Vectores y Escalares
|
|
|
- Enrique Flores Ortíz
- hace 9 años
- Vistas:
Transcripción
1 Vectores y Escalares Suma Grafica y Analítica En física debemos distinguir entre vectores y escalares. Un vector es una cantidad orientada, tiene tanto magnitud como dirección. La velocidad, la fuerza y el desplazamiento son vectores. El tiempo, la temperatura y la energía son escalares: sólo tienen magnitud, no tienen dirección asociada a ellas. Los vectores se representan mediante flechas, en que la longitud de la flecha se traza proporcionalmente a la magnitud del vector. Las letras que representan vectores se escriben en negrita. 1.- Suma de Vectores. Método Gráfico Para sumar escalares, como tiempo, se usa la aritmética simple. Si dos vectores se encuentran en la misma recta también podemos usar aritmética, pero no así si los vectores no se encuentran en la misma recta. Por ejemplo, si Ud. se desplaza 4 km hacia el este y luego 3 km hacia el norte, su desplazamiento neto o resultante respecto del punto de partida tendrá una magnitud de 5 km y un ángulo = 36.87º respecto del eje x positivo. Ver figura Vectorialmente, el desplazamiento resultante V R, es la suma de los vectores V 1 y V 2, o sea, escribimos V R = V 1 + V 2 Esta es una ecuación vectorial. La regla general para sumar vectores en forma gráfica (con regla y transportador), que de hecho es la definición de cómo se suman vectores, es la siguiente: (1) Use una misma escala para las magnitudes. (2) Trace uno de los vectores, digamos V 1 (3) Trace el segundo vector, V 2, colocando su cola en la punta del primer vector, asegurándose que su dirección sea la correcta. (4) La suma o resultante de los dos vectores es la flecha que se traza desde la cola del primer vector hasta la punta del segundo. Este método se llama suma de vectores de cola a punta. Notemos que V 1 + V 2 = V 2 + V 1, esto es, el orden no es importante. Este método de cola a punta se puede ampliar a tres o más vectores. Suponga que deseamos sumar los vectores V 1, V 2, y V 3 representados a continuación: V R = V 1 + V 2 +V 3 es el vector resultante destacado con línea gruesa.
2 Un segundo método para sumar dos vectores es el método del paralelogramo, equivalente al de cola y punta. En este método se trazan ambos desde un origen común y se forma un paralelogramo usando los dos como lados adyacentes. La resultante es la diagonal que se traza desde el origen común. 2.- Resta de Vectores Dado un vector V se define el negativo de ese vector (-V) como un vector con la misma magnitud que V, la misma dirección, pero con sentido opuesto: La diferencia de dos vectores A y B se define como A - B = A + (-B) De modo que podemos aplicar las reglas de su suma para restarlos. Vectores y Escalares. Fisica. Suma Grafica y Analitica En física debemos distinguir entre vectores y escalares. Un vector es una cantidad orientada, tiene tanto magnitud como dirección. La velocidad, la fuerza y el desplazamiento son vectores. El tiempo, la temperatura y la energía son escalares: sólo tienen magnitud, no tienen dirección asociada a ellas. Los vectores se representan mediante flechas, en que la longitud de la flecha se traza proporcionalmente a la magnitud del vector. Las letras que representan vectores se escriben en negrita. 1.- Suma de Vectores. Método Gráfico Para sumar escalares, como tiempo, se usa la aritmética simple. Si dos vectores se encuentran en la misma recta también podemos usar aritmética, pero no así si los vectores no se encuentran en la misma recta. Por ejemplo, si Ud. se desplaza 4 km hacia el este y luego 3 km hacia el norte, su desplazamiento neto o resultante respecto del punto de partida tendrá una magnitud de 5 km y un ángulo = 36.87º respecto del eje x positivo. Ver figura
3 Vectorialmente, el desplazamiento resultante V R, es la suma de los vectores V 1 y V 2, o sea, escribimos V R = V 1 + V 2 Esta es una ecuación vectorial. La regla general para sumar vectores en forma gráfica (con regla y transportador), que de hecho es la definición de cómo se suman vectores, es la siguiente: (1) Use una misma escala para las magnitudes. (2) Trace uno de los vectores, digamos V 1 (3) Trace el segundo vector, V 2, colocando su cola en la punta del primer vector, asegurándose que su dirección sea la correcta. (4) La suma o resultante de los dos vectores es la flecha que se traza desde la cola del primer vector hasta la punta del segundo. Este método se llama suma de vectores de cola a punta. Notemos que V 1 + V 2 = V 2 + V 1, esto es, el orden no es importante. Este método de cola a punta se puede ampliar a tres o más vectores. Suponga que deseamos sumar los vectores V 1, V 2, y V 3 representados a continuación: V R = V 1 + V 2 +V 3 es el vector resultante destacado con línea gruesa. Un segundo método para sumar dos vectores es el método del paralelogramo, equivalente al de cola y punta. En este método se trazan ambos desde un origen común y se forma un paralelogramo usando los dos como lados adyacentes. La resultante es la diagonal que se traza desde el origen común. 2.- Resta de Vectores Dado un vector V se define el negativo de ese vector (-V) como un vector con la misma magnitud que V, la misma dirección, pero con sentido opuesto: La diferencia de dos vectores A y B se define como A - B = A + (-B) De modo que podemos aplicar las reglas de su suma para restarlos. 3.- Multiplicación de un Vector por un Escalar Se puede multiplicar un vector V por un escalar c. Se define este producto de tal manera que cv tenga la misma dirección que V y tenga la magnitud cv. Si c es positivo, no afecta el sentido. Si c es negativo, el sentido es exactamente opuesto a V.
