS CONJUNTOS Y TÉCNICAS DE CONTEO DEFINICIÓN Y NOTACIÓN DE CONJUNTOS El término conjunto juega un papel fundamental en el desarrollo de las matemáticas modernas; Además de proporcionar
Teoría de Autómatas y Lenguajes Formales. Capítulo 1: Introducción. Teoría de Autómatas y Lenguajes formales es un repaso a la informática teórica.
Teoría de Autómatas y Lenguajes Formales Capítulo 1: Introducción Holger Billhardt [email protected] Introducción Teoría de Autómatas y Lenguajes formales es un repaso a la informática teórica.
7. Máquinas de Turing.
7. Máquinas de Turing. Araceli Sanchis de Miguel Agapito Ledezma Espino José A. Iglesias Mar
INSTITUTO TECNOLÓGICO DE APIZACO TEORÍA DE CONJUNTOS CONJUNTOS Y TÉCNICAS DE CONTEO
TEORÍA DE CONJUNTOS CONJUNTOS Y TÉCNICAS DE CONTEO DEFINICIÓN Y NOTACIÓN DE CONJUNTOS El término conjunto juega un papel fundamental en el desarrollo de las matemáticas modernas; Además de proporcionar
Tema 2. Fundamentos de la Teoría de Lenguajes Formales
Departamento de Tecnologías de la Información Tema 2. Fundamentos de la Teoría de Lenguajes Formales Ciencias de la Computación e Inteligencia Artificial Índice 2.1. Alfabeto 2.2. Palabra 2.3. Operaciones
Conjuntos. Dra. Noemí L. Ruiz Limardo Revisado 2011 Derechos Reservados
Conjuntos Dra. Noemí L. Ruiz Limardo Revisado 2011 Derechos Reservados Objetivos de la lección Definir y dar ejemplos de conceptos fundamentales relacionados con conjuntos Conjunto Elementos Simbolismo
Autómatas finitos no deterministas (AFnD)
Autómatas finitos no deterministas (AFnD) Elvira Mayordomo Universidad de Zaragoza 1 de octubre de 2012 Contenido de este tema Introducción y ejemplos de autómatas finitos no deterministas Definición de
Teoría de Autómatas y Lenguajes Formales.
Teoría de Autómatas y Lenguajes Formales Prueba de Evaluación de Lenguajes Regulares, Autómatas a Pila y Máquinas de Turing. Autores: Araceli Sanchis de Miguel Agapito Ledezma Espino Jose A. Iglesias Martínez
UNIVERSIDAD AUTÓNOMA DE BAJA CALIFORNIA SUR. Ciencias de la ingeniería
UNIVERSIDAD AUTÓNOMA DE BAJA CALIFORNIA SUR DEPARTAMENTO ACADÉMICO DE SIS COMPUTACIONALES INGENIERÍA EN TECNOLOGÍA COMPUTACIONAL ASIGNATURA Teoría de la computación ÁREA DE Ciencias de la ingeniería CONOCIMIENTO
TEMA 2: TEORÍA DE CONJUNTOS Y CONJUNTOS NUMÉRICOS.
TEMA 2: TEORÍA DE CONJUNTOS Y CONJUNTOS NUMÉRICOS. TEORÍA DE CONJUNTOS. Definiciones. Se define un conjunto como una colección de objetos o cosas, se nombran con letras mayúsculas (A, B...). Cada uno de
TEMA I: LOS CONCEPTOS FUNDAMENTALES DE LA TEORÍA DE LA COMPUTABILIDAD
1 Asignatura: Lógica 3 Curso 2004-2005 Profesor: Juan José Acero 20 25 de Octubre del 2004 TEMA I: LOS CONCEPTOS FUNDAMENTALES DE LA TEORÍA DE LA COMPUTABILIDAD 1. El concepto de algoritmo. Los matemáticos
3. Autómatas Finitos. Grado Ingeniería InformáDca Teoría de Autómatas y Lenguajes Formales
3. Autómatas Finitos Araceli Sanchis de Miguel Agapito Ledezma Espino José A. Iglesias Mar
Un conjunto se considera como una colección de objetos, llamados miembros o elementos del conjunto. Existen dos formas de expresar un conjunto:
I.- Teoría de conjuntos Definición de conjunto Un conjunto se considera como una colección de objetos, llamados miembros o elementos del conjunto. Existen dos formas de expresar un conjunto: a) Por extensión
Teoría de Autómatas y Lenguajes Formales.