4 Suma de Vectores. Método Analítico Suma de Componentes La suma gráfica de vectores con regla y transportador a veces no tiene la exactitud suficiente y no es útil cuando los vectores están en tres dimensiones. Sabemos, de la suma de vectores, que todo vector puede descomponerse como la suma de otros dos vectores, llamados las componentes vectoriales del vector original. Para sumarlos, lo usual es escoger las componentes sumando a lo largo de dos direcciones perpendiculares entre sí. Ejemplo Suma Vectores: suponga un vector V cualquiera Trazamos ejes coordenados x y con origen en la cola del vector V. Se trazan perpendiculares desde la punta del vector V a los ejes x y y determinándose sobre el eje x la componente vectorial V x y sobre el eje y la componente vectorial V y. Notemos que V = V x + V y de acuerdo al método del paralelógramo. Las magnitudes de V x y V y, o sea V x y V y, se llaman componentes y son números, positivos o negativos según si apuntan hacia el lado positivo o negativo de los ejes x y y. Notar también que V y = Vsen y V x = Vcos Suma de Vectores Unitarios Frecuentemente las cantidades vectoriales se expresan en términos de unitarios. Un vector unitario es un vector sin dimensiones que tiene magnitud igual a uno. Sirven para especificar una dirección determinada. Se usan los símbolos i, j y k para representar vectores unitarios que apuntan en las direcciones x, y y z positivas, respectivamente. Ahora V puede escribirse V = A x i + A y j Si necesitamos sumar el vector A = A x i + A y j con el vector B = B x i + B y j escribimos R = A + B = A x i + A y j + B x i + B y j = (A x + B x )i + (A y + B y )j Las componentes de R (=A + B) son R x = A x + B x y R y = A y + B y Problema Ilustratorio El siguiente ejercicio es para aclarar el uso de vectores unitarios en este método analítico. Un auto recorre 20 km hacia el Norte y después 35 km en una dirección 60º al Oeste del Norte. Determine magnitud y dirección del desplazamiento resultante del auto. Hacemos un diagrama:
5 Expresando los dos desplazamientos componentes como A y B, indicados en la figura, y usando unitarios, tenemos: R = A + B. R es el vector resultante buscado, cuya magnitud se denota y cuya dirección puede determinarse calculando el ángulo. A = 20 km j, (apunta hacia el Norte). B debemos descomponerlo en componentes x e y (ó i y j ) B = -(35 km)sen60ºi + (35 km)cos60ºj = kmi kmj Luego, R = 20 kmj kmi kmj = 37.5j i. La magnitud se obtiene de 2 = (37.5km) 2 + (30.3km) 2 = 48.2 km La dirección de R la determinaremos calculando el ángulo. En el triángulo formado por cateto opuesto 30.3 y cateto adyacente 37.5, tg = 30.3/37.5 = arctg(30.3/37.5) = 38.9º.
UNIVERSIDAD LIBRE FACULTAD DE INGENIERÌA DEPARTAMENTO DE CIENCIAS BÁSICAS GUIA N 2
UNIVERSIDAD LIBRE FACULTAD DE INGENIERÌA DEPARTAMENTO DE CIENCIAS BÁSICAS GUIA N 2 NOMBRE DE LA ASIGNATURA: TÍTULO: DURACIÓN: BIBLIOGRAFÍA SUGERIDA: AUTOR: Física Mecánica Vectores 4 sesiones Serway, Giancoli,
APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 2 ÁLGEBRA VECTORIAL
Vectores y escalares. REPÚBLICA BOLIVARIANA DE VENEZUELA APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 2 ÁLGEBRA VECTORIAL Las magnitudes escalares son aquellas magnitudes físicas que
SUMA Y RESTA DE VECTORES. GL: Mesa No. Fecha: INTEGRANTES (Apellidos, nombres) FIRMA SECCION NOTA
UNIVERSIDAD TECNOLÓGICA DE EL SALVADOR ACULTAD DE INORMATICA Y CIENCIAS APLICADAS ESCUELA DE CIENCIAS APLICADAS DEPARTAMENTO DE MATEMATICA Y CIENCIAS CÁTEDRA DE ÍSICA ASIGNATURA: ISICA I PRACTICA 2 SUMA
Definición de vectores
Definición de vectores Un vector es todo segmento de recta dirigido en el espacio. Cada vector posee unas características que son: Origen O también denominado Punto de aplicación. Es el punto exacto sobre
Bloque 2. Geometría. 2. Vectores. 1. El plano como conjunto de puntos. Ejes de coordenadas
Bloque 2. Geometría 2. Vectores 1. El plano como conjunto de puntos. Ejes de coordenadas Para representar puntos en un plano (superficie de dos dimensiones) utilizamos dos rectas graduadas y perpendiculares,
Profesor: Carlos Arroyave Valencia GUÍA 2 TEMA: VECTORES - OPERACIONES MAGNITUDES FÍSICAS
INSTITUTO TECNICO INDUSTRIAL PASCUAL BRAVO ÁREA: CIENCIAS NATURALES Y EDUCACIÓN AMBIENTAL (FÍSICA) GRADO: 10 JORNADA: Tarde PERÍODO: II Profesor: Carlos Arroyave Valencia GUÍA 2 TEMA: VECTORES - OPERACIONES
SISTEMA DE UNIDADES FÍSICAS. Ing. Ronny Altuve
UNIVERSIDAD ALONSO DE OJEDA FACULTAD DE INGENIERÍA Escuela de Industrial/Computación SISTEMA DE UNIDADES FÍSICAS Elaborado por: Ing. Ronny Altuve Ciudad Ojeda, Mayo de 2015 CONCEPTOS BÁSICOS Medida Magnitud
Física I. TEMA I. Vectores. Ing. Alejandra Escobar UNIVERSIDAD FERMÍN TORO VICE RECTORADO ACADÉMICO FACULTAD DE INGENIERÍA
Física I TEMA I. Vectores UNIVERSIDAD FERMÍN TORO VICE RECTORADO ACADÉMICO FACULTAD DE INGENIERÍA Ing. Alejandra Escobar TEMA I. VECTORES Magnitudes Una magnitud se define como toda aquella propiedad que
MAGNITUDES ESCALARES Y VECTORIALES
MAGNITUDES ESCALARES Y VECTORIALES En física se distinguen dos tipos de magnitudes, las escalares y las vectoriales. -Una magnitud escalar se describe completamente con un valor numérico con una unidad
OPERACIONES GEOMÉTRICAS CON VECTORES
GUÍA DE APRENDIZAJE Introducción al álgebra vectorial www.fisic.ch Profesor: David Valenzuela Z Magnitudes escalares y vectoriales La gran variedad de cosas medibles (magnitudes) se pueden clasificar en
GUÍA DE APRENDIZAJE Introducción al álgebra vectorial
Liceo Juan XXIII V.A Departamento de ciencias Física Prof. David Valenzuela GUÍA DE APRENDIZAJE Introducción al álgebra vectorial www.fisic.jimdo.com Tercero medio diferenciado Magnitudes escalares y vectoriales
Saint Gaspar College MISIONEROS DE LA PRECIOSA SANGRE Formando Personas Integras
Saint Gaspar College MISIONEROS DE LA PRECIOSA SANGRE Formando Personas Integras DEPARTAMENTO DE CIENCIAS Y TECNOLOGÍA MISS YORMA RIVERA M. V E C T O R E S MAGNITUD FÍSICA Es todo aquello que se puede
Repaso de Vectores. Autor: Dra. Estela González. flecha. La longitud de la línea indica la magnitud del vector, y su
Autor: Dra. Estela González Algunas cantidades físicas como tiempo, temperatura, masa, densidad y carga eléctrica se pueden describir plenamente con un número y una unidad, pero otras cantidades (también
VECTORES vector Vector posición par ordenado A(a, b) representa geométricamente segmento de recta dirigido componentes del vector
VECTORES Un vector (Vector posición) en el plano es un par ordenado de números reales A(a, b). Se representa geométricamente por un segmento de recta dirigido, cuyo punto inicial es el origen del sistema
A = A < θ R = A + B + C = C+ B + A. b) RESTA O DIFERENCIA DE VECTORES ANÁLISIS VECTORIAL. Es una operación que tiene por finalidad hallar un
ANÁLISIS VECTORIAL MAGNITUD FÍSICA Es todo aquello que se puede medir. CLASIFICACIÓN DE MAGNITUDES POR NATURALEZA MAGNITUD ESCALAR: Magnitud definida por completo mediante un número y la unidad de medida
PUNTOS Y VECTORES EN EL PLANO
PUNTOS Y VECTORES EN EL PLANO PUNTOS EN EL PLANO Tomando como referencia los ejes cartesianos del plano, un punto se representa mediante un par ordenado (a, b) de números reales, es decir, mediante un
Repaso de Vectores. Autor: Dra. Estela González
Autor: Dra. Estela González Algunas cantidades físicas como tiempo, temperatura, masa, densidad y carga eléctrica se pueden describir plenamente con un número y una unidad, pero otras cantidades (también
Tema 3. Magnitudes escalares y vectoriales
1 de 13 09/07/2012 12:51 Tema 3. Magnitudes escalares y vectoriales Algunos derechos reservados por manelzaera Como sabes, una magnitud es todo aquello que se puede medir. Por ejemplo, la fuerza, el tiempo,
VECTORES Y OPERACIONES CON VECTORES
BOLILLA 2 Sistema de Coordenadas VECTORES Y OPERACIONES CON VECTORES Un sistema de coordenadas permite ubicar cualquier punto en el espacio. Un sistema de coordenadas consta de: Un punto fijo de referencia
MAGNITUD VECTORIAL. Veamos un ejemplo sencillo: Es un segmento de línea recta orientada que sirve para representar a las magnitudes vectoriales.