Teoría de Autómatas y Lenguajes Formales Autores: Araceli Sanchis de Miguel Agapito Ledezma Espino Jose A. Iglesias Martínez Beatriz García Jiménez Juan Manuel Alonso Weber 1 UNIVERSIDAD CARLOS III DE
Introducción a la Teoría de Automátas
a la Teoría de Automátas Universidad de Cantabria Primeras Consideraciones Fijar un modelo de cálculo que haga referencia a los fundamentos de la comunicación y el lenguaje. Todo cálculo algorítmico consiste
Clase 08: Autómatas finitos
Solicitado: Ejercicios 06: Autómatas finitos M. en C. Edgardo Adrián Franco Martínez http://computacion.cs.cinvestav.mx/~efranco @efranco_escom [email protected] 1 Contenido Autómata finito Definición formal
TEORÍA DE AUTÓMATAS Y LENGUAJES FORMALES
TEORÍA DE AUTÓMATAS Y LENGUAJES FORMALES (TALF) BLOQUE II: LENGUAJES REGULARES Tema 2: Autómatas Finitos Parte 2 (de 3). Autómatas Finitos No Deterministas (AFNDs) Grado en Ingeniería Informática URJC
UNIDAD 5 : ESTRUCTURAS ALGEBRAICAS
UNIVERSIDAD DON BOSCO - DEPARTAMENTO DE CIENCIAS BÁSICAS UNIDAD 5 : ESTRUCTURAS ALGEBRAICAS ÁLGEBRA LINEAL - GUIÓN DE CLASE - SEMANA 10 y 11 - CICLO 01-2015 Estudiante: Grupo: 1. Estructuras Algebraicas
2: Autómatas finitos y lenguajes regulares.
2: Autómatas finitos y lenguajes regulares. Los autómatas finitos son el modelo matemático de los sistemas que presentan las siguientes características: 1) En cada momento el sistema se encuentra en un
Ingeniería en Computación. Autómatas y Lenguajes Formales. Unidad de competencia III: Conocer, utilizar y manipular expresiones regulares
Universidad Autónoma del Estado de México Centro Universitario UAEM Texcoco Departamento de Ciencias Aplicadas. Ingeniería en Computación. Autómatas y Lenguajes Formales. Unidad de competencia III: Conocer,
Teoría de Conjuntos y Conjuntos Numéricos
Teoría de Conjuntos y Conjuntos Numéricos U N I V E R S I D A D D E P U E R T O R I C O E N A R E C I B O D E P A R T A M E N T O DE M A T E M Á T I C A S P R O F A. Y U I T Z A T. H U M A R Á N M A R
CONJUNTOS. Consideremos, por ejemplo, los siguientes conjuntos:
CONJUNTOS En una Teoría Intuitiva de Conjuntos, los conceptos de conjunto y pertenencia son considerados primitivos, es decir, no se definen de un modo formal; se les acepta como existentes de manera axiomática,
Clase 09: AFN, AFD y Construcción de Thompson
Clase 09: AFN, AFD y Construcción de Thompson Solicitado: Ejercicios 07: Construcción de AFN scon Thompson M. en C. Edgardo Adrián Franco Martínez http://computacion.cs.cinvestav.mx/~efranco @efranco_escom
Autómatas finitos con salidas
Agnatura: Teoría de la Computación Unidad : Lenguajes Regulares Tema 2: Autómatas con salidas Autómatas finitos con salidas Importancia y aplicación de los autómatas finitos Los Autómatas finitos constituyen
Lenguajes y Gramáticas
Lenguajes y Gramáticas Teoría de Lenguajes Fernando Naranjo Introduccion Se desarrollan lenguajes de programación basados en el principio de gramática formal. Se crean maquinas cada vez mas sofisticadas
Programación y matemática
Programación y matemática Los objetos matemáticos se describen usando un lenguaje al que llamamos lenguaje matemático. Como este lenguaje tiene pautas claras que indican cuáles descripciones tienen sentido
Tema 2. Grupos. 3. El conjunto de matrices de orden 2 con coeficientes enteros (o reales) con la suma es un grupo conmutativo.