Capítulo 3 VECTORES MGNITUD VECTORIL Es aquella magnitud que aparte de conocer su valor numérico y su unidad respectiva, es necesario conocer también la dirección y sentido para que así dicha magnitud
MAGNITUDES ESCALARES. expresadas por medio de un número y la correspondiente unidad. Masa Temperatura Presión Densidad
MAGNITUDES ESCALARES Son aquellas en donde las medidas quedan correctamente expresadas por medio de un número y la correspondiente unidad. Masa Temperatura Presión Densidad Para muchas magnitudes físicas
APUNTES 1 VECTORES M.C. CESAR GUERRA TORRES
APUNTES 1 VECTORES M.C. CESAR GUERRA TORRES 1. INTRODUCCION Las cantidades físicas en su forma general se dividen en: a) escalares y b) vectores. Un escalar es una cantidad física es utilizada para expresar
Magnitudes vectoriales y escalares.
Magnitudes vectoriales y escalares https://sites.google.com/site/fisicadeterceroedwar/temas/magnitudes-escalares-y-vectoriales Magnitudes escalares Son aquellas que quedan completamente especificadas con
COMPLEJO EDUCATIVO SAN FRANCISCO PRIMER PERIODO. Nombre del estudiante: No.
1 COMPLEJO EDUCATIVO SAN FRANCISCO PRIMER PERIODO CIENCIAS NATURALES Primer año Sección: Nombre del estudiante: No. UNIDAD No 3 Tema: Vectores Cuando vas en coche por una carretera, una autovía o una autopista,
SUMA Y RESTA DE VECTORES
SUMA Y RESTA DE VECTORES Definición de vectores Un vector es la expresión que proporciona la medida de cualquier magnitud vectorial. Un vector es todo segmento de recta dirigido en el espacio. Cada vector
Universidad Alonso de Ojeda. Facultad de Ingeniería GUIA DE ESTUDIO ALGEBRA LINEAL.
UNIDAD IV: VECTORES EN R2 Y R3 VECTOR Se puede considerar un vector como un segmento de recta con una flecha en uno de sus extremos. De esta forma lo podemos distinguir por cuatro partes fundamentales:
República Bolivariana de Venezuela Universidad Alonso de Ojeda Vicerrectorado Académico Facultad de Ingeniería Escuela de Computación
República Bolivariana de eneuela Universidad Alonso de Ojeda Escuela de Computación UNIDAD I ECTORES Autor: Prof. Guillermo Pinder Adaptado: Ing. Ronn Altuve Ciudad Ojeda, Mao de 2015 Magnitudes Escalares
SECCIÓN 7.3 INTRODUCCION A VECTORES. Capítulo 7
SECCIÓN 7.3 INTRODUCCION A VECTORES Capítulo 7 Introducción Cantidades tales como área, volumen, longitud, temperatura y tiempo se componen únicamente de una magnitud y se pueden describir completamente
VECTORES : Las Cantidades Vectoriales cantidades escalares
VECTORES En física hay dos tipos de cantidades: Las Cantidades Vectoriales son aquellas que tiene tanto magnitud como dirección y sentido sobre la dirección), mientras que las cantidades escalares son
GEOMETRÍA EN EL ESPACIO.
GEOMETRÍA EN EL ESPACIO. Un sistema de coordenadas tridimensional se construye trazando un eje Z, perpendicular en el origen de coordenadas a los ejes X e Y. Cada punto viene determinado por tres coordenadas
ÍNDICE TEMÁTICO 2. VECTORES
ÍNDICE TEMÁTICO 2. VECTORES 2.1. CANTIDADES VECTORIALES Y ESCALARES 2.2 COMPONENTES DE UN VECTOR 2.3 TIPOS DE VECTORES 2.4. SUMA DE VECTORES MEDIANTE MÉTODOS GRÁFICOS 2.4.1 Método del polígono 2.4.2 Método
Resumen teórico de los conceptos necesarios para resolver el práctico 1. Vectores VECTORES
Resumen teórico de los conceptos necesarios para resolver el práctico 1. Vectores En física algunas cantidades se pueden representar mediante un valor y su correspondiente unidad (1 litro, 10 kilogramos).
ÁLGEBRA LINEAL Y GEOMETRÍA ANALÍTICA (0250)
Universidad Central de Venezuela Facultad de Ingeniería Ciclo Básico Departamento de Matemática Aplicada ÁLGEBRA LINEAL Y GEOMETRÍA ANALÍTICA (0250) Semestre 1-2011 Mayo 2011 Álgebra Lineal y Geometría
16. Dados los puntos A(-1,3), B(2,0) y C(-2,1). Halla las coordenadas de otro punto D para que los vectores y sean equivalentes.
TEMA 5. VECTORES 5.1. Vectores en el plano. - Definición. - Componentes de un vector. - Módulo. - Vectores equivalentes. 5.2. Operaciones con vectores. - Suma y resta. - Multiplicación por un número real.
en dos dimensiones como objetos que tienen magnitud, dirección y su representación geométrica.
1 N.SN.11.1.1 Define vectores en dos dimensiones como objetos que tienen magnitud, dirección y su representación geométrica. Vectores Unidad 4: Vectores Tema 1: Vectores Lección 1: Definición 11 Introducción
Boletín de Geometría Analítica
Boletín de Geometría Analítica 1) Si las coordenadas de los vectores a y b son (3,5) y (-2,1) respectivamente, obtén las coordenadas de: a) -2 a + 1/2 b b) 1/2 ( a +b ) - 2/3 ( a -b ) 2) Halla el vector
Un vector geométrico es un segmento de recta dirigido en el plano o el espacio euclidiano.
ectores n vector geométrico es un segmento de recta dirigido en el plano o el espacio euclidiano. Diremos que dos vectores son iguales si tienen la misma dirección, magnitud (tamaño) y sentido, sin importar
MAGNITUDES ESCALARES Y VECTORIALES VECTORES
MGNITUES ESLRES Y VETORILES VETORES HERNN FISI 3 27 Junio 01 Julio del 2016 Escalares y vectores Ya hemos mencionado que el término velocidad no se refiere sólo a la rapidez con el que un objeto se está
I Unidad Vectores. http://tchefonsecalfaro.wordpress.com/
I Unidad Vectores http://tchefonsecalfaro.wordpress.com/ Contenido 3 1 2 3 4 5 Vectores como desplazamiento Operaciones con vectores Componentes de un vector Producto escalar vectorial de dos vectores
3. 2. Pendiente de una recta. Definición 3. 3.
3.. Pendiente de una recta. Definición 3. 3. Se llama Angulo de Inclinación α de una recta L, al que se forma entre el eje en su dirección positiva y la recta L, cuando esta se considera dirigida hacia
MAGNITUDES FISICAS. Es una flecha o segmento orientado que tiene los siguientes elementos gráficos que lo representan: (fig. 7)
1 MGNITUDES FISICS Magnitudes escalares Son aquellas cantidades que quedan determinadas por un número una unidad exclusivamente. Ej: el tiempo, la densidad, el trabajo, la temperatura, etc. Magnitudes
PROBLEMAS RESUELTOS GEOMETRÍA
PROBLEMAS RESUELTOS GEOMETRÍA ) Uno de los vértices de un paralelogramo ABCD es el punto A(, ) y dos de los lados están sobre las rectas r : 3x -y- =, s : 6x -7y- =. Calcula los demás vértices. Como el
1.1 Definición de Vectores en R^2 y R^3 y su generalización. Anteriormente vimos que un vector es un objeto matemático con dirección y magnitud.
1.1 Definición de Vectores en R^2 y R^3 y su generalización. Anteriormente vimos que un vector es un objeto matemático con dirección y magnitud. La palabra vectores se refiere a los elementos de cualquier
UNI DAD 1 GEOMETRÍA ANALÍTICA BIDIMENSIONAL
UNI DD 1 GEOMETRÍ NLÍTIC BIDIMENSIONL Objetivos Geometría analítica Introducción L geometría analítica La geometrie cartesiana geometría 1.1. El segmento método sintético geométrico puro Se considera
Conceptos básicos de Geometría
Conceptos básicos de geometría La geometría trata de la medición y de las propiedades de puntos, líneas, ángulos, planos y sólidos, así como de las relaciones que guardan entre sí. A continuación veremos
Representación de un Vector
VECTORES Vectores Los vectores se caracterizan por tener una magnitud, expresable por un número real, una dirección y un sentido. Un ejemplo de vectores son los desplazamientos. Otro ejemplo de vectores
Facultad de Ingeniería Civil. Programa de Inducción de Física Julio de 2017 Días 4 y 5 Estática I
Facultad de Ingeniería Civil Programa de Inducción de Física Julio de 2017 Días 4 y 5 Estática I ESCALARES Y VECTORES Escalares y vectores 2 Conocimientos previos 1. Qué es una cantidad o magnitud física?
Funciones de varias variables.
Funciones de varias variables. Definición. Hasta ahora se han estudiado funciones de la forma y = f (x), f :D Estas funciones recibían el nombre de funciones reales de variable real ya que su valor y dependía
Guía Psu Matemáticas Aplicación de definiciones y propiedades básicas de Ángulos
Profesor: Guillermo Corbacho [email protected] Guía Psu Matemáticas Aplicación de definiciones y propiedades básicas de Ángulos 1. Sistemas de Medidas No vamos a definir lo que es un ángulo, pues tal concepto
UNIVERSIDAD NACIONAL DE VILLA MERCEDES CARRERA DE KINESIOLOGIA Y FISIATRIA TRABAJO Y ENERGIA.
TRABAJO Y ENERGIA. El problema fundamental de la Mecánica es describir como se moverán los cuerpos si se conocen las fuerzas aplicadas sobre él. La forma de hacerlo es aplicando la segunda Ley de Newton,
Cálculo vectorial en el plano.