Tema 2. Grupos. 1 Grupos Definición 1 Un grupo es una estructura algebraica (G, ) tal que la operación binaria verifica: 1. * es asociativa 2. * tiene elemento neutro 3. todo elemento de G tiene simétrico.
Notación de Conjuntos
1 A. Introducción UNIVERSIDAD INTERAMERICANA DE PUERTO RICO DEPARTAMENTO DE ADMINISTRACIÓN DE EMPRESAS MAEC 2140: Métodos Cuantitativos Prof. J.L.Cotto Conferencia: Conceptos Matemáticos Básicos Notación
Matemáticas Propedéutico para Bachillerato. Introducción
ctividad 1. Notación de Conjuntos. Introducción La Teoría de Conjuntos fue introducida por el matemático alemán George Cantor. Desde pequeños hemos estado en contacto con ella, por ejemplo, quién de ustedes
Estructuras algebraicas
Estructuras algebraicas Natalia Boal María Luisa Sein-Echaluce Universidad de Zaragoza 1 Relaciones binarias 11 Recordatorio Definición Dados dos conjuntos A y B se llama producto cartesiano de A por B
UNIDAD 14 CONJUNTOS. Objetivo 1. Recordarás la definición de un conjunto y sus elementos.
UNIDAD 14 CONJUNTOS Objetivo 1. Recordarás la definición de un conjunto y sus elementos. Ejercicios resueltos: 1. {2, 4, 6} es un conjunto. Los elementos que forman este conjunto son: 2, 4, 6 2. Cuántos
Teoría de conjuntos. Tema 1: Teoría de Conjuntos.
Tema 1: Teoría de Conjuntos. La teoría de Conjuntos es actualmente una de las más importantes dentro de la matemática. Muchos de los problemas que se le han presentado a esta disciplina en los últimos
Lenguajes Regulares. Antonio Falcó. - p. 1
Lenguajes Regulares Antonio Falcó - p. 1 Cadenas o palabras I Una cadena o palabra es una sucesión finita de símbolos. cadena {c, a, d, e, n}. 10001 {0, 1} El conjunto de símbolos que empleamos para construir
Expresiones Regulares y Derivadas Formales
Motivación e Ideas y Derivadas Formales La Derivación como Operación. Universidad de Cantabria Esquema Motivación e Ideas 1 Motivación e Ideas 2 3 Motivación Motivación e Ideas Sabemos como son los conjuntos
Definición formal de autómatas finitos deterministas AFD
inicial. Ejemplo, supóngase que tenemos el autómata de la figura 2.4 y la palabra de entrada bb. El autómata inicia su operación en el estado q 0 (que es el estado inicial). Al recibir la primera b pasa
Máquinas Secuenciales, Autómatas y Lenguajes Formales. Tema 4: Autómatas finitos deterministas. Holger Billhardt holger.billhardt@urjc.
Formales Tema 4: Autómatas finitos deterministas Holger Billhardt [email protected] Sumario: Bloque 2: Autómatas Finitos 4. Autómatas Finitos Deterministas 1. Concepto y Definición 2. Autómata finito
Universidad Politécnica de Puerto Rico Departamento de Ciencias y Matemáticas. Preparado por: Prof. Manuel Capella-Casellas, M.A.Ed.
Universidad Politécnica de Puerto Rico Departamento de Ciencias y Matemáticas Preparado por: Prof. Manuel Capella-Casellas, M.A.Ed. Agosto, 00 Notación exponencial La notación exponencial se usa para repetir
Teoría de la Computación y Leguajes Formales
y Leguajes Formales Prof. Hilda Y. Contreras Departamento de Computación [email protected] [email protected] Contenido Tema 0: Introducción y preliminares: Conocimientos matemáticos
Repaso. Lenguajes formales
Repaso. Lenguajes formales Profesor Federico Peinado Elaboración del material José Luis Sierra Federico Peinado Ingeniería en Informática Facultad de Informática Universidad Complutense de Madrid Curso
SESIÓN 4: ESPACIOS VECTORIALES
SESIÓN 4: ESPACIOS VECTORIALES Un espacio vectorial sobre un campo (como el cuerpo de los números reales o los números complejos) es un conjunto no vacío, dotado de dos operaciones para las cuales será
TEORÍA DE CONJUNTOS I.- NOTACIÓN DE CONJUNTO II.- RELACIÓN DE PERTENENCIA ( )
TEORÍ DE CONJUNTOS Podemos entender por conjunto a la agrupación, asociación, colección, reunión, unión de integrantes homogéneos y heterogéneos, los cuales pueden ser naturaleza real o imaginaria. En
CONJUNTOS NUMÉRICOS Y APLICACIONES
INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMÁTICAS ASIGNATURA: MATEMÁTICAS DOCENTE: JOSÉ IGNACIO DE JESÚS FRANCO RESTREPO TIPO DE GUIA: CONCEPTUAL - EJERCITACION PERIODO GRADO FECHA
AUTÓMATAS DE PILA. Nota: Si existe transición de tipo (2), sólo se garantiza que AP es determinístico si s A, δ( e i, s, X) está indefinida.
AUTÓMATAS DE PILA Los autómatas de pila, en forma similar a como se usan los autómatas finitos, también se pueden utilizar para aceptar cadenas de un lenguaje definido sobre un alfabeto A. Los autómatas
Unidad de Promoción y Desarrollo Guadiana OBJETIVO GENERAL
Unidad de Promoción y Desarrollo Guadiana OBJETIVO GENERAL Conocer los elementos básicos de un ordenador, identificar sus elementos principales, diferenciando aquellos que forman parte de su hardware y
TRA NSFORMACIO N ES LIN EA LES
TRA NSFORMACIO N ES LIN EA LES C o m p uta c i ó n G r á fica Tipos de Datos Geométricos T Un punto se puede representar con tres números reales [x,y,z] que llamaremos vector coordenado. Los números especifican
Nivel del ejercicio : ( ) básico, ( ) medio,( ) avanzado.
Universidad Rey Juan Carlos Curso 2007 2008 Teoría de Autómatas y Lenguajes Formales Ingeniería Técnica en Informática de Sistemas Hoja de Problemas 1 Lenguajes Formales Nivel del ejercicio : ( ) básico,
Teoría de Autómatas y Lenguajes Formales.
Teoría de Autómatas y Lenguajes Formales Ejercicios de Máquinas de Turing Autores: Araceli Sanchis de Miguel Agapito Ledezma Espino Jose A. Iglesias Martínez Beatriz García Jiménez Juan Manuel Alonso Weber
TEORIA DE CONJUNTOS. 2.-Subconjunto: A es subconjunto de B si todo elemento de A lo es también de B.
TEORI DE CONJUNTOS Definiciones: 1.- Conjunto: es una lista, clase o colección de objetos bien definidos, objetos que, pueden ser cualesquiera: números, personas, letras, etc. Estos objetos se llaman elementos
Guía de Modelo Relacional (preliminar)
Guía de Modelo Relacional (preliminar) Mauricio Monsalve Moreno (auxiliar CC42A/CC55A) Otoño de 2007 1 Problemas conceptuales 1. Qué es una relación? Qué es un esquema de relación? 2. Qué es una llave
8. Complejidad Computacional
8. Complejidad Computacional Araceli Sanchis de Miguel Agapito Ledezma Espino José A. Iglesias Mar
TEMA 5. GRAMÁTICAS REGULARES.
TEMA 5. GRAMÁTICAS REGULARES. 5.1. Gramáticas Regulares. 5.2. Autómatas finitos y gramáticas regulares. 5.2.1. Gramática regular asociada a un AFD 5.2.2. AFD asociado a una Gramática regular 5.3. Expresiones
Se utilizarán las letras mayúsculas, tales como A, B y C para nombrar conjuntos. Por ejemplo: a i. o e
Conjuntos Notación de conjuntos Se utilizarán las letras mayúsculas, tales como A, B y C para nombrar conjuntos. Por ejemplo: A 1,2,3 B 2,5,6 C a, e, i, o, u D #,&,*,@ Es bastante corriente dibujar los
SUBCONJUNTO: es subconjunto de si todo elemento de lo es también de, esto es:
Materia: Matemática de Octavo Tema: Teoría de Conjuntos CONJUNTO: De nuestra experiencia de la vida diaria adquirimos, intuitivamente la noción de "conjunto". Por ello en matemática se considera este concepto
UNIDAD #1: CONJUNTOS NUMERICOS
UNIDAD #1: CONJUNTOS NUMERICOS El concepto de conjunto es una de las ideas más útiles del álgebra ya que ayuda extender y a generalizar toda la aritmética, como veremos a través de la enseñanza de este
6. Autómatas a Pila. Grado Ingeniería InformáDca Teoría de Autómatas y Lenguajes Formales
6. Autómatas a Pila Araceli Sanchis de Miguel Agapito Ledezma Espino José A. Iglesias Mar
Tema 1: Introducción. Teoría de autómatas y lenguajes formales I
Tema 1: Introducción Teoría de autómatas y lenguajes formales I Bibliografía Hopcroft, J. E., Motwani, R., y Ullman, J. D. Introducción a la Teoría de Autómatas, Lenguajes y Computación. Addison Wesley.