Cálculo vectorial en el plano. Cuaderno de ejercicios MATEMÁTICAS JRM SOLUCIONES Índice de contenidos. 1. Puntos y vectores. Coordenadas y componentes. Puntos en el plano cartesiano. Coordenadas. Vectores
V E C T O R E S L I B R E S E N E L P L A N O
V E C T O R E S L I B R E S E N E L P L A N O 1. V E C T O R E S F I J O S Y V E C T O R E S L I B R E S E N E L P L A N O Existen magnitudes como la fuerza, la velocidad, la aceleración, que no quedan
UNIVERSIDAD JOSE CARLOS MARIATEGUI CAPITULO 2 VECTORES
CAPITULO 2 VECTORES 2.1 Escalares y Vectores Una cantidad física que pueda ser completamente descrita por un número real, en términos de alguna unidad de medida de ella, se denomina una cantidad física
RESUMEN GEOMETRÍA SAINT MARY SCHOOL. PROF. JUAN K. BOLAÑOS M. Geometría Elemental
Geometría Elemental Punto Sólo tiene posición. No posee longitud, anchura ni espesor. Se representa por un. Se designa por medio de una letra mayúscula colocada cerca del punto gráfico. Línea recta Es
Webpage: Departamento de Física Universidad de Sonora
Mecánica y fluidos Webpage: http://paginas.fisica.uson.mx/qb 2007 Departamento de Física Universidad de Sonora Temario III.- VECTORES. 1. Clasificación de cantidades físicas: Escalares y vectores. 2.
Guía Psu Matemáticas Aplicación de definiciones y propiedades básicas de Ángulos
Profesor: Guillermo Corbacho Guía Psu Matemáticas Aplicación de definiciones y propiedades básicas de Ángulos 1. Sistemas de Medidas No vamos a definir lo que es un ángulo, pues tal concepto está bien
VECTORES Contenido escalares
VECTOES Toda la teoría que se desarrolla acerca de vectores, responde a conceptos físicos, aunque se les puede dar un tratamiento matemático, debido a que en éstos, se pueden efectuar operaciones como
DEPARTAMENTO DE FISICA DOCENTE: ING. JOEL PACO S.
.1.- INTRODUCION Las propiedades físicas en la mecánica deben expresarse por una magnitud y una cierta unidad que las permita medir y comparar entre si, sin embargo debido a que en algunos casos esa información
Vectores. Vectores equipolentes RESUMEN. es un segmento orientado que va del punto A (origen) al. punto B (extremo).
RESUMEN Vectores Un vector fijo es un segmento orientado que va del punto A (origen) al punto B (extremo). Un vector fijo es nulo cuando el origen y su extremo coinciden. Módulo del vector Es la longitud
Unidad Educativa Colegio. Agustiniano Cristo Rey. Física. Vectores propiedades y operaciones
Unidad Educativa Colegio Agustiniano Cristo Rey Física Vectores propiedades y operaciones Contenido teórico y guía de ejercicios para los estudiantes del Tercer año de Bachillerato. Profesora Rosa Fernández
APUNTES DE MATEMÁTICAS 1º BACHILLERATO TEMA 5: GEOMETRÍA AFÍN PROBLEMAS MÉTRICOS
APUNTES DE MATEMÁTICAS TEMA 5: GEOMETRÍA AFÍN PROBLEMAS MÉTRICOS º BACHILLERATO ÍNDICE. ECUACIONES DE LA RECTA EN EL PLANO.... 4.. SISTEMAS DE REFERENCIA... 4.. COORDENADAS DE UN PUNTO... 4.3. COORDENADAS
ÁNGULOS 1. LOS ÁNGULOS. 1.1. CONCEPTO DE ÁNGULO Y ELEMENTOS.
ÁNGULOS 1. LOS ÁNGULOS. 1.1. CONCEPTO DE ÁNGULO Y ELEMENTOS. Un ángulo es la región del plano comprendida entre dos semirrectas que tienen un origen común. Sus elementos son: Vértice: es el punto común
VECTORES. también con letras sobre las cuales se coloca una flechita ( a ). A = módulo de A. modulo o magnitud, dirección y sentido. vector.
VECTORES Según su naturaleza las cantidades físicas se clasifican en magnitudes escalares y magnitudes vectoriales Las magnitudes como el tiempo, la temperatura, la masa y otras, son magnitudes escalares
Lección 17: Polígonos básicos
Lección 17: Polígonos básicos Un polígono es una figura cerrada formada por segmentos de recta que no se cruzan entre sí. Los segmentos se llaman lados del polígono. Los polígonos pueden ser convexos,
Capitulo Vectores. Matías Enrique Puello Chamorro. 13 de julio de 2014
Capitulo Vectores Matías Enrique Puello Chamorro [email protected] www.matiaspuello.wordpress.com 13 de julio de 2014 Índice 1. Introducción 3 2. Marcos de referencia 4 3. Definición de VECTOR
Momento de un vector deslizante respecto a un punto. Momento de un vector deslizante respecto a un eje
Magnitudes escalares y vectoriales Tipos de vectores Operaciones con vectores libres Momento de un vector deslizante respecto a un punto Momento de un vector deslizante respecto a un eje Magnitudes escalares
MUNICIPIO DE MEDELLÍN ÁREA DE MATEMÁTICAS: GEOMETRÍA ANALÍTICA. 3. Determinar analíticamente cuando dos rectas son paralelas o perpendiculares.