Conjuntos y relaciones
Conjuntos y relaciones Introducción Propiedades de las relaciones Sobre un conjunto Reflexivas Simétricas y transitivas Cerradura Relaciones de equivalencia Órdenes parciales Diagramas de Hasse Introducción
MATEMÁTICAS 2º ESO. TEMA 1
MATEMÁTICAS 2º ESO. TEMA 1 1. DIVISIBILIDAD Y NÚMEROS ENTEROS 1. Los divisores son siempre menores o iguales que el número. 2. Los múltiplos siempre son mayores o iguales que el número. 3. Para saber si
Autómatas Finitos y Lenguajes Regulares
Autómatas Finitos y Lenguajes Regulares Problema: Dado un lenguaje L definido sobre un alfabeto A y una cadena x arbitraria, determinar si x L o x L. Cadena x AUTOMATA FINITO SI NO Lenguaje Regular Autómatas
SISTEMAS DE NUMERACIÓN
SISTEMAS DE NUMERACIÓN INDICE. 1. DEFINICIÓN DE SISTEMAS DE NUMERACIÓN.... 1 2. TEOREMA FUNDAMENTAL DE LA NUMERACIÓN... 3 3. SISTEMAS DECIMAL, BINARIO, OCTAL Y HEXADECIMAL.... 5 3.1. SISTEMA DECIMAL...
SUBCONJUNTOS y CONJUNTO POTENCIA. COMP 2501: Estructuras Computacionales Discretas I Dra. Madeline Ortiz Rodríguez 3 de septiembre de 2013
1 SUBCONJUNTOS y CONJUNTO POTENCIA COMP 2501: Estructuras Computacionales Discretas I Dra. Madeline Ortiz Rodríguez 3 de septiembre de 2013 2 Material de Estudio Libro de Koshy: páginas 71-72, 78-84. Vídeos
Conceptos básicos de programación. Arquitectura de Computadoras. Conceptos básicos de programación
Arquitectura de Computadoras Conceptos básicos de programación 1. Introducción: Programación es el conjunto de actividades implicadas en la descripción, el desarrollo y la implementación eficaz de soluciones
Algoritmos y Diagramas de flujo
Algoritmos y Diagramas de flujo En los pasos a seguir para el desarrollo de un problema, existen básicamente dos tipos de elementos con los cuales es posible especificar un problema en forma esquemática
Temas. Objetivo. Símbolo, alfabeto. Hileras y operaciones con hileras. Operaciones con lenguajes
0 1 Temas Símbolo, alfabeto Hileras y operaciones con hileras Operaciones con lenguajes Objetivo Que el estudiante logre conocer, comprender y manejar conceptos vinculados con la Teoría de Lenguajes Formales
Teoría de Conjuntos Definiciones Básicas
1 Teoría de Conjuntos Definiciones Básicas Conjunto Definición Un conjunto es una colección o familia de objetos. Las llaves { } tendrán un uso muy especial y único: servirán para definir un conjunto.
APUNTES PARA LENGUAJES Y COMPILADORES
APUNTES PARA LENGUAJES Y COMPILADORES Cuando se define un lenguaje de programación, se determina su sintaxis y su semántica La sintaxis se refiere a las notaciones necesarias para escribir programas, y
CAPITULO 2: LENGUAJES
CAPITULO 2: LENGUAJES 2.1. DEFINICIONES PREIAS SIMBOLO: Es una entidad indivisible, que no se va a definir. Normalmente los símbolos son letras (a,b,c,.., Z), dígitos (0, 1,.., 9) y otros caracteres (+,
Sumario: Máquinas Secuenciales, Autómatas y Lenguajes Formales. Tema 1: Conceptos básicos (parte 1) Tema 1: Conceptos básicos
Formales Tema 1: Conceptos básicos (parte 1) Holger Billhardt [email protected] Sumario: Tema 1: Conceptos básicos 1. Lenguajes Formales 2. Gramáticas Formales 3. Autómatas Formales 2 1 Sumario:
UNIDAD I. ALGORITMOS
UNIDAD I. ALGORITMOS 1.1 Definición Un algoritmo es una serie de pasos organizados que describe el proceso que se debe seguir, para dar solución a un problema específico. 1.2 Tipos Cualitativos: Son aquellos
3. Estructuras iterativas
3. Estructuras iterativas Fundamentos de Informática Dpto. Lenguajes y Sistemas Informáticos Curso 2012 / 2013 Índice Estructura iterativas 1. Análisis de algoritmos iterativos 2. Ej11: While 3. Ej12:
Lenguajes No Regulares
Lenguajes No Regulares Problemas que los Autómatas No Resuelven. Universidad de Cantabria Esquema Lema del Bombeo 1 Lema del Bombeo 2 3 Introducción Todos los lenguajes no son regulares, simplemente hay
Pablo Cobreros [email protected]. Tema 7. Cuatro teoremas de la lógica de primer orden
Lógica II Pablo Cobreros [email protected] Tema 7. Cuatro teoremas de la lógica de primer orden Introducción Introducción La existencia de modelos Introducción La existencia de modelos: preliminares La
El cuerpo de los números reales
Capítulo 1 El cuerpo de los números reales 1.1. Introducción Existen diversos enfoques para introducir los números reales: uno de ellos parte de los números naturales 1, 2, 3,... utilizándolos para construir
Sumario: Teoría de Autómatas y Lenguajes Formales. Capítulo 2: Lenguajes Formales. Capítulo 2: Lenguajes Formales
Teoría de Autómatas y Lenguajes Formales Capítulo 2: Lenguajes Formales Holger Billhardt [email protected] Sumario: Capítulo 2: Lenguajes Formales 1. Concepto de Lenguaje Formal 2. Operaciones sobre
TEMA II TEORÍA INTUITIVA DE CONJUNTOS
TEMA II TEORÍA INTUITIVA DE CONJUNTOS Policarpo Abascal Fuentes TEMA II Teoría intuitiva de conjuntos p. 1/4 TEMA II 2. TEORÍA INTUITIVA DE CONJUNTOS 2.1 CONJUNTOS 2.1.1 Operaciones con conjuntos 2.2 RELACIONES
Fundamentos de Ciencias de la Computación Trabajo Práctico N 2 Lenguajes Libres del Contexto y Sensibles al Contexto Segundo Cuatrimestre de 2002
Departamento de Cs. e Ingeniería de la Computación Universidad Nacional del Sur Ejercicios Fundamentos de Ciencias de la Computación Trabajo Práctico N 2 Lenguajes Libres del Contexto y Sensibles al Contexto
1 of 18 10/25/2011 6:42 AM
Prof. Anneliesse SánchezDepartamento de MatemáticasUniversidad de Puerto Rico en AreciboEn esta sección discutiremos Expresiones algebraicas y polinomios. Discutiremos los siguientes tópicos: Introducción
Sintaxis y Semántica del Lenguaje. Gramáticas
Gramáticas La tarea de proveer una descripción bien concisa y entendible de un lenguaje de programación es difícil pero esencial para el éxito de un lenguaje. Uno de los problemas en describir un lenguaje
Capítulo 1. El Conjunto de los números Reales
Capítulo El Conjunto de los números Reales Contenido. El conjunto de los números Naturales................................. 4. El conjunto de los números Enteros................................... 4. El
RESUMEN GEOMETRÍA SAINT MARY SCHOOL. PROF. JUAN K. BOLAÑOS M. Geometría Elemental
Geometría Elemental Punto Sólo tiene posición. No posee longitud, anchura ni espesor. Se representa por un. Se designa por medio de una letra mayúscula colocada cerca del punto gráfico. Línea recta Es
UNIVERSIDAD DE OCCIDENTE UDO
UNIVERSIDAD DE OCCIDENTE UDO Por la Excelencia Académica Sede Regional Estelí Carrera: Ingeniería en Computación y Sistemas Nombre de la asignatura: Programación Básica Año académico: Segundo año Al finalizar
Conjuntos Un conjunto es una colección de objetos. A cada uno de esos objetos se llama elemento del conjunto.