ESTUDIO ANALÍTICO DE LA LÍNEA RECTA Y APLICACIONES SEMESTRE II VERSIÓN 03 FECHA: Septiembre 29 de 2011 MUNICIPIO DE MEDELLÍN ÁREA DE MATEMÁTICAS: GEOMETRÍA ANALÍTICA LOGROS: 1. Hallar la dirección, la
5. POLÍGONOS. 5.1 Definición y notación de polígonos
5. POLÍGONOS 5.1 Definición y notación de polígonos Un polígono es una figura geométrica limitada por segmentos de recta denominados lados, donde el extremo de un segmento es el origen del otro. E D Etimológicamente,
Un vector está representado por cuatro elementos: origen, dirección, sentido y módulo.
CÁLCULO VECTORIAL Escalares y vectores. Al estudiar la Física nos encontramos con dos tipos diferentes de magnitudes físicas: magnitudes escalares y magnitudes vectoriales.son magnitudes escalares aquellas
UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE ODONTOLOGÍA CURSO: FÍSICA MATEMATICA DOCENTE:
UNIVESIDAD DE SAN CALOS DE GUATEMALA FACULTAD DE ODONTOLOGÍA CUSO: FÍSICA MATEMATICA DOCENTE: Dr. Edwin López Año 2017 Documento de apoyo a la docencia VECTOES Toda la teoría que se desarrolla acerca de
REPASO DE VECTORES GRM Semestre
Basado en material de Serway-Jewett, Physics, Chapters 3, 6,10; Volume 1 REPASO DE VECTORES GRM Semestre 2012-2 Indice Sistemas de coordenadas 2 Vectores y escalares 8 Propiedades de vectores 11 Suma de
GEOMETRÍA Y TRIGONOMETRÍA
GEOMETRÍA Y TRIGONOMETRÍA 1 Conceptos básicos 1. Una figura geométrica es un conjunto de puntos. 2. Puntos colineales son cualesquiera puntos que están exactamente en una recta. 3. La distancia entre un
Apéndice A. Vectores: propiedades y operaciones básicas.
Vectores 145 Apéndice A. Vectores: propiedades y operaciones básicas. Una clasificación básica de las distintas propiedades físicas medibles, establece que estas pueden dividirse en dos tipos: a) Aquellas
Mecánica Vectorial Cap. 3. Juan Manuel Rodríguez Prieto I.M., M.Sc., Ph.D.
Mecánica Vectorial Cap. 3 Juan Manuel Rodríguez Prieto I.M., M.Sc., Ph.D. Cómo tener éxito en Matemáticas? Paso 1: El trabajo duro triunfa sobre el talento natural. Paso 2: Mantenga una mente abierta.
Trigonometría y Análisis Vectorial
Unidad Educativa enezuela Trigonometría nálisis ectorial Prof. Ronn J. ltuve Unidad Educativa enezuela Trigonometría nálisis ectorial 1. Teorema de Pitágoras: establece que en un triángulo rectángulo el
VECTORES ÍNDICE BIBLIOGRAFÍA: Cap. 3 del Tipler Mosca, vol. 1, 5ª ed. Cap. 3 del Serway Jewett, vol. 1, 7ª ed. Cap. 2 del Gettys-Frederick-Keller.
VECTORES ÍNDICE 1. Magnitudes escalares y magnitudes vectoriales 2. Componentes de un vector 3. Suma y resta de vectores 4. Producto de un vector por un escalar 5. Producto escalar de vectores 6. Producto
Mecánica y fluidos. Temario. Webpage:
Mecánica fluidos Webpage: http://paginas.fisica.uson.m/qb 2007 Departamento de Física Universidad de Sonora Temario III.- VECTORES. 1. Clasificación de cantidades físicas: Escalares vectores. 2. Representación
Con la ayuda de el dinamómetro implementamos el segundo método de aplicación y medición de fuerzas.
EXPERIMENTO # 1: LEY DE HOOKE MEDICIÓN DE FUERZAS Objetivo: Estudios de las propiedades de un dinamómetro mediante la aplicación de fuerza conocidas. Fundamento Teórico: El concepto de fuerza es definido
MAGNITUDES ESCALARES Y VECTORIALES
C U R S O: FÍSIC COMÚN MTERIL: FC-01 Sistema Internacional (SI) MGNITUDES ESCLRES Y VECTORILES En 1960, un comité internacional estableció un conjunto de patrones para estas magnitudes fundamentales. El
MAGNITUDES. INTRODUCCIÓN AL ANÁLISIS DIMENSIONAL
MGNITUDES. INTRODUCCIÓN L NÁLISIS DIMENSIONL IES La Magdalena. vilés. sturias Magnitud es todo aquello que puede ser medido. Por eemplo una longitud, la temperatura, la intensidad de corriente, la fuerza
es un segmento orientado que va del punto A (origen) al Dos vectores son equipolentes cuando tienen igual módulo, dirección y
RESUMEN Vectores Un vector fijo es un segmento orientado que va del punto A (origen) al punto B (extremo). Un vector fijo es nulo cuando el origen y su extremo coinciden. Módulo del vector Es la longitud
COLEGIO DE EDUCACION TECNICA Y ACADÉMICA CELESTIN FREINET ÁREA DE CIENCIAS NATURALES TALLER DE REFUERZO PERIODO I GRADO 9
COLEGIO DE EDUCACION TECNICA Y ACADÉMICA CELESTIN FREINET ÁREA DE CIENCIAS NATURALES TALLER DE REFUERZO PERIODO I GRADO 9 Indicador 1 Gráfico y descompongo vectores y los descompongo en sus componentes
TEMA 4. VECTORES EN EL ESPACIO
TEMA 4. VECTORES EN EL ESPACIO Dados dos puntos y, se define el vector como el segmento orientado caracterizado por su módulo, su dirección y su sentido. En coordenadas: Dos vectores son equipolentes si
VECTORES 1.2 CONCEPTOS Y DEFINICIONES FUNDAMENTALES. En este capítulo estudiaremos los vectores y su álgebra.