1 TEORÍA DE CONJUNTOS: IDEAS BÁSICAS Conjuntos Un conjunto es una colección de objetos. A cada uno de esos objetos se llama elemento del conjunto. Un conjunto puede darse enumerando todos y cada uno de
DESARROLLO DE UN ENTORNO DE SIMULACIÓN PARA AUTÓMATAS DETERMINISTAS CAROLINA GONZÁLEZ NARANJO CÉSAR AUGUSTO MONTOYA ROMÁN
DESARROLLO DE UN ENTORNO DE SIMULACIÓN PARA AUTÓMATAS DETERMINISTAS CAROLINA GONZÁLEZ NARANJO CÉSAR AUGUSTO MONTOYA ROMÁN UNIVERSIDAD TECNOLÓGICA DE PEREIRA FACULTAD DE INGENIERÍAS: ELÉCTRICA, ELECTRÓNICA,
Unidad 1 Introducción
Unidad 1 Introducción Contenido 1.1 La importancia de estudiar los autómatas y lenguajes formales 1.2 Símbolos, alfabetos y cadenas 1.3 Operaciones sobre cadenas 1.4 Definición de lenguaje y operaciones
1. Cadenas EJERCICIO 1
LENGUAJES FORMALES Y AUTÓMATAS CURSO 2006/2007 - BOLETÍN DE EJERCICIOS Víctor J. Díaz Madrigal y José Miguel Cañete Departamento de Lenguajes y Sistemas Informáticos 1. Cadenas La operación reversa aplicada
TEORÍA DE AUTÓMATAS I Informática de Sistemas
TEORÍA DE AUTÓMATAS I Informática de Sistemas Soluciones a las cuestiones de examen del curso 22/3 Febrero 23, ª semana. Considere los lenguajes del alfabeto Σ={,}: L = { n n, n } y L 2 = {cadenas con
Lección 8: Potencias con exponentes enteros
GUÍA DE MATEMÁTICAS III Lección 8: Potencias con exponentes enteros Cuando queremos indicar productos de factores iguales, generalmente usamos la notación exponencial. Por ejemplo podemos expresar x, como
Apuntes de Matemática Discreta 2. Operaciones con Conjuntos
Apuntes de Matemática Discreta 2. Operaciones con Conjuntos Francisco José González Gutiérrez Cádiz, Octubre de 2004 Universidad de Cádiz Departamento de Matemáticas ii Lección 2 Operaciones con Conjuntos
Capítulo 4 Representación interna de los Datos
Curso Ingreso 013 Carrera Ingeniería en Computación - Facultad de Informática Facultad de Ingeniería Capítulo 4 Representación interna de los Datos Objetivos Los problemas resueltos en los capítulos anteriores
Conceptos básicos de Geometría
Conceptos básicos de geometría La geometría trata de la medición y de las propiedades de puntos, líneas, ángulos, planos y sólidos, así como de las relaciones que guardan entre sí. A continuación veremos
C U R S O : MATEMÁTICA
C U R S O : MATEMÁTICA UNIDAD: ÁLGEBRA Y FUNCIONES SISTEMAS DE ECUACIONES Dos ecuaciones de primer grado, que tienen ambas las mismas dos incógnitas, constituen un sistema de ecuaciones lineales. La forma
1. Los números naturales
1. Los números naturales A /Introducción. Desde hace mucho tiempo, tantos que quizás no puedas recordar desde cuando, sabes como funcionan los números naturales: 0; 1;, 3;, es decir, sabes operar con ellos,
Represent. Información. Caracteres Alfanuméricos
Representación de la 2009-20102010 Sistemas de Numeración 1 a Representar Qué información necesitamos representar? Caracteres Alfabéticos: A, B,..., Z, a, b,..., z Caracteres numéricos: 0, 1,..., 9 Caracteres
CURSOSO. Aritmética: Númerosnaturalesyenteros. Númerosracionalesyfraciones. MATEMÁTICAS. AntonioF.CostaGonzález
CURSOSO CURSOSO MATEMÁTICAS Aritmética: Númerosnaturalesyenteros. Númerosracionalesyfraciones. AntonioF.CostaGonzález DepartamentodeMatemáticasFundamentales FacultaddeCiencias Índice 1 Introducción y objetivos