CAPITULO I CALCULO II VECTORES 1.1 INTRODUCCIÓN Los vectores son un auxiliar utilísimo para la geometría del espacio. En esta unidad partiendo de lo que ya se sabe de vectores en el plano, se contemplan
UNIDAD 9. LOS ÁNGULOS
UNIDAD 9. LOS ÁNGULOS 1. LOS ÁNGULOS: ELEMENTOS Y TIPOS. 2. SISTEMA SEXAGESIMAL Y MEDIDA DE ÁNGULOS. 3. SUMA Y RESTA DE ÁNGULOS. 4. MEDIDAS ANGULARES COMPLEJAS E INCOMPLEJAS. 5. PASO DE MEDIDAS COMPLEJAS
Espacios vectoriales con producto interior
Espacios vectoriales con producto interior Longitud, norma o módulo de vectores y distancias entre puntos Generalizando la fórmula pitagórica de la longitud de un vector de R 2 o de R 3, definimos la norma,
Una matriz es un arreglo rectangular de números. Los números en el arreglo se llaman elementos de la matriz. ) ( + ( ) ( )
MATRICES Una matriz es un arreglo rectangular de números. Los números en el arreglo se llaman elementos de la matriz. Ejemplo 1. Algunos ejemplos de matrices ( + ( ) ( + ( ) El tamaño o el orden de una
Un sistema de referencia se representa mediante unos EJES DE COORDENADAS (x,y), en cuyo origen estaría situado el observador.
UD6 FUERZAS Y MOVIMIENTO EL MOVIMIENTO DE LOS CUERPOS Un cuerpo está en movimiento si cambia de posición con respecto al sistema de referencia; en caso contrario, está en reposo. Sistema de referencia
Vectores Presentanción basada en el material contenido en: Serway, R. Physics for Scientists and Engineers. Saunders College Pub. 3rd edition.
Vectores Presentanción basada en el material contenido en: Serway, R. Physics for Scientists and Engineers. Saunders College Pub. 3rd edition. Sistemas de Coordenadas Se usan ara describir la posición
DEPARTAMENTO DE CÁLCULO Y GEOMETRIA ANALITICA SEMESTRE 2017-1 SERIE CURVAS EN EL ESPACIO
SEMESTRE 017-1 1. Obtener una ecuación vectorial de la curva que se obtiene por el desplazamiento de un punto tal que su abscisa es -5 mientras que su cota es el triple de la tangente de su ordenada..
TEMA 03 VECTORES. Prof. Ricardo Nitsche Corvalán
1 TEMA 03 VECTORES 2 3.1.- LOS VECTORES 3.1.1.- Qué es un vector. Un vector es una cantidad física que se caracteriza por tener dos elementos: a) una magnitud, que al igual que las cantidades escalares
rad, y rad = 360 Ejercicio 1 Realizar las conversiones de grados a radianes y de radianes a grados de los siguientes ángulos:
Trigonometría 1.- Ángulos En la medida de ángulos, y por tanto en trigonometría, se emplean dos unidades, si bien la más utilizada en la vida cotidiana es el grado sexagesimal, en matemáticas es el radián
MENORES, COFACTORES Y DETERMINANTES
MENORES, COFACTORES Y DETERMINANTES 1. Introducción. 2. Determinante de una matriz de 3 x 3. 3. Menores y cofactores. 4. Determinante de una matriz de n x n. 5. Matriz triangular. 6. Determinante de una
RELACION DE PROBLEMAS DE GEOMETRIA. Problemas propuestos para la prueba de acceso del curso 1996/97.
RELACION DE PROBLEMAS DE GEOMETRIA Problemas propuestos para la prueba de acceso del curso 996/97. º. - Explica cómo se puede hallar el área de un triángulo, a partir de sus coordenadas, en el espacio
ESCALARES Y VECTORES
ESCALARES Y VECTORES MAGNITUD ESCALAR Un escalar es un tipo de magnitud física que se expresa por un solo número y tiene el mismo valor para todos los observadores. Se dice también que es aquella que solo
Antes de iniciar el tema se deben de tener los siguientes conocimientos básicos:
CONOCIMIENTOS PREVIOS. Vectores.. Conocimientos previos. Antes de iniciar el tema se deben de tener los siguientes conocimientos básicos: Trigonometría. Resolución de ecuaciones de primer grado. Sería
